gists / sayak_lcm_benchmark.py
pcuenq's picture
pcuenq HF staff
remove cpu offload (#1)
2c3d2ef
raw
history blame
1.73 kB
import torch
import torch.utils.benchmark as benchmark
import argparse
from diffusers import DiffusionPipeline, LCMScheduler
PROMPT = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
MODEL_ID = "stabilityai/stable-diffusion-xl-base-1.0"
LORA_ID = "latent-consistency/lcm-lora-sdxl"
def benchmark_fn(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
)
return t0.blocked_autorange().mean * 1e6
def load_pipeline(standard_sdxl=False):
pipe = DiffusionPipeline.from_pretrained(MODEL_ID, variant="fp16")
if not standard_sdxl:
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(LORA_ID)
pipe.to(device="cuda", dtype=torch.float16)
return pipe
def call_pipeline(pipe, batch_size, num_inference_steps, guidance_scale):
images = pipe(
prompt=PROMPT,
num_inference_steps=num_inference_steps,
num_images_per_prompt=batch_size,
guidance_scale=guidance_scale,
).images[0]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--standard_sdxl", action="store_true")
args = parser.parse_args()
pipeline = load_pipeline(args.standard_sdxl)
if args.standard_sdxl:
num_inference_steps = 25
guidance_scale = 5
else:
num_inference_steps = 4
guidance_scale = 1
time = benchmark_fn(call_pipeline, pipeline, args.batch_size, num_inference_steps, guidance_scale)
print(f"Batch size: {args.batch_size} in {time/1e6:.3f} seconds")