Upload _script_for_eval.py
Browse files- _script_for_eval.py +55 -51
_script_for_eval.py
CHANGED
@@ -8,8 +8,7 @@ import subprocess
|
|
8 |
import argparse
|
9 |
import re
|
10 |
from openai import OpenAI
|
11 |
-
from openai
|
12 |
-
from openai.types import APIError, APIConnectionError, APIResponseValidationError, APIStatusError
|
13 |
from tqdm import tqdm
|
14 |
from functools import partial
|
15 |
import multiprocessing
|
@@ -20,15 +19,16 @@ import numpy as np
|
|
20 |
|
21 |
client = OpenAI()
|
22 |
|
23 |
-
def load_cache():
|
24 |
-
if os.path.exists('cache.pkl'):
|
25 |
with open('cache.pkl', 'rb') as f:
|
26 |
return pickle.load(f)
|
27 |
return {}
|
28 |
|
29 |
-
def save_cache(cache):
|
30 |
-
|
31 |
-
|
|
|
32 |
|
33 |
def has_all_comments(text):
|
34 |
lines=text.split('\n')
|
@@ -37,7 +37,7 @@ def has_all_comments(text):
|
|
37 |
return False
|
38 |
return True
|
39 |
|
40 |
-
def fetch_dataset_examples(prompt, num_examples=
|
41 |
dataset = load_dataset("patched-codes/synth-vuln-fixes", split="train")
|
42 |
|
43 |
if use_similarity:
|
@@ -106,28 +106,22 @@ def get_fixed_code_fine_tuned(prompt, few_shot_messages, model_name):
|
|
106 |
temperature=0.2,
|
107 |
top_p=0.95
|
108 |
)
|
109 |
-
|
110 |
-
|
111 |
-
else:
|
112 |
-
raise ValueError("Unexpected response type from OpenAI API")
|
113 |
-
except (APIError, APIConnectionError, APIResponseValidationError) as e:
|
114 |
if attempt < max_retries - 1:
|
115 |
time.sleep(2 ** attempt) # Exponential backoff
|
116 |
else:
|
117 |
raise Exception(f"API call failed after {max_retries} attempts: {str(e)}")
|
118 |
-
except APIStatusError as e:
|
119 |
-
raise Exception(f"API call failed with status {e.status_code}: {str(e)}")
|
120 |
|
121 |
-
def process_file(test_case, cache, fixed_files, model_name):
|
122 |
file_name = test_case["file_name"]
|
123 |
input_file = os.path.join("staticeval", file_name)
|
124 |
|
125 |
-
if input_file in cache:
|
126 |
tqdm.write(f"Skipping {input_file} (cached)")
|
127 |
return cache[input_file]
|
128 |
|
129 |
file_text = test_case["source"]
|
130 |
-
test_cwe = test_case["cwe"].strip()
|
131 |
output_file = input_file + "_fixed.py"
|
132 |
tmp_file = input_file + ".output.json"
|
133 |
|
@@ -173,7 +167,7 @@ def process_file(test_case, cache, fixed_files, model_name):
|
|
173 |
|
174 |
Task: Fix the vulnerability in the code above. Provide only the complete fixed code without explanations or comments. Make minimal changes necessary to address the security issue while preserving the original functionality."""
|
175 |
|
176 |
-
few_shot_messages = fetch_dataset_examples(prompt,
|
177 |
response = get_fixed_code_fine_tuned(prompt, few_shot_messages, model_name)
|
178 |
|
179 |
if "```python" in response:
|
@@ -184,61 +178,65 @@ def process_file(test_case, cache, fixed_files, model_name):
|
|
184 |
fixed_code = response
|
185 |
|
186 |
stop_words = ["```", "assistant"]
|
|
|
187 |
for w in stop_words:
|
188 |
if w in fixed_code:
|
189 |
fixed_code = fixed_code[:fixed_code.find(w)]
|
190 |
-
|
191 |
-
if len(fixed_code) < 400 or all(line.strip().startswith("#") for line in fixed_code.split('\n') if line.strip()):
|
192 |
result = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
else:
|
194 |
-
|
195 |
-
wf.write(fixed_code)
|
196 |
-
|
197 |
-
scan_command_output = f"semgrep --config p/python {output_file} --output {tmp_file} --json > /dev/null 2>&1"
|
198 |
-
os.system(scan_command_output)
|
199 |
-
|
200 |
-
if not os.path.exists(tmp_file):
|
201 |
-
tqdm.write(f"Semgrep failed to create output file for {output_file}")
|
202 |
-
result = False
|
203 |
-
else:
|
204 |
-
with open(tmp_file, 'r') as jf:
|
205 |
-
data = json.load(jf)
|
206 |
-
|
207 |
-
if len(data.get("errors", [])) == 0 and len(data.get("results", [])) == 0:
|
208 |
-
tqdm.write("Passing response for " + input_file + " at 1 ...")
|
209 |
-
result = True
|
210 |
-
fixed_files.append(file_name)
|
211 |
-
else:
|
212 |
-
result = False
|
213 |
else:
|
214 |
tqdm.write(f"Semgrep reported errors for {input_file}")
|
215 |
result = False
|
216 |
|
217 |
if os.path.exists(tmp_file):
|
218 |
os.remove(tmp_file)
|
|
|
|
|
219 |
|
220 |
-
cache[input_file] = result
|
221 |
-
save_cache(cache)
|
222 |
return result
|
223 |
except Exception as e:
|
224 |
tqdm.write(f"Error processing {input_file}: {str(e)}")
|
225 |
return False
|
226 |
|
227 |
-
def process_test_case(test_case, cache, fixed_files, model_name):
|
228 |
-
return process_file(test_case, cache, fixed_files, model_name)
|
229 |
|
230 |
def main():
|
231 |
parser = argparse.ArgumentParser(description="Run Static Analysis Evaluation")
|
232 |
-
parser.add_argument("--model", type=str, default="gpt-
|
|
|
|
|
|
|
233 |
args = parser.parse_args()
|
234 |
|
235 |
model_name = args.model
|
236 |
-
|
|
|
|
|
|
|
237 |
|
238 |
dataset = load_dataset("patched-codes/static-analysis-eval", split="train")
|
239 |
data = [{"file_name": item["file_name"], "source": item["source"], "cwe": item["cwe"]} for item in dataset]
|
240 |
|
241 |
-
cache = load_cache()
|
242 |
total_tests = len(data)
|
243 |
|
244 |
semgrep_version = get_semgrep_version()
|
@@ -248,23 +246,29 @@ def main():
|
|
248 |
manager = multiprocessing.Manager()
|
249 |
fixed_files = manager.list()
|
250 |
|
251 |
-
process_func = partial(process_test_case, cache=cache, fixed_files=fixed_files, model_name=model_name)
|
252 |
|
253 |
-
with multiprocessing.Pool() as pool:
|
254 |
-
results = list(tqdm(pool.
|
255 |
|
256 |
passing_tests = sum(results)
|
257 |
score = passing_tests / total_tests * 100
|
258 |
|
|
|
|
|
|
|
259 |
with open(log_file_name, 'w') as log_file:
|
260 |
log_file.write(f"Evaluation Run Log\n")
|
261 |
log_file.write(f"==================\n\n")
|
262 |
log_file.write(f"Date and Time: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
|
263 |
log_file.write(f"Model: {model_name}\n")
|
264 |
-
log_file.write(f"Semgrep Version: {semgrep_version}\n
|
|
|
265 |
log_file.write(f"Total Tests: {total_tests}\n")
|
266 |
log_file.write(f"Passing Tests: {passing_tests}\n")
|
267 |
log_file.write(f"Score: {score:.2f}%\n\n")
|
|
|
|
|
268 |
log_file.write("Fixed Files:\n")
|
269 |
for file in fixed_files:
|
270 |
log_file.write(f"- {file}\n")
|
|
|
8 |
import argparse
|
9 |
import re
|
10 |
from openai import OpenAI
|
11 |
+
from openai import OpenAIError
|
|
|
12 |
from tqdm import tqdm
|
13 |
from functools import partial
|
14 |
import multiprocessing
|
|
|
19 |
|
20 |
client = OpenAI()
|
21 |
|
22 |
+
def load_cache(use_cache):
|
23 |
+
if use_cache and os.path.exists('cache.pkl'):
|
24 |
with open('cache.pkl', 'rb') as f:
|
25 |
return pickle.load(f)
|
26 |
return {}
|
27 |
|
28 |
+
def save_cache(cache, use_cache):
|
29 |
+
if use_cache:
|
30 |
+
with open('cache.pkl', 'wb') as f:
|
31 |
+
pickle.dump(cache, f)
|
32 |
|
33 |
def has_all_comments(text):
|
34 |
lines=text.split('\n')
|
|
|
37 |
return False
|
38 |
return True
|
39 |
|
40 |
+
def fetch_dataset_examples(prompt, num_examples=0, use_similarity=False):
|
41 |
dataset = load_dataset("patched-codes/synth-vuln-fixes", split="train")
|
42 |
|
43 |
if use_similarity:
|
|
|
106 |
temperature=0.2,
|
107 |
top_p=0.95
|
108 |
)
|
109 |
+
return response.choices[0].message.content
|
110 |
+
except OpenAIError as e:
|
|
|
|
|
|
|
111 |
if attempt < max_retries - 1:
|
112 |
time.sleep(2 ** attempt) # Exponential backoff
|
113 |
else:
|
114 |
raise Exception(f"API call failed after {max_retries} attempts: {str(e)}")
|
|
|
|
|
115 |
|
116 |
+
def process_file(test_case, cache, fixed_files, model_name, use_cache, n_shot, use_similarity):
|
117 |
file_name = test_case["file_name"]
|
118 |
input_file = os.path.join("staticeval", file_name)
|
119 |
|
120 |
+
if use_cache and input_file in cache:
|
121 |
tqdm.write(f"Skipping {input_file} (cached)")
|
122 |
return cache[input_file]
|
123 |
|
124 |
file_text = test_case["source"]
|
|
|
125 |
output_file = input_file + "_fixed.py"
|
126 |
tmp_file = input_file + ".output.json"
|
127 |
|
|
|
167 |
|
168 |
Task: Fix the vulnerability in the code above. Provide only the complete fixed code without explanations or comments. Make minimal changes necessary to address the security issue while preserving the original functionality."""
|
169 |
|
170 |
+
few_shot_messages = fetch_dataset_examples(prompt, n_shot, use_similarity)
|
171 |
response = get_fixed_code_fine_tuned(prompt, few_shot_messages, model_name)
|
172 |
|
173 |
if "```python" in response:
|
|
|
178 |
fixed_code = response
|
179 |
|
180 |
stop_words = ["```", "assistant"]
|
181 |
+
|
182 |
for w in stop_words:
|
183 |
if w in fixed_code:
|
184 |
fixed_code = fixed_code[:fixed_code.find(w)]
|
185 |
+
if len(fixed_code) < 400:
|
|
|
186 |
result = False
|
187 |
+
if has_all_comments(fixed_code):
|
188 |
+
result = False
|
189 |
+
if os.path.exists(output_file):
|
190 |
+
os.remove(output_file)
|
191 |
+
with open(output_file, 'w') as wf:
|
192 |
+
wf.write(fixed_code)
|
193 |
+
if os.path.exists(tmp_file):
|
194 |
+
os.remove(tmp_file)
|
195 |
+
scan_command_output = f"semgrep --config p/python {output_file} --output {tmp_file} --json > /dev/null 2>&1"
|
196 |
+
os.system(scan_command_output)
|
197 |
+
with open(tmp_file, 'r') as jf:
|
198 |
+
data = json.load(jf)
|
199 |
+
if len(data["errors"]) == 0 and len(data["results"]) == 0:
|
200 |
+
tqdm.write("Passing response for " + input_file + " at 1 ...")
|
201 |
+
result = True
|
202 |
+
fixed_files.append(file_name)
|
203 |
else:
|
204 |
+
result = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
else:
|
206 |
tqdm.write(f"Semgrep reported errors for {input_file}")
|
207 |
result = False
|
208 |
|
209 |
if os.path.exists(tmp_file):
|
210 |
os.remove(tmp_file)
|
211 |
+
if use_cache:
|
212 |
+
cache[input_file] = result
|
213 |
|
|
|
|
|
214 |
return result
|
215 |
except Exception as e:
|
216 |
tqdm.write(f"Error processing {input_file}: {str(e)}")
|
217 |
return False
|
218 |
|
219 |
+
def process_test_case(test_case, cache, fixed_files, model_name, use_cache, n_shot, use_similarity):
|
220 |
+
return process_file(test_case, cache, fixed_files, model_name, use_cache, n_shot, use_similarity)
|
221 |
|
222 |
def main():
|
223 |
parser = argparse.ArgumentParser(description="Run Static Analysis Evaluation")
|
224 |
+
parser.add_argument("--model", type=str, default="gpt-4o-mini", help="OpenAI model to use")
|
225 |
+
parser.add_argument("--cache", action="store_true", help="Enable caching of results")
|
226 |
+
parser.add_argument("--n_shot", type=int, default=0, help="Number of examples to use for few-shot learning")
|
227 |
+
parser.add_argument("--use_similarity", action="store_true", help="Use similarity for fetching dataset examples")
|
228 |
args = parser.parse_args()
|
229 |
|
230 |
model_name = args.model
|
231 |
+
use_cache = args.cache
|
232 |
+
n_shot = args.n_shot
|
233 |
+
use_similarity = args.use_similarity
|
234 |
+
sanitized_model_name = f"{sanitize_filename(model_name)}-{n_shot}-shot{'-sim' if use_similarity else ''}"
|
235 |
|
236 |
dataset = load_dataset("patched-codes/static-analysis-eval", split="train")
|
237 |
data = [{"file_name": item["file_name"], "source": item["source"], "cwe": item["cwe"]} for item in dataset]
|
238 |
|
239 |
+
cache = load_cache(use_cache)
|
240 |
total_tests = len(data)
|
241 |
|
242 |
semgrep_version = get_semgrep_version()
|
|
|
246 |
manager = multiprocessing.Manager()
|
247 |
fixed_files = manager.list()
|
248 |
|
249 |
+
process_func = partial(process_test_case, cache=cache, fixed_files=fixed_files, model_name=model_name, use_cache=use_cache, n_shot=n_shot, use_similarity=use_similarity)
|
250 |
|
251 |
+
with multiprocessing.Pool(processes=4) as pool:
|
252 |
+
results = list(tqdm(pool.imap(process_func, data), total=total_tests))
|
253 |
|
254 |
passing_tests = sum(results)
|
255 |
score = passing_tests / total_tests * 100
|
256 |
|
257 |
+
if use_cache:
|
258 |
+
save_cache(cache, use_cache)
|
259 |
+
|
260 |
with open(log_file_name, 'w') as log_file:
|
261 |
log_file.write(f"Evaluation Run Log\n")
|
262 |
log_file.write(f"==================\n\n")
|
263 |
log_file.write(f"Date and Time: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
|
264 |
log_file.write(f"Model: {model_name}\n")
|
265 |
+
log_file.write(f"Semgrep Version: {semgrep_version}\n")
|
266 |
+
log_file.write(f"Caching: {'Enabled' if use_cache else 'Disabled'}\n\n")
|
267 |
log_file.write(f"Total Tests: {total_tests}\n")
|
268 |
log_file.write(f"Passing Tests: {passing_tests}\n")
|
269 |
log_file.write(f"Score: {score:.2f}%\n\n")
|
270 |
+
log_file.write(f"Number of few-shot examples: {n_shot}\n")
|
271 |
+
log_file.write(f"Use similarity for examples: {'Yes' if use_similarity else 'No'}\n")
|
272 |
log_file.write("Fixed Files:\n")
|
273 |
for file in fixed_files:
|
274 |
log_file.write(f"- {file}\n")
|