import requests import torch from PIL import Image from io import BytesIO import time from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("/home/patrick_huggingface_co/stable-diffusion-2-1-unclip-i2i-l", torch_dtype=torch.float16) pipe.to("cuda") url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/image%20(13).png" #url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/image%20(10).png" #url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/image%20(10).png" #url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/image%20(10).png" response = requests.get(url) init_image = Image.open(BytesIO(response.content)).convert("RGB") # init_image = init_image.resize((768, 512)) images = pipe(4 * [init_image]).images for i in range(len(images)): images[i].save(f"fantasy_landscape_{i}.png")