Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Sub-tasks:
multi-class-classification
Size:
10K - 100K
Add base info to card
Browse files
README.md
CHANGED
@@ -2,26 +2,26 @@
|
|
2 |
annotations_creators: []
|
3 |
language_creators: []
|
4 |
languages:
|
5 |
-
- ar
|
6 |
-
- bg
|
7 |
-
- de
|
8 |
-
- el
|
9 |
-
- en
|
10 |
-
- es
|
11 |
-
- fr
|
12 |
-
- hi
|
13 |
-
- it
|
14 |
-
- ja
|
15 |
-
- nl
|
16 |
-
- pl
|
17 |
-
- pt
|
18 |
-
- ru
|
19 |
-
- sw
|
20 |
-
- th
|
21 |
-
- tr
|
22 |
-
- ur
|
23 |
-
- vi
|
24 |
-
- zh
|
25 |
licenses: []
|
26 |
multilinguality:
|
27 |
- multilingual
|
@@ -38,7 +38,7 @@ task_ids:
|
|
38 |
- multi-class-classification
|
39 |
---
|
40 |
|
41 |
-
# Dataset Card for
|
42 |
|
43 |
## Table of Contents
|
44 |
- [Table of Contents](#table-of-contents)
|
@@ -75,15 +75,20 @@ task_ids:
|
|
75 |
|
76 |
### Dataset Summary
|
77 |
|
78 |
-
|
|
|
|
|
79 |
|
80 |
### Supported Tasks and Leaderboards
|
81 |
|
82 |
-
|
|
|
83 |
|
84 |
### Languages
|
85 |
|
86 |
-
|
|
|
|
|
87 |
|
88 |
## Dataset Structure
|
89 |
|
|
|
2 |
annotations_creators: []
|
3 |
language_creators: []
|
4 |
languages:
|
5 |
+
- ar
|
6 |
+
- bg
|
7 |
+
- de
|
8 |
+
- el
|
9 |
+
- en
|
10 |
+
- es
|
11 |
+
- fr
|
12 |
+
- hi
|
13 |
+
- it
|
14 |
+
- ja
|
15 |
+
- nl
|
16 |
+
- pl
|
17 |
+
- pt
|
18 |
+
- ru
|
19 |
+
- sw
|
20 |
+
- th
|
21 |
+
- tr
|
22 |
+
- ur
|
23 |
+
- vi
|
24 |
+
- zh
|
25 |
licenses: []
|
26 |
multilinguality:
|
27 |
- multilingual
|
|
|
38 |
- multi-class-classification
|
39 |
---
|
40 |
|
41 |
+
# Dataset Card for Language Identification dataset
|
42 |
|
43 |
## Table of Contents
|
44 |
- [Table of Contents](#table-of-contents)
|
|
|
75 |
|
76 |
### Dataset Summary
|
77 |
|
78 |
+
The Language Identification dataset is a collection of 90k samples consisting of text passages and corresponding language label.
|
79 |
+
This dataset was created by collecting data from 3 sources: [Multilingual Amazon Reviews Corpus](https://huggingface.co/datasets/amazon_reviews_multi), [XNLI](https://huggingface.co/datasets/xnli), and [STSb Multi MT](https://huggingface.co/datasets/stsb_multi_mt).
|
80 |
+
|
81 |
|
82 |
### Supported Tasks and Leaderboards
|
83 |
|
84 |
+
The dataset can be used to train a model for language identification, which is a **multi-class text classification** task.
|
85 |
+
The model [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection), which is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base), was trained on this dataset and currently achieves 99.6% accuracy on the test set.
|
86 |
|
87 |
### Languages
|
88 |
|
89 |
+
The Language Identification dataset contains text in 20 languages, which are:
|
90 |
+
|
91 |
+
`arabic (ar), bulgarian (bg), german (de), modern greek (el), english (en), spanish (es), french (fr), hindi (hi), italian (it), japanese (ja), dutch (nl), polish (pl), portuguese (pt), russian (ru), swahili (sw), thai (th), turkish (tr), urdu (ur), vietnamese (vi), and chinese (zh)`
|
92 |
|
93 |
## Dataset Structure
|
94 |
|