Upload _script_for_eval.py
Browse files- _script_for_eval.py +27 -8
_script_for_eval.py
CHANGED
@@ -7,15 +7,15 @@ import datetime
|
|
7 |
import subprocess
|
8 |
import argparse
|
9 |
import re
|
|
|
|
|
10 |
from openai import OpenAI
|
11 |
from openai import OpenAIError
|
12 |
from tqdm import tqdm
|
13 |
from functools import partial
|
14 |
-
import multiprocessing
|
15 |
from datasets import load_dataset
|
16 |
-
from
|
17 |
from sklearn.metrics.pairwise import cosine_similarity
|
18 |
-
import numpy as np
|
19 |
|
20 |
client = OpenAI()
|
21 |
|
@@ -41,17 +41,36 @@ def fetch_dataset_examples(prompt, num_examples=0, use_similarity=False):
|
|
41 |
dataset = load_dataset("patched-codes/synth-vuln-fixes", split="train")
|
42 |
|
43 |
if use_similarity:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
user_messages = [
|
45 |
next(msg['content'] for msg in item['messages'] if msg['role'] == 'user')
|
46 |
for item in dataset
|
47 |
]
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
|
|
55 |
else:
|
56 |
top_indices = np.random.choice(len(dataset), num_examples, replace=False)
|
57 |
|
|
|
7 |
import subprocess
|
8 |
import argparse
|
9 |
import re
|
10 |
+
import multiprocessing
|
11 |
+
import numpy as np
|
12 |
from openai import OpenAI
|
13 |
from openai import OpenAIError
|
14 |
from tqdm import tqdm
|
15 |
from functools import partial
|
|
|
16 |
from datasets import load_dataset
|
17 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
18 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
19 |
|
20 |
client = OpenAI()
|
21 |
|
|
|
41 |
dataset = load_dataset("patched-codes/synth-vuln-fixes", split="train")
|
42 |
|
43 |
if use_similarity:
|
44 |
+
# Load a lightweight model for initial retrieval
|
45 |
+
retrieval_model = SentenceTransformer('all-MiniLM-L6-v2')
|
46 |
+
|
47 |
+
# Load the cross-encoder model for reranking
|
48 |
+
rerank_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
49 |
+
|
50 |
+
# Extract user messages
|
51 |
user_messages = [
|
52 |
next(msg['content'] for msg in item['messages'] if msg['role'] == 'user')
|
53 |
for item in dataset
|
54 |
]
|
55 |
|
56 |
+
# Encode the prompt and user messages for initial retrieval
|
57 |
+
prompt_embedding = retrieval_model.encode(prompt, convert_to_tensor=False)
|
58 |
+
corpus_embeddings = retrieval_model.encode(user_messages, convert_to_tensor=False, show_progress_bar=True)
|
59 |
+
|
60 |
+
# Perform initial retrieval
|
61 |
+
similarities = cosine_similarity([prompt_embedding], corpus_embeddings)[0]
|
62 |
+
top_k = min(100, len(dataset))
|
63 |
+
top_indices = similarities.argsort()[-top_k:][::-1]
|
64 |
+
|
65 |
+
# Prepare pairs for reranking
|
66 |
+
rerank_pairs = [[prompt, user_messages[idx]] for idx in top_indices]
|
67 |
+
|
68 |
+
# Rerank using the cross-encoder model
|
69 |
+
rerank_scores = rerank_model.predict(rerank_pairs)
|
70 |
|
71 |
+
# Sort by reranked score and select top examples
|
72 |
+
reranked_indices = [top_indices[i] for i in np.argsort(rerank_scores)[::-1][:num_examples]]
|
73 |
+
top_indices = reranked_indices
|
74 |
else:
|
75 |
top_indices = np.random.choice(len(dataset), num_examples, replace=False)
|
76 |
|