Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
semantic-similarity-classification
Size:
100K - 1M
License:
dataset loading script
Browse files
xlwic.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
import datasets
|
3 |
+
from datasets.info import DatasetInfo
|
4 |
+
from datasets.utils.download_manager import DownloadManager
|
5 |
+
import os
|
6 |
+
|
7 |
+
_DESCRIPTION = """A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.
|
8 |
+
|
9 |
+
XL-WiC provides dev and test sets in the following 12 languages:
|
10 |
+
|
11 |
+
Bulgarian (BG)
|
12 |
+
Danish (DA)
|
13 |
+
German (DE)
|
14 |
+
Estonian (ET)
|
15 |
+
Farsi (FA)
|
16 |
+
French (FR)
|
17 |
+
Croatian (HR)
|
18 |
+
Italian (IT)
|
19 |
+
Japanese (JA)
|
20 |
+
Korean (KO)
|
21 |
+
Dutch (NL)
|
22 |
+
Chinese (ZH)
|
23 |
+
and training sets in the following 3 languages:
|
24 |
+
|
25 |
+
German (DE)
|
26 |
+
French (FR)
|
27 |
+
Italian (IT)
|
28 |
+
"""
|
29 |
+
_CITATION = """@inproceedings{raganato-etal-2020-xl-wic,
|
30 |
+
title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},
|
31 |
+
author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},
|
32 |
+
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
|
33 |
+
pages={7193--7206},
|
34 |
+
year={2020}
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
_DOWNLOAD_URL = "https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip"
|
38 |
+
_VERSION = "1.0.0"
|
39 |
+
_WN_LANGS = ["EN", "BG", "ZH", "HR", "DA", "NL", "ET", "FA", "JA", "KO"]
|
40 |
+
_WIKT_LANGS = ["IT", "FR", "DE"]
|
41 |
+
_CODE_TO_LANG_ID = {
|
42 |
+
"EN": "english",
|
43 |
+
"BG": "bulgarian",
|
44 |
+
"ZH": "chinese",
|
45 |
+
"HR": "croatian",
|
46 |
+
"DA": "danish",
|
47 |
+
"NL": "dutch",
|
48 |
+
"ET": "estonian",
|
49 |
+
"FA": "farsi",
|
50 |
+
"JA": "japanese",
|
51 |
+
"KO": "korean",
|
52 |
+
"IT": "italian",
|
53 |
+
"FR": "french",
|
54 |
+
"DE": "german",
|
55 |
+
}
|
56 |
+
_AVAILABLE_PAIRS = (
|
57 |
+
list(zip(["EN"] * (len(_WN_LANGS) - 1), _WN_LANGS[1:]))
|
58 |
+
+ list(zip(["EN"] * len(_WIKT_LANGS), _WIKT_LANGS))
|
59 |
+
+ [("IT", "IT"), ("FR", "FR"), ("DE", "DE")]
|
60 |
+
)
|
61 |
+
|
62 |
+
@dataclass
|
63 |
+
class XLWiCConfig(datasets.BuilderConfig):
|
64 |
+
version:str=None
|
65 |
+
training_lang:str = None
|
66 |
+
target_lang:str = None
|
67 |
+
name:str = None
|
68 |
+
|
69 |
+
|
70 |
+
class XLWIC(datasets.GeneratorBasedBuilder):
|
71 |
+
BUILDER_CONFIGS = [
|
72 |
+
XLWiCConfig(
|
73 |
+
name=f"xlwic_{source.lower()}_{target.lower()}",
|
74 |
+
training_lang=source,
|
75 |
+
target_lang=target,
|
76 |
+
version=datasets.Version(_VERSION, ""),
|
77 |
+
)
|
78 |
+
for source, target in _AVAILABLE_PAIRS
|
79 |
+
]
|
80 |
+
|
81 |
+
def _info(self) -> DatasetInfo:
|
82 |
+
return datasets.DatasetInfo(
|
83 |
+
description=_DESCRIPTION,
|
84 |
+
features=datasets.Features(
|
85 |
+
{
|
86 |
+
"id": datasets.Value("string"),
|
87 |
+
"context_1": datasets.Value("string"),
|
88 |
+
"context_2": datasets.Value("string"),
|
89 |
+
"target_word": datasets.Value("string"),
|
90 |
+
"pos": datasets.Value("string"),
|
91 |
+
"target_word_location_1":
|
92 |
+
{
|
93 |
+
"char_start": datasets.Value("int32"),
|
94 |
+
"char_end": datasets.Value("int32"),
|
95 |
+
},
|
96 |
+
"target_word_location_2":
|
97 |
+
{
|
98 |
+
"char_start": datasets.Value("int32"),
|
99 |
+
"char_end": datasets.Value("int32"),
|
100 |
+
},
|
101 |
+
"language": datasets.Value("string"),
|
102 |
+
"label": datasets.Value("int32"),
|
103 |
+
}
|
104 |
+
),
|
105 |
+
supervised_keys=None,
|
106 |
+
homepage="https://pilehvar.github.io/xlwic/",
|
107 |
+
citation=_CITATION,
|
108 |
+
)
|
109 |
+
|
110 |
+
def _split_generators(self, dl_manager: DownloadManager):
|
111 |
+
downloaded_file = dl_manager.download_and_extract(_DOWNLOAD_URL)
|
112 |
+
dataset_root_folder = os.path.join(downloaded_file, "xlwic_datasets")
|
113 |
+
|
114 |
+
return [
|
115 |
+
datasets.SplitGenerator(
|
116 |
+
name=datasets.Split.TRAIN,
|
117 |
+
# These kwargs will be passed to _generate_examples
|
118 |
+
gen_kwargs={
|
119 |
+
"dataset_root": dataset_root_folder,
|
120 |
+
"lang": self.config.training_lang,
|
121 |
+
"split": "train",
|
122 |
+
},
|
123 |
+
),
|
124 |
+
datasets.SplitGenerator(
|
125 |
+
name=datasets.Split.VALIDATION,
|
126 |
+
# These kwargs will be passed to _generate_examples
|
127 |
+
gen_kwargs={
|
128 |
+
"dataset_root": dataset_root_folder,
|
129 |
+
"lang": self.config.target_lang,
|
130 |
+
"split": "valid",
|
131 |
+
},
|
132 |
+
),
|
133 |
+
datasets.SplitGenerator(
|
134 |
+
name=datasets.Split.TEST,
|
135 |
+
# These kwargs will be passed to _generate_examples
|
136 |
+
gen_kwargs={
|
137 |
+
"dataset_root": dataset_root_folder,
|
138 |
+
"lang": self.config.target_lang,
|
139 |
+
"split": "test",
|
140 |
+
},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _yield_from_lines(self, lines, lang):
|
145 |
+
|
146 |
+
for i, (
|
147 |
+
tw,
|
148 |
+
pos,
|
149 |
+
char_start_1,
|
150 |
+
char_end_1,
|
151 |
+
char_start_2,
|
152 |
+
char_end_2,
|
153 |
+
context_1,
|
154 |
+
context_2,
|
155 |
+
label,
|
156 |
+
) in enumerate(lines):
|
157 |
+
_id = f"{lang}_{i}"
|
158 |
+
yield _id, {
|
159 |
+
"id": _id,
|
160 |
+
"target_word": tw,
|
161 |
+
"context_1": context_1,
|
162 |
+
"context_2": context_2,
|
163 |
+
"label": int(label),
|
164 |
+
"target_word_location_1": {
|
165 |
+
"char_start": int(char_start_1),
|
166 |
+
"char_end": int(char_end_1),
|
167 |
+
},
|
168 |
+
"target_word_location_2": {
|
169 |
+
"char_start": int(char_start_2),
|
170 |
+
"char_end": int(char_end_2)
|
171 |
+
},
|
172 |
+
"pos": pos,
|
173 |
+
"language": lang,
|
174 |
+
}
|
175 |
+
|
176 |
+
def _from_selfcontained_file(self, dataset_root, lang, split):
|
177 |
+
ext_lang = _CODE_TO_LANG_ID[lang]
|
178 |
+
if lang in _WIKT_LANGS:
|
179 |
+
path = os.path.join(
|
180 |
+
dataset_root,
|
181 |
+
"xlwic_wikt",
|
182 |
+
f"{ext_lang}_{lang.lower()}",
|
183 |
+
f"{lang.lower()}_{split}.txt",
|
184 |
+
)
|
185 |
+
elif lang != "EN" and lang in _WN_LANGS:
|
186 |
+
path = os.path.join(
|
187 |
+
dataset_root,
|
188 |
+
"xlwic_wn",
|
189 |
+
f"{ext_lang}_{lang.lower()}",
|
190 |
+
f"{lang.lower()}_{split}.txt",
|
191 |
+
)
|
192 |
+
elif lang == "EN" and lang in _WN_LANGS:
|
193 |
+
path = os.path.join(
|
194 |
+
dataset_root, "wic_english", f"{split}_{lang.lower()}.txt"
|
195 |
+
)
|
196 |
+
with open(path) as lines:
|
197 |
+
all_lines = [line.strip().split("\t") for line in lines]
|
198 |
+
yield from self._yield_from_lines(all_lines, lang)
|
199 |
+
|
200 |
+
def _from_test_files(self, dataset_root, lang, split):
|
201 |
+
ext_lang = _CODE_TO_LANG_ID[lang]
|
202 |
+
if lang in _WIKT_LANGS:
|
203 |
+
path_data = os.path.join(
|
204 |
+
dataset_root,
|
205 |
+
"xlwic_wikt",
|
206 |
+
f"{ext_lang}_{lang.lower()}",
|
207 |
+
f"{lang.lower()}_{split}_data.txt",
|
208 |
+
)
|
209 |
+
elif lang != "EN" and lang in _WN_LANGS:
|
210 |
+
path_data = os.path.join(
|
211 |
+
dataset_root,
|
212 |
+
"xlwic_wn",
|
213 |
+
f"{ext_lang}_{lang.lower()}",
|
214 |
+
f"{lang.lower()}_{split}_data.txt",
|
215 |
+
)
|
216 |
+
path_gold = path_data.replace('_data.txt', '_gold.txt')
|
217 |
+
with open(path_data) as lines:
|
218 |
+
all_lines = [line.strip().split("\t") for line in lines]
|
219 |
+
with open(path_gold) as lines:
|
220 |
+
all_labels = [line.strip() for line in lines]
|
221 |
+
for line, label in zip(all_lines, all_labels):
|
222 |
+
line.append(label)
|
223 |
+
yield from self._yield_from_lines(all_lines, lang)
|
224 |
+
|
225 |
+
|
226 |
+
def _generate_examples(self, dataset_root, lang, split, **kwargs):
|
227 |
+
if split in {"train", "valid"}:
|
228 |
+
yield from self._from_selfcontained_file(dataset_root, lang, split)
|
229 |
+
else:
|
230 |
+
yield from self._from_test_files(dataset_root, lang, split)
|
231 |
+
|