file_path
stringlengths
22
162
content
stringlengths
19
501k
size
int64
19
501k
lang
stringclasses
1 value
avg_line_length
float64
6.33
100
max_line_length
int64
18
935
alphanum_fraction
float64
0.34
0.93
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/allegro_hand.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.allegro_hand import AllegroHand from omniisaacgymenvs.robots.articulations.views.allegro_hand_view import AllegroHandView from omniisaacgymenvs.tasks.shared.in_hand_manipulation import InHandManipulationTask class AllegroHandTask(InHandManipulationTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) InHandManipulationTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.object_type = self._task_cfg["env"]["objectType"] assert self.object_type in ["block"] self.obs_type = self._task_cfg["env"]["observationType"] if not (self.obs_type in ["full_no_vel", "full"]): raise Exception("Unknown type of observations!\nobservationType should be one of: [full_no_vel, full]") print("Obs type:", self.obs_type) self.num_obs_dict = { "full_no_vel": 50, "full": 72, } self.object_scale = torch.tensor([1.0, 1.0, 1.0]) self._num_observations = self.num_obs_dict[self.obs_type] self._num_actions = 16 self._num_states = 0 InHandManipulationTask.update_config(self) def get_starting_positions(self): self.hand_start_translation = torch.tensor([0.0, 0.0, 0.5], device=self.device) self.hand_start_orientation = torch.tensor([0.257551, 0.283045, 0.683330, -0.621782], device=self.device) self.pose_dy, self.pose_dz = -0.2, 0.06 def get_hand(self): allegro_hand = AllegroHand( prim_path=self.default_zero_env_path + "/allegro_hand", name="allegro_hand", translation=self.hand_start_translation, orientation=self.hand_start_orientation, ) self._sim_config.apply_articulation_settings( "allegro_hand", get_prim_at_path(allegro_hand.prim_path), self._sim_config.parse_actor_config("allegro_hand"), ) allegro_hand_prim = self._stage.GetPrimAtPath(allegro_hand.prim_path) allegro_hand.set_allegro_hand_properties(stage=self._stage, allegro_hand_prim=allegro_hand_prim) allegro_hand.set_motor_control_mode( stage=self._stage, allegro_hand_path=self.default_zero_env_path + "/allegro_hand" ) def get_hand_view(self, scene): return AllegroHandView(prim_paths_expr="/World/envs/.*/allegro_hand", name="allegro_hand_view") def get_observations(self): self.get_object_goal_observations() self.hand_dof_pos = self._hands.get_joint_positions(clone=False) self.hand_dof_vel = self._hands.get_joint_velocities(clone=False) if self.obs_type == "full_no_vel": self.compute_full_observations(True) elif self.obs_type == "full": self.compute_full_observations() else: print("Unkown observations type!") observations = {self._hands.name: {"obs_buf": self.obs_buf}} return observations def compute_full_observations(self, no_vel=False): if no_vel: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, 16:19] = self.object_pos self.obs_buf[:, 19:23] = self.object_rot self.obs_buf[:, 23:26] = self.goal_pos self.obs_buf[:, 26:30] = self.goal_rot self.obs_buf[:, 30:34] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 34:50] = self.actions else: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel self.obs_buf[:, 32:35] = self.object_pos self.obs_buf[:, 35:39] = self.object_rot self.obs_buf[:, 39:42] = self.object_linvel self.obs_buf[:, 42:45] = self.vel_obs_scale * self.object_angvel self.obs_buf[:, 45:48] = self.goal_pos self.obs_buf[:, 48:52] = self.goal_rot self.obs_buf[:, 52:56] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 56:72] = self.actions
6,329
Python
42.655172
115
0.658872
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/ball_balance.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrim, RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.maths import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.balance_bot import BalanceBot from pxr import PhysxSchema class BallBalanceTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._num_observations = 12 + 12 self._num_actions = 3 self.anchored = False RLTask.__init__(self, name, env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._dt = self._task_cfg["sim"]["dt"] self._table_position = torch.tensor([0, 0, 0.56]) self._ball_position = torch.tensor([0.0, 0.0, 1.0]) self._ball_radius = 0.1 self._action_speed_scale = self._task_cfg["env"]["actionSpeedScale"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] def set_up_scene(self, scene) -> None: self.get_balance_table() self.add_ball() super().set_up_scene(scene, replicate_physics=False) self.set_up_table_anchors() self._balance_bots = ArticulationView( prim_paths_expr="/World/envs/.*/BalanceBot/tray", name="balance_bot_view", reset_xform_properties=False ) scene.add(self._balance_bots) self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/Ball/ball", name="ball_view", reset_xform_properties=False ) scene.add(self._balls) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("balance_bot_view"): scene.remove_object("balance_bot_view", registry_only=True) if scene.object_exists("ball_view"): scene.remove_object("ball_view", registry_only=True) self._balance_bots = ArticulationView( prim_paths_expr="/World/envs/.*/BalanceBot/tray", name="balance_bot_view", reset_xform_properties=False ) scene.add(self._balance_bots) self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/Ball/ball", name="ball_view", reset_xform_properties=False ) scene.add(self._balls) def get_balance_table(self): balance_table = BalanceBot( prim_path=self.default_zero_env_path + "/BalanceBot", name="BalanceBot", translation=self._table_position ) self._sim_config.apply_articulation_settings( "table", get_prim_at_path(balance_table.prim_path), self._sim_config.parse_actor_config("table") ) def add_ball(self): ball = DynamicSphere( prim_path=self.default_zero_env_path + "/Ball/ball", translation=self._ball_position, name="ball_0", radius=self._ball_radius, color=torch.tensor([0.9, 0.6, 0.2]), ) self._sim_config.apply_articulation_settings( "ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball") ) def set_up_table_anchors(self): from pxr import Gf height = 0.08 stage = get_current_stage() for i in range(self._num_envs): base_path = f"{self.default_base_env_path}/env_{i}/BalanceBot" for j, leg_offset in enumerate([(0.4, 0, height), (-0.2, 0.34641, 0), (-0.2, -0.34641, 0)]): # fix the legs to ground leg_path = f"{base_path}/lower_leg{j}" ground_joint_path = leg_path + "_ground" env_pos = stage.GetPrimAtPath(f"{self.default_base_env_path}/env_{i}").GetAttribute("xformOp:translate").Get() anchor_pos = env_pos + Gf.Vec3d(*leg_offset) self.fix_to_ground(stage, ground_joint_path, leg_path, anchor_pos) def fix_to_ground(self, stage, joint_path, prim_path, anchor_pos): from pxr import UsdPhysics, Gf # D6 fixed joint d6FixedJoint = UsdPhysics.Joint.Define(stage, joint_path) d6FixedJoint.CreateBody0Rel().SetTargets(["/World/defaultGroundPlane"]) d6FixedJoint.CreateBody1Rel().SetTargets([prim_path]) d6FixedJoint.CreateLocalPos0Attr().Set(anchor_pos) d6FixedJoint.CreateLocalRot0Attr().Set(Gf.Quatf(1.0, Gf.Vec3f(0, 0, 0))) d6FixedJoint.CreateLocalPos1Attr().Set(Gf.Vec3f(0, 0, 0.18)) d6FixedJoint.CreateLocalRot1Attr().Set(Gf.Quatf(1.0, Gf.Vec3f(0, 0, 0))) # lock all DOF (lock - low is greater than high) d6Prim = stage.GetPrimAtPath(joint_path) limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transX") limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transY") limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transZ") limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) def get_observations(self) -> dict: ball_positions, ball_orientations = self._balls.get_world_poses(clone=False) ball_positions = ball_positions[:, 0:3] - self._env_pos ball_velocities = self._balls.get_velocities(clone=False) ball_linvels = ball_velocities[:, 0:3] ball_angvels = ball_velocities[:, 3:6] dof_pos = self._balance_bots.get_joint_positions(clone=False) dof_vel = self._balance_bots.get_joint_velocities(clone=False) sensor_force_torques = self._balance_bots.get_measured_joint_forces(joint_indices=self._sensor_indices) # (num_envs, num_sensors, 6) self.obs_buf[..., 0:3] = dof_pos[..., self.actuated_dof_indices] self.obs_buf[..., 3:6] = dof_vel[..., self.actuated_dof_indices] self.obs_buf[..., 6:9] = ball_positions self.obs_buf[..., 9:12] = ball_linvels self.obs_buf[..., 12:15] = sensor_force_torques[..., 0] / 20.0 self.obs_buf[..., 15:18] = sensor_force_torques[..., 3] / 20.0 self.obs_buf[..., 18:21] = sensor_force_torques[..., 4] / 20.0 self.obs_buf[..., 21:24] = sensor_force_torques[..., 5] / 20.0 self.ball_positions = ball_positions self.ball_linvels = ball_linvels observations = {"ball_balance": {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) # update position targets from actions self.dof_position_targets[..., self.actuated_dof_indices] += ( self._dt * self._action_speed_scale * actions.to(self.device) ) self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.bbot_dof_lower_limits, self.bbot_dof_upper_limits ) # reset position targets for reset envs self.dof_position_targets[reset_env_ids] = 0 self._balance_bots.set_joint_position_targets(self.dof_position_targets) # .clone()) def reset_idx(self, env_ids): num_resets = len(env_ids) env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) min_d = 0.001 # min horizontal dist from origin max_d = 0.4 # max horizontal dist from origin min_height = 1.0 max_height = 2.0 min_horizontal_speed = 0 max_horizontal_speed = 2 dists = torch_rand_float(min_d, max_d, (num_resets, 1), self._device) dirs = torch_random_dir_2((num_resets, 1), self._device) hpos = dists * dirs speedscales = (dists - min_d) / (max_d - min_d) hspeeds = torch_rand_float(min_horizontal_speed, max_horizontal_speed, (num_resets, 1), self._device) hvels = -speedscales * hspeeds * dirs vspeeds = -torch_rand_float(5.0, 5.0, (num_resets, 1), self._device).squeeze() ball_pos = self.initial_ball_pos.clone() ball_rot = self.initial_ball_rot.clone() # position ball_pos[env_ids_64, 0:2] += hpos[..., 0:2] ball_pos[env_ids_64, 2] += torch_rand_float(min_height, max_height, (num_resets, 1), self._device).squeeze() # rotation ball_rot[env_ids_64, 0] = 1 ball_rot[env_ids_64, 1:] = 0 ball_velocities = self.initial_ball_velocities.clone() # linear ball_velocities[env_ids_64, 0:2] = hvels[..., 0:2] ball_velocities[env_ids_64, 2] = vspeeds # angular ball_velocities[env_ids_64, 3:6] = 0 # reset root state for bbots and balls in selected envs self._balls.set_world_poses(ball_pos[env_ids_64], ball_rot[env_ids_64], indices=env_ids_32) self._balls.set_velocities(ball_velocities[env_ids_64], indices=env_ids_32) # reset root pose and velocity self._balance_bots.set_world_poses( self.initial_bot_pos[env_ids_64].clone(), self.initial_bot_rot[env_ids_64].clone(), indices=env_ids_32 ) self._balance_bots.set_velocities(self.initial_bot_velocities[env_ids_64].clone(), indices=env_ids_32) # reset DOF states for bbots in selected envs self._balance_bots.set_joint_positions(self.initial_dof_positions[env_ids_64].clone(), indices=env_ids_32) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): dof_limits = self._balance_bots.get_dof_limits() self.bbot_dof_lower_limits, self.bbot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) self.initial_dof_positions = self._balance_bots.get_joint_positions() self.initial_bot_pos, self.initial_bot_rot = self._balance_bots.get_world_poses() # self.initial_bot_pos[..., 2] = 0.559 # tray_height self.initial_bot_velocities = self._balance_bots.get_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_ball_velocities = self._balls.get_velocities() self.dof_position_targets = torch.zeros( (self.num_envs, self._balance_bots.num_dof), dtype=torch.float32, device=self._device, requires_grad=False ) actuated_joints = ["lower_leg0", "lower_leg1", "lower_leg2"] self.actuated_dof_indices = torch.tensor( [self._balance_bots._dof_indices[j] for j in actuated_joints], device=self._device, dtype=torch.long ) force_links = ["upper_leg0", "upper_leg1", "upper_leg2"] self._sensor_indices = torch.tensor( [self._balance_bots._body_indices[j] for j in force_links], device=self._device, dtype=torch.long ) def calculate_metrics(self) -> None: ball_dist = torch.sqrt( self.ball_positions[..., 0] * self.ball_positions[..., 0] + (self.ball_positions[..., 2] - 0.7) * (self.ball_positions[..., 2] - 0.7) + (self.ball_positions[..., 1]) * self.ball_positions[..., 1] ) ball_speed = torch.sqrt( self.ball_linvels[..., 0] * self.ball_linvels[..., 0] + self.ball_linvels[..., 1] * self.ball_linvels[..., 1] + self.ball_linvels[..., 2] * self.ball_linvels[..., 2] ) pos_reward = 1.0 / (1.0 + ball_dist) speed_reward = 1.0 / (1.0 + ball_speed) self.rew_buf[:] = pos_reward * speed_reward def is_done(self) -> None: reset = torch.where( self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf ) reset = torch.where( self.ball_positions[..., 2] < self._ball_radius * 1.5, torch.ones_like(self.reset_buf), reset ) self.reset_buf[:] = reset
13,958
Python
44.174757
140
0.630391
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/cartpole_camera.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from gym import spaces import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.tasks.cartpole import CartpoleTask from omniisaacgymenvs.robots.articulations.cartpole import Cartpole class CartpoleCameraTask(CartpoleTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._max_episode_length = 500 self._num_observations = 4 self._num_actions = 1 # use multi-dimensional observation for camera RGB self.observation_space = spaces.Box( np.ones((self.camera_width, self.camera_height, 3), dtype=np.float32) * -np.Inf, np.ones((self.camera_width, self.camera_height, 3), dtype=np.float32) * np.Inf) RLTask.__init__(self, name, env) def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._cartpole_positions = torch.tensor([0.0, 0.0, 2.0]) self._reset_dist = self._task_cfg["env"]["resetDist"] self._max_push_effort = self._task_cfg["env"]["maxEffort"] self.camera_type = self._task_cfg["env"].get("cameraType", 'rgb') self.camera_width = self._task_cfg["env"]["cameraWidth"] self.camera_height = self._task_cfg["env"]["cameraHeight"] self.camera_channels = 3 self._export_images = self._task_cfg["env"]["exportImages"] def cleanup(self) -> None: # initialize remaining buffers RLTask.cleanup(self) # override observation buffer for camera data self.obs_buf = torch.zeros( (self.num_envs, self.camera_width, self.camera_height, 3), device=self.device, dtype=torch.float) def set_up_scene(self, scene) -> None: self.get_cartpole() RLTask.set_up_scene(self, scene) # start replicator to capture image data self.rep.orchestrator._orchestrator._is_started = True # set up cameras self.render_products = [] env_pos = self._env_pos.cpu() for i in range(self._num_envs): camera = self.rep.create.camera( position=(-4.2 + env_pos[i][0], env_pos[i][1], 3.0), look_at=(env_pos[i][0], env_pos[i][1], 2.55)) render_product = self.rep.create.render_product(camera, resolution=(self.camera_width, self.camera_height)) self.render_products.append(render_product) # initialize pytorch writer for vectorized collection self.pytorch_listener = self.PytorchListener() self.pytorch_writer = self.rep.WriterRegistry.get("PytorchWriter") self.pytorch_writer.initialize(listener=self.pytorch_listener, device="cuda") self.pytorch_writer.attach(self.render_products) self._cartpoles = ArticulationView( prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False ) scene.add(self._cartpoles) return def get_observations(self) -> dict: dof_pos = self._cartpoles.get_joint_positions(clone=False) dof_vel = self._cartpoles.get_joint_velocities(clone=False) self.cart_pos = dof_pos[:, self._cart_dof_idx] self.cart_vel = dof_vel[:, self._cart_dof_idx] self.pole_pos = dof_pos[:, self._pole_dof_idx] self.pole_vel = dof_vel[:, self._pole_dof_idx] # retrieve RGB data from all render products images = self.pytorch_listener.get_rgb_data() if images is not None: if self._export_images: from torchvision.utils import save_image, make_grid img = images/255 save_image(make_grid(img, nrows = 2), 'cartpole_export.png') self.obs_buf = torch.swapaxes(images, 1, 3).clone().float()/255.0 else: print("Image tensor is NONE!") return self.obs_buf
5,824
Python
41.518248
119
0.67342
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/anymal_terrain.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.anymal import Anymal from omniisaacgymenvs.robots.articulations.views.anymal_view import AnymalView from omniisaacgymenvs.tasks.utils.anymal_terrain_generator import * from omniisaacgymenvs.utils.terrain_utils.terrain_utils import * from pxr import UsdLux, UsdPhysics class AnymalTerrainTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.height_samples = None self.custom_origins = False self.init_done = False self._env_spacing = 0.0 self._num_observations = 188 self._num_actions = 12 self.update_config(sim_config) RLTask.__init__(self, name, env) self.height_points = self.init_height_points() self.measured_heights = None # joint positions offsets self.default_dof_pos = torch.zeros( (self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False ) # reward episode sums torch_zeros = lambda: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.episode_sums = { "lin_vel_xy": torch_zeros(), "lin_vel_z": torch_zeros(), "ang_vel_z": torch_zeros(), "ang_vel_xy": torch_zeros(), "orient": torch_zeros(), "torques": torch_zeros(), "joint_acc": torch_zeros(), "base_height": torch_zeros(), "air_time": torch_zeros(), "collision": torch_zeros(), "stumble": torch_zeros(), "action_rate": torch_zeros(), "hip": torch_zeros(), } return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # normalization self.lin_vel_scale = self._task_cfg["env"]["learn"]["linearVelocityScale"] self.ang_vel_scale = self._task_cfg["env"]["learn"]["angularVelocityScale"] self.dof_pos_scale = self._task_cfg["env"]["learn"]["dofPositionScale"] self.dof_vel_scale = self._task_cfg["env"]["learn"]["dofVelocityScale"] self.height_meas_scale = self._task_cfg["env"]["learn"]["heightMeasurementScale"] self.action_scale = self._task_cfg["env"]["control"]["actionScale"] # reward scales self.rew_scales = {} self.rew_scales["termination"] = self._task_cfg["env"]["learn"]["terminalReward"] self.rew_scales["lin_vel_xy"] = self._task_cfg["env"]["learn"]["linearVelocityXYRewardScale"] self.rew_scales["lin_vel_z"] = self._task_cfg["env"]["learn"]["linearVelocityZRewardScale"] self.rew_scales["ang_vel_z"] = self._task_cfg["env"]["learn"]["angularVelocityZRewardScale"] self.rew_scales["ang_vel_xy"] = self._task_cfg["env"]["learn"]["angularVelocityXYRewardScale"] self.rew_scales["orient"] = self._task_cfg["env"]["learn"]["orientationRewardScale"] self.rew_scales["torque"] = self._task_cfg["env"]["learn"]["torqueRewardScale"] self.rew_scales["joint_acc"] = self._task_cfg["env"]["learn"]["jointAccRewardScale"] self.rew_scales["base_height"] = self._task_cfg["env"]["learn"]["baseHeightRewardScale"] self.rew_scales["action_rate"] = self._task_cfg["env"]["learn"]["actionRateRewardScale"] self.rew_scales["hip"] = self._task_cfg["env"]["learn"]["hipRewardScale"] self.rew_scales["fallen_over"] = self._task_cfg["env"]["learn"]["fallenOverRewardScale"] # command ranges self.command_x_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_x"] self.command_y_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_y"] self.command_yaw_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["yaw"] # base init state pos = self._task_cfg["env"]["baseInitState"]["pos"] rot = self._task_cfg["env"]["baseInitState"]["rot"] v_lin = self._task_cfg["env"]["baseInitState"]["vLinear"] v_ang = self._task_cfg["env"]["baseInitState"]["vAngular"] self.base_init_state = pos + rot + v_lin + v_ang # default joint positions self.named_default_joint_angles = self._task_cfg["env"]["defaultJointAngles"] # other self.decimation = self._task_cfg["env"]["control"]["decimation"] self.dt = self.decimation * self._task_cfg["sim"]["dt"] self.max_episode_length_s = self._task_cfg["env"]["learn"]["episodeLength_s"] self.max_episode_length = int(self.max_episode_length_s / self.dt + 0.5) self.push_interval = int(self._task_cfg["env"]["learn"]["pushInterval_s"] / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] self.curriculum = self._task_cfg["env"]["terrain"]["curriculum"] self.base_threshold = 0.2 self.knee_threshold = 0.1 for key in self.rew_scales.keys(): self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._task_cfg["sim"]["default_physics_material"]["static_friction"] = self._task_cfg["env"]["terrain"][ "staticFriction" ] self._task_cfg["sim"]["default_physics_material"]["dynamic_friction"] = self._task_cfg["env"]["terrain"][ "dynamicFriction" ] self._task_cfg["sim"]["default_physics_material"]["restitution"] = self._task_cfg["env"]["terrain"][ "restitution" ] self._task_cfg["sim"]["add_ground_plane"] = False def _get_noise_scale_vec(self, cfg): noise_vec = torch.zeros_like(self.obs_buf[0]) self.add_noise = self._task_cfg["env"]["learn"]["addNoise"] noise_level = self._task_cfg["env"]["learn"]["noiseLevel"] noise_vec[:3] = self._task_cfg["env"]["learn"]["linearVelocityNoise"] * noise_level * self.lin_vel_scale noise_vec[3:6] = self._task_cfg["env"]["learn"]["angularVelocityNoise"] * noise_level * self.ang_vel_scale noise_vec[6:9] = self._task_cfg["env"]["learn"]["gravityNoise"] * noise_level noise_vec[9:12] = 0.0 # commands noise_vec[12:24] = self._task_cfg["env"]["learn"]["dofPositionNoise"] * noise_level * self.dof_pos_scale noise_vec[24:36] = self._task_cfg["env"]["learn"]["dofVelocityNoise"] * noise_level * self.dof_vel_scale noise_vec[36:176] = ( self._task_cfg["env"]["learn"]["heightMeasurementNoise"] * noise_level * self.height_meas_scale ) noise_vec[176:188] = 0.0 # previous actions return noise_vec def init_height_points(self): # 1mx1.6m rectangle (without center line) y = 0.1 * torch.tensor( [-5, -4, -3, -2, -1, 1, 2, 3, 4, 5], device=self.device, requires_grad=False ) # 10-50cm on each side x = 0.1 * torch.tensor( [-8, -7, -6, -5, -4, -3, -2, 2, 3, 4, 5, 6, 7, 8], device=self.device, requires_grad=False ) # 20-80cm on each side grid_x, grid_y = torch.meshgrid(x, y, indexing='ij') self.num_height_points = grid_x.numel() points = torch.zeros(self.num_envs, self.num_height_points, 3, device=self.device, requires_grad=False) points[:, :, 0] = grid_x.flatten() points[:, :, 1] = grid_y.flatten() return points def _create_trimesh(self, create_mesh=True): self.terrain = Terrain(self._task_cfg["env"]["terrain"], num_robots=self.num_envs) vertices = self.terrain.vertices triangles = self.terrain.triangles position = torch.tensor([-self.terrain.border_size, -self.terrain.border_size, 0.0]) if create_mesh: add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position) self.height_samples = ( torch.tensor(self.terrain.heightsamples).view(self.terrain.tot_rows, self.terrain.tot_cols).to(self.device) ) def set_up_scene(self, scene) -> None: self._stage = get_current_stage() self.get_terrain() self.get_anymal() super().set_up_scene(scene, collision_filter_global_paths=["/World/terrain"]) self._anymals = AnymalView( prim_paths_expr="/World/envs/.*/anymal", name="anymal_view", track_contact_forces=True ) scene.add(self._anymals) scene.add(self._anymals._knees) scene.add(self._anymals._base) def initialize_views(self, scene): # initialize terrain variables even if we do not need to re-create the terrain mesh self.get_terrain(create_mesh=False) super().initialize_views(scene) if scene.object_exists("anymal_view"): scene.remove_object("anymal_view", registry_only=True) if scene.object_exists("knees_view"): scene.remove_object("knees_view", registry_only=True) if scene.object_exists("base_view"): scene.remove_object("base_view", registry_only=True) self._anymals = AnymalView( prim_paths_expr="/World/envs/.*/anymal", name="anymal_view", track_contact_forces=True ) scene.add(self._anymals) scene.add(self._anymals._knees) scene.add(self._anymals._base) def get_terrain(self, create_mesh=True): self.env_origins = torch.zeros((self.num_envs, 3), device=self.device, requires_grad=False) if not self.curriculum: self._task_cfg["env"]["terrain"]["maxInitMapLevel"] = self._task_cfg["env"]["terrain"]["numLevels"] - 1 self.terrain_levels = torch.randint( 0, self._task_cfg["env"]["terrain"]["maxInitMapLevel"] + 1, (self.num_envs,), device=self.device ) self.terrain_types = torch.randint( 0, self._task_cfg["env"]["terrain"]["numTerrains"], (self.num_envs,), device=self.device ) self._create_trimesh(create_mesh=create_mesh) self.terrain_origins = torch.from_numpy(self.terrain.env_origins).to(self.device).to(torch.float) def get_anymal(self): anymal_translation = torch.tensor([0.0, 0.0, 0.66]) anymal_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0]) anymal = Anymal( prim_path=self.default_zero_env_path + "/anymal", name="anymal", translation=anymal_translation, orientation=anymal_orientation, ) self._sim_config.apply_articulation_settings( "anymal", get_prim_at_path(anymal.prim_path), self._sim_config.parse_actor_config("anymal") ) anymal.set_anymal_properties(self._stage, anymal.prim) anymal.prepare_contacts(self._stage, anymal.prim) self.dof_names = anymal.dof_names for i in range(self.num_actions): name = self.dof_names[i] angle = self.named_default_joint_angles[name] self.default_dof_pos[:, i] = angle def post_reset(self): self.base_init_state = torch.tensor( self.base_init_state, dtype=torch.float, device=self.device, requires_grad=False ) self.timeout_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.long) # initialize some data used later on self.up_axis_idx = 2 self.common_step_counter = 0 self.extras = {} self.noise_scale_vec = self._get_noise_scale_vec(self._task_cfg) self.commands = torch.zeros( self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False ) # x vel, y vel, yaw vel, heading self.commands_scale = torch.tensor( [self.lin_vel_scale, self.lin_vel_scale, self.ang_vel_scale], device=self.device, requires_grad=False, ) self.gravity_vec = torch.tensor( get_axis_params(-1.0, self.up_axis_idx), dtype=torch.float, device=self.device ).repeat((self.num_envs, 1)) self.forward_vec = torch.tensor([1.0, 0.0, 0.0], dtype=torch.float, device=self.device).repeat( (self.num_envs, 1) ) self.torques = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.actions = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.last_actions = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.feet_air_time = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) self.last_dof_vel = torch.zeros((self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False) for i in range(self.num_envs): self.env_origins[i] = self.terrain_origins[self.terrain_levels[i], self.terrain_types[i]] self.num_dof = self._anymals.num_dof self.dof_pos = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device) self.dof_vel = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device) self.base_pos = torch.zeros((self.num_envs, 3), dtype=torch.float, device=self.device) self.base_quat = torch.zeros((self.num_envs, 4), dtype=torch.float, device=self.device) self.base_velocities = torch.zeros((self.num_envs, 6), dtype=torch.float, device=self.device) self.knee_pos = torch.zeros((self.num_envs * 4, 3), dtype=torch.float, device=self.device) self.knee_quat = torch.zeros((self.num_envs * 4, 4), dtype=torch.float, device=self.device) indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) self.init_done = True def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) positions_offset = torch_rand_float(0.5, 1.5, (len(env_ids), self.num_dof), device=self.device) velocities = torch_rand_float(-0.1, 0.1, (len(env_ids), self.num_dof), device=self.device) self.dof_pos[env_ids] = self.default_dof_pos[env_ids] * positions_offset self.dof_vel[env_ids] = velocities self.update_terrain_level(env_ids) self.base_pos[env_ids] = self.base_init_state[0:3] self.base_pos[env_ids, 0:3] += self.env_origins[env_ids] self.base_pos[env_ids, 0:2] += torch_rand_float(-0.5, 0.5, (len(env_ids), 2), device=self.device) self.base_quat[env_ids] = self.base_init_state[3:7] self.base_velocities[env_ids] = self.base_init_state[7:] self._anymals.set_world_poses( positions=self.base_pos[env_ids].clone(), orientations=self.base_quat[env_ids].clone(), indices=indices ) self._anymals.set_velocities(velocities=self.base_velocities[env_ids].clone(), indices=indices) self._anymals.set_joint_positions(positions=self.dof_pos[env_ids].clone(), indices=indices) self._anymals.set_joint_velocities(velocities=self.dof_vel[env_ids].clone(), indices=indices) self.commands[env_ids, 0] = torch_rand_float( self.command_x_range[0], self.command_x_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids, 1] = torch_rand_float( self.command_y_range[0], self.command_y_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids, 3] = torch_rand_float( self.command_yaw_range[0], self.command_yaw_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids] *= (torch.norm(self.commands[env_ids, :2], dim=1) > 0.25).unsqueeze( 1 ) # set small commands to zero self.last_actions[env_ids] = 0.0 self.last_dof_vel[env_ids] = 0.0 self.feet_air_time[env_ids] = 0.0 self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 1 # fill extras self.extras["episode"] = {} for key in self.episode_sums.keys(): self.extras["episode"]["rew_" + key] = ( torch.mean(self.episode_sums[key][env_ids]) / self.max_episode_length_s ) self.episode_sums[key][env_ids] = 0.0 self.extras["episode"]["terrain_level"] = torch.mean(self.terrain_levels.float()) def update_terrain_level(self, env_ids): if not self.init_done or not self.curriculum: # do not change on initial reset return root_pos, _ = self._anymals.get_world_poses(clone=False) distance = torch.norm(root_pos[env_ids, :2] - self.env_origins[env_ids, :2], dim=1) self.terrain_levels[env_ids] -= 1 * ( distance < torch.norm(self.commands[env_ids, :2]) * self.max_episode_length_s * 0.25 ) self.terrain_levels[env_ids] += 1 * (distance > self.terrain.env_length / 2) self.terrain_levels[env_ids] = torch.clip(self.terrain_levels[env_ids], 0) % self.terrain.env_rows self.env_origins[env_ids] = self.terrain_origins[self.terrain_levels[env_ids], self.terrain_types[env_ids]] def refresh_dof_state_tensors(self): self.dof_pos = self._anymals.get_joint_positions(clone=False) self.dof_vel = self._anymals.get_joint_velocities(clone=False) def refresh_body_state_tensors(self): self.base_pos, self.base_quat = self._anymals.get_world_poses(clone=False) self.base_velocities = self._anymals.get_velocities(clone=False) self.knee_pos, self.knee_quat = self._anymals._knees.get_world_poses(clone=False) def pre_physics_step(self, actions): if not self._env._world.is_playing(): return self.actions = actions.clone().to(self.device) for i in range(self.decimation): if self._env._world.is_playing(): torques = torch.clip( self.Kp * (self.action_scale * self.actions + self.default_dof_pos - self.dof_pos) - self.Kd * self.dof_vel, -80.0, 80.0, ) self._anymals.set_joint_efforts(torques) self.torques = torques SimulationContext.step(self._env._world, render=False) self.refresh_dof_state_tensors() def post_physics_step(self): self.progress_buf[:] += 1 if self._env._world.is_playing(): self.refresh_dof_state_tensors() self.refresh_body_state_tensors() self.common_step_counter += 1 if self.common_step_counter % self.push_interval == 0: self.push_robots() # prepare quantities self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3]) self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6]) self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec) forward = quat_apply(self.base_quat, self.forward_vec) heading = torch.atan2(forward[:, 1], forward[:, 0]) self.commands[:, 2] = torch.clip(0.5 * wrap_to_pi(self.commands[:, 3] - heading), -1.0, 1.0) self.check_termination() self.get_states() self.calculate_metrics() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.get_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = self.dof_vel[:] return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def push_robots(self): self.base_velocities[:, 0:2] = torch_rand_float( -1.0, 1.0, (self.num_envs, 2), device=self.device ) # lin vel x/y self._anymals.set_velocities(self.base_velocities) def check_termination(self): self.timeout_buf = torch.where( self.progress_buf >= self.max_episode_length - 1, torch.ones_like(self.timeout_buf), torch.zeros_like(self.timeout_buf), ) knee_contact = ( torch.norm(self._anymals._knees.get_net_contact_forces(clone=False).view(self._num_envs, 4, 3), dim=-1) > 1.0 ) self.has_fallen = (torch.norm(self._anymals._base.get_net_contact_forces(clone=False), dim=1) > 1.0) | ( torch.sum(knee_contact, dim=-1) > 1.0 ) self.reset_buf = self.has_fallen.clone() self.reset_buf = torch.where(self.timeout_buf.bool(), torch.ones_like(self.reset_buf), self.reset_buf) def calculate_metrics(self): # velocity tracking reward lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - self.base_lin_vel[:, :2]), dim=1) ang_vel_error = torch.square(self.commands[:, 2] - self.base_ang_vel[:, 2]) rew_lin_vel_xy = torch.exp(-lin_vel_error / 0.25) * self.rew_scales["lin_vel_xy"] rew_ang_vel_z = torch.exp(-ang_vel_error / 0.25) * self.rew_scales["ang_vel_z"] # other base velocity penalties rew_lin_vel_z = torch.square(self.base_lin_vel[:, 2]) * self.rew_scales["lin_vel_z"] rew_ang_vel_xy = torch.sum(torch.square(self.base_ang_vel[:, :2]), dim=1) * self.rew_scales["ang_vel_xy"] # orientation penalty rew_orient = torch.sum(torch.square(self.projected_gravity[:, :2]), dim=1) * self.rew_scales["orient"] # base height penalty rew_base_height = torch.square(self.base_pos[:, 2] - 0.52) * self.rew_scales["base_height"] # torque penalty rew_torque = torch.sum(torch.square(self.torques), dim=1) * self.rew_scales["torque"] # joint acc penalty rew_joint_acc = torch.sum(torch.square(self.last_dof_vel - self.dof_vel), dim=1) * self.rew_scales["joint_acc"] # fallen over penalty rew_fallen_over = self.has_fallen * self.rew_scales["fallen_over"] # action rate penalty rew_action_rate = ( torch.sum(torch.square(self.last_actions - self.actions), dim=1) * self.rew_scales["action_rate"] ) # cosmetic penalty for hip motion rew_hip = ( torch.sum(torch.abs(self.dof_pos[:, 0:4] - self.default_dof_pos[:, 0:4]), dim=1) * self.rew_scales["hip"] ) # total reward self.rew_buf = ( rew_lin_vel_xy + rew_ang_vel_z + rew_lin_vel_z + rew_ang_vel_xy + rew_orient + rew_base_height + rew_torque + rew_joint_acc + rew_action_rate + rew_hip + rew_fallen_over ) self.rew_buf = torch.clip(self.rew_buf, min=0.0, max=None) # add termination reward self.rew_buf += self.rew_scales["termination"] * self.reset_buf * ~self.timeout_buf # log episode reward sums self.episode_sums["lin_vel_xy"] += rew_lin_vel_xy self.episode_sums["ang_vel_z"] += rew_ang_vel_z self.episode_sums["lin_vel_z"] += rew_lin_vel_z self.episode_sums["ang_vel_xy"] += rew_ang_vel_xy self.episode_sums["orient"] += rew_orient self.episode_sums["torques"] += rew_torque self.episode_sums["joint_acc"] += rew_joint_acc self.episode_sums["action_rate"] += rew_action_rate self.episode_sums["base_height"] += rew_base_height self.episode_sums["hip"] += rew_hip def get_observations(self): self.measured_heights = self.get_heights() heights = ( torch.clip(self.base_pos[:, 2].unsqueeze(1) - 0.5 - self.measured_heights, -1, 1.0) * self.height_meas_scale ) self.obs_buf = torch.cat( ( self.base_lin_vel * self.lin_vel_scale, self.base_ang_vel * self.ang_vel_scale, self.projected_gravity, self.commands[:, :3] * self.commands_scale, self.dof_pos * self.dof_pos_scale, self.dof_vel * self.dof_vel_scale, heights, self.actions, ), dim=-1, ) def get_ground_heights_below_knees(self): points = self.knee_pos.reshape(self.num_envs, 4, 3) points += self.terrain.border_size points = (points / self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale def get_ground_heights_below_base(self): points = self.base_pos.reshape(self.num_envs, 1, 3) points += self.terrain.border_size points = (points / self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale def get_heights(self, env_ids=None): if env_ids: points = quat_apply_yaw( self.base_quat[env_ids].repeat(1, self.num_height_points), self.height_points[env_ids] ) + (self.base_pos[env_ids, 0:3]).unsqueeze(1) else: points = quat_apply_yaw(self.base_quat.repeat(1, self.num_height_points), self.height_points) + ( self.base_pos[:, 0:3] ).unsqueeze(1) points += self.terrain.border_size points = (points / self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale @torch.jit.script def quat_apply_yaw(quat, vec): quat_yaw = quat.clone().view(-1, 4) quat_yaw[:, 1:3] = 0.0 quat_yaw = normalize(quat_yaw) return quat_apply(quat_yaw, vec) @torch.jit.script def wrap_to_pi(angles): angles %= 2 * np.pi angles -= 2 * np.pi * (angles > np.pi) return angles def get_axis_params(value, axis_idx, x_value=0.0, dtype=float, n_dims=3): """construct arguments to `Vec` according to axis index.""" zs = np.zeros((n_dims,)) assert axis_idx < n_dims, "the axis dim should be within the vector dimensions" zs[axis_idx] = 1.0 params = np.where(zs == 1.0, value, zs) params[0] = x_value return list(params.astype(dtype))
29,337
Python
45.568254
120
0.609128
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/shadow_hand.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.shadow_hand import ShadowHand from omniisaacgymenvs.robots.articulations.views.shadow_hand_view import ShadowHandView from omniisaacgymenvs.tasks.shared.in_hand_manipulation import InHandManipulationTask class ShadowHandTask(InHandManipulationTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) InHandManipulationTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.object_type = self._task_cfg["env"]["objectType"] assert self.object_type in ["block"] self.obs_type = self._task_cfg["env"]["observationType"] if not (self.obs_type in ["openai", "full_no_vel", "full", "full_state"]): raise Exception( "Unknown type of observations!\nobservationType should be one of: [openai, full_no_vel, full, full_state]" ) print("Obs type:", self.obs_type) self.num_obs_dict = { "openai": 42, "full_no_vel": 77, "full": 157, "full_state": 187, } self.asymmetric_obs = self._task_cfg["env"]["asymmetric_observations"] self.use_vel_obs = False self.fingertip_obs = True self.fingertips = [ "robot0:ffdistal", "robot0:mfdistal", "robot0:rfdistal", "robot0:lfdistal", "robot0:thdistal", ] self.num_fingertips = len(self.fingertips) self.object_scale = torch.tensor([1.0, 1.0, 1.0]) self.force_torque_obs_scale = 10.0 num_states = 0 if self.asymmetric_obs: num_states = 187 self._num_observations = self.num_obs_dict[self.obs_type] self._num_actions = 20 self._num_states = num_states InHandManipulationTask.update_config(self) def get_starting_positions(self): self.hand_start_translation = torch.tensor([0.0, 0.0, 0.5], device=self.device) self.hand_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.pose_dy, self.pose_dz = -0.39, 0.10 def get_hand(self): shadow_hand = ShadowHand( prim_path=self.default_zero_env_path + "/shadow_hand", name="shadow_hand", translation=self.hand_start_translation, orientation=self.hand_start_orientation, ) self._sim_config.apply_articulation_settings( "shadow_hand", get_prim_at_path(shadow_hand.prim_path), self._sim_config.parse_actor_config("shadow_hand"), ) shadow_hand.set_shadow_hand_properties(stage=self._stage, shadow_hand_prim=shadow_hand.prim) shadow_hand.set_motor_control_mode(stage=self._stage, shadow_hand_path=shadow_hand.prim_path) def get_hand_view(self, scene): hand_view = ShadowHandView(prim_paths_expr="/World/envs/.*/shadow_hand", name="shadow_hand_view") scene.add(hand_view._fingers) return hand_view def get_observations(self): self.get_object_goal_observations() self.fingertip_pos, self.fingertip_rot = self._hands._fingers.get_world_poses(clone=False) self.fingertip_pos -= self._env_pos.repeat((1, self.num_fingertips)).reshape( self.num_envs * self.num_fingertips, 3 ) self.fingertip_velocities = self._hands._fingers.get_velocities(clone=False) self.hand_dof_pos = self._hands.get_joint_positions(clone=False) self.hand_dof_vel = self._hands.get_joint_velocities(clone=False) if self.obs_type == "full_state" or self.asymmetric_obs: self.vec_sensor_tensor = self._hands.get_measured_joint_forces( joint_indices=self._hands._sensor_indices ).view(self._num_envs, -1) if self.obs_type == "openai": self.compute_fingertip_observations(True) elif self.obs_type == "full_no_vel": self.compute_full_observations(True) elif self.obs_type == "full": self.compute_full_observations() elif self.obs_type == "full_state": self.compute_full_state(False) else: print("Unkown observations type!") if self.asymmetric_obs: self.compute_full_state(True) observations = {self._hands.name: {"obs_buf": self.obs_buf}} return observations def compute_fingertip_observations(self, no_vel=False): if no_vel: # Per https://arxiv.org/pdf/1808.00177.pdf Table 2 # Fingertip positions # Object Position, but not orientation # Relative target orientation # 3*self.num_fingertips = 15 self.obs_buf[:, 0:15] = self.fingertip_pos.reshape(self.num_envs, 15) self.obs_buf[:, 15:18] = self.object_pos self.obs_buf[:, 18:22] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 22:42] = self.actions else: # 13*self.num_fingertips = 65 self.obs_buf[:, 0:65] = self.fingertip_state.reshape(self.num_envs, 65) self.obs_buf[:, 0:15] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.obs_buf[:, 15:35] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips) self.obs_buf[:, 35:65] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips) self.obs_buf[:, 65:68] = self.object_pos self.obs_buf[:, 68:72] = self.object_rot self.obs_buf[:, 72:75] = self.object_linvel self.obs_buf[:, 75:78] = self.vel_obs_scale * self.object_angvel self.obs_buf[:, 78:81] = self.goal_pos self.obs_buf[:, 81:85] = self.goal_rot self.obs_buf[:, 85:89] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 89:109] = self.actions def compute_full_observations(self, no_vel=False): if no_vel: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, 24:37] = self.object_pos self.obs_buf[:, 27:31] = self.object_rot self.obs_buf[:, 31:34] = self.goal_pos self.obs_buf[:, 34:38] = self.goal_rot self.obs_buf[:, 38:42] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 42:57] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.obs_buf[:, 57:77] = self.actions else: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel self.obs_buf[:, 48:51] = self.object_pos self.obs_buf[:, 51:55] = self.object_rot self.obs_buf[:, 55:58] = self.object_linvel self.obs_buf[:, 58:61] = self.vel_obs_scale * self.object_angvel self.obs_buf[:, 61:64] = self.goal_pos self.obs_buf[:, 64:68] = self.goal_rot self.obs_buf[:, 68:72] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) # (7+6)*self.num_fingertips = 65 self.obs_buf[:, 72:87] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.obs_buf[:, 87:107] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips) self.obs_buf[:, 107:137] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips) self.obs_buf[:, 137:157] = self.actions def compute_full_state(self, asymm_obs=False): if asymm_obs: self.states_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.states_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel # self.states_buf[:, 2*self.num_hand_dofs:3*self.num_hand_dofs] = self.force_torque_obs_scale * self.dof_force_tensor obj_obs_start = 2 * self.num_hand_dofs # 48 self.states_buf[:, obj_obs_start : obj_obs_start + 3] = self.object_pos self.states_buf[:, obj_obs_start + 3 : obj_obs_start + 7] = self.object_rot self.states_buf[:, obj_obs_start + 7 : obj_obs_start + 10] = self.object_linvel self.states_buf[:, obj_obs_start + 10 : obj_obs_start + 13] = self.vel_obs_scale * self.object_angvel goal_obs_start = obj_obs_start + 13 # 61 self.states_buf[:, goal_obs_start : goal_obs_start + 3] = self.goal_pos self.states_buf[:, goal_obs_start + 3 : goal_obs_start + 7] = self.goal_rot self.states_buf[:, goal_obs_start + 7 : goal_obs_start + 11] = quat_mul( self.object_rot, quat_conjugate(self.goal_rot) ) # fingertip observations, state(pose and vel) + force-torque sensors num_ft_states = 13 * self.num_fingertips # 65 num_ft_force_torques = 6 * self.num_fingertips # 30 fingertip_obs_start = goal_obs_start + 11 # 72 self.states_buf[ :, fingertip_obs_start : fingertip_obs_start + 3 * self.num_fingertips ] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.states_buf[ :, fingertip_obs_start + 3 * self.num_fingertips : fingertip_obs_start + 7 * self.num_fingertips ] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips) self.states_buf[ :, fingertip_obs_start + 7 * self.num_fingertips : fingertip_obs_start + 13 * self.num_fingertips ] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips) self.states_buf[ :, fingertip_obs_start + num_ft_states : fingertip_obs_start + num_ft_states + num_ft_force_torques ] = (self.force_torque_obs_scale * self.vec_sensor_tensor) # obs_end = 72 + 65 + 30 = 167 # obs_total = obs_end + num_actions = 187 obs_end = fingertip_obs_start + num_ft_states + num_ft_force_torques self.states_buf[:, obs_end : obs_end + self.num_actions] = self.actions else: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel self.obs_buf[:, 2 * self.num_hand_dofs : 3 * self.num_hand_dofs] = ( self.force_torque_obs_scale * self.dof_force_tensor ) obj_obs_start = 3 * self.num_hand_dofs # 48 self.obs_buf[:, obj_obs_start : obj_obs_start + 3] = self.object_pos self.obs_buf[:, obj_obs_start + 3 : obj_obs_start + 7] = self.object_rot self.obs_buf[:, obj_obs_start + 7 : obj_obs_start + 10] = self.object_linvel self.obs_buf[:, obj_obs_start + 10 : obj_obs_start + 13] = self.vel_obs_scale * self.object_angvel goal_obs_start = obj_obs_start + 13 # 61 self.obs_buf[:, goal_obs_start : goal_obs_start + 3] = self.goal_pos self.obs_buf[:, goal_obs_start + 3 : goal_obs_start + 7] = self.goal_rot self.obs_buf[:, goal_obs_start + 7 : goal_obs_start + 11] = quat_mul( self.object_rot, quat_conjugate(self.goal_rot) ) # fingertip observations, state(pose and vel) + force-torque sensors num_ft_states = 13 * self.num_fingertips # 65 num_ft_force_torques = 6 * self.num_fingertips # 30 fingertip_obs_start = goal_obs_start + 11 # 72 self.obs_buf[ :, fingertip_obs_start : fingertip_obs_start + 3 * self.num_fingertips ] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.obs_buf[ :, fingertip_obs_start + 3 * self.num_fingertips : fingertip_obs_start + 7 * self.num_fingertips ] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips) self.obs_buf[ :, fingertip_obs_start + 7 * self.num_fingertips : fingertip_obs_start + 13 * self.num_fingertips ] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips) self.obs_buf[ :, fingertip_obs_start + num_ft_states : fingertip_obs_start + num_ft_states + num_ft_force_torques ] = (self.force_torque_obs_scale * self.vec_sensor_tensor) # obs_end = 96 + 65 + 30 = 167 # obs_total = obs_end + num_actions = 187 obs_end = fingertip_obs_start + num_ft_states + num_ft_force_torques self.obs_buf[:, obs_end : obs_end + self.num_actions] = self.actions
15,107
Python
48.211726
129
0.609188
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/franka_cabinet.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import math import numpy as np import torch from omni.isaac.cloner import Cloner from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.prims import RigidPrim, RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.utils.torch.transformations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.cabinet import Cabinet from omniisaacgymenvs.robots.articulations.franka import Franka from omniisaacgymenvs.robots.articulations.views.cabinet_view import CabinetView from omniisaacgymenvs.robots.articulations.views.franka_view import FrankaView from pxr import Usd, UsdGeom class FrankaCabinetTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self.distX_offset = 0.04 self.dt = 1 / 60.0 self._num_observations = 23 self._num_actions = 9 RLTask.__init__(self, name, env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.action_scale = self._task_cfg["env"]["actionScale"] self.start_position_noise = self._task_cfg["env"]["startPositionNoise"] self.start_rotation_noise = self._task_cfg["env"]["startRotationNoise"] self.num_props = self._task_cfg["env"]["numProps"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"] self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"] self.around_handle_reward_scale = self._task_cfg["env"]["aroundHandleRewardScale"] self.open_reward_scale = self._task_cfg["env"]["openRewardScale"] self.finger_dist_reward_scale = self._task_cfg["env"]["fingerDistRewardScale"] self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"] self.finger_close_reward_scale = self._task_cfg["env"]["fingerCloseRewardScale"] def set_up_scene(self, scene) -> None: self.get_franka() self.get_cabinet() if self.num_props > 0: self.get_props() super().set_up_scene(scene, filter_collisions=False) self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view") self._cabinets = CabinetView(prim_paths_expr="/World/envs/.*/cabinet", name="cabinet_view") scene.add(self._frankas) scene.add(self._frankas._hands) scene.add(self._frankas._lfingers) scene.add(self._frankas._rfingers) scene.add(self._cabinets) scene.add(self._cabinets._drawers) if self.num_props > 0: self._props = RigidPrimView( prim_paths_expr="/World/envs/.*/prop/.*", name="prop_view", reset_xform_properties=False ) scene.add(self._props) self.init_data() return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("franka_view"): scene.remove_object("franka_view", registry_only=True) if scene.object_exists("hands_view"): scene.remove_object("hands_view", registry_only=True) if scene.object_exists("lfingers_view"): scene.remove_object("lfingers_view", registry_only=True) if scene.object_exists("rfingers_view"): scene.remove_object("rfingers_view", registry_only=True) if scene.object_exists("cabinet_view"): scene.remove_object("cabinet_view", registry_only=True) if scene.object_exists("drawers_view"): scene.remove_object("drawers_view", registry_only=True) if scene.object_exists("prop_view"): scene.remove_object("prop_view", registry_only=True) self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view") self._cabinets = CabinetView(prim_paths_expr="/World/envs/.*/cabinet", name="cabinet_view") scene.add(self._frankas) scene.add(self._frankas._hands) scene.add(self._frankas._lfingers) scene.add(self._frankas._rfingers) scene.add(self._cabinets) scene.add(self._cabinets._drawers) if self.num_props > 0: self._props = RigidPrimView( prim_paths_expr="/World/envs/.*/prop/.*", name="prop_view", reset_xform_properties=False ) scene.add(self._props) self.init_data() def get_franka(self): franka = Franka(prim_path=self.default_zero_env_path + "/franka", name="franka") self._sim_config.apply_articulation_settings( "franka", get_prim_at_path(franka.prim_path), self._sim_config.parse_actor_config("franka") ) def get_cabinet(self): cabinet = Cabinet(self.default_zero_env_path + "/cabinet", name="cabinet") self._sim_config.apply_articulation_settings( "cabinet", get_prim_at_path(cabinet.prim_path), self._sim_config.parse_actor_config("cabinet") ) def get_props(self): prop_cloner = Cloner() drawer_pos = torch.tensor([0.0515, 0.0, 0.7172]) prop_color = torch.tensor([0.2, 0.4, 0.6]) props_per_row = int(math.ceil(math.sqrt(self.num_props))) prop_size = 0.08 prop_spacing = 0.09 xmin = -0.5 * prop_spacing * (props_per_row - 1) zmin = -0.5 * prop_spacing * (props_per_row - 1) prop_count = 0 prop_pos = [] for j in range(props_per_row): prop_up = zmin + j * prop_spacing for k in range(props_per_row): if prop_count >= self.num_props: break propx = xmin + k * prop_spacing prop_pos.append([propx, prop_up, 0.0]) prop_count += 1 prop = DynamicCuboid( prim_path=self.default_zero_env_path + "/prop/prop_0", name="prop", color=prop_color, size=prop_size, density=100.0, ) self._sim_config.apply_articulation_settings( "prop", get_prim_at_path(prop.prim_path), self._sim_config.parse_actor_config("prop") ) prop_paths = [f"{self.default_zero_env_path}/prop/prop_{j}" for j in range(self.num_props)] prop_cloner.clone( source_prim_path=self.default_zero_env_path + "/prop/prop_0", prim_paths=prop_paths, positions=np.array(prop_pos) + drawer_pos.numpy(), replicate_physics=False, ) def init_data(self) -> None: def get_env_local_pose(env_pos, xformable, device): """Compute pose in env-local coordinates""" world_transform = xformable.ComputeLocalToWorldTransform(0) world_pos = world_transform.ExtractTranslation() world_quat = world_transform.ExtractRotationQuat() px = world_pos[0] - env_pos[0] py = world_pos[1] - env_pos[1] pz = world_pos[2] - env_pos[2] qx = world_quat.imaginary[0] qy = world_quat.imaginary[1] qz = world_quat.imaginary[2] qw = world_quat.real return torch.tensor([px, py, pz, qw, qx, qy, qz], device=device, dtype=torch.float) stage = get_current_stage() hand_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_link7")), self._device, ) lfinger_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_leftfinger")), self._device, ) rfinger_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_rightfinger")), self._device, ) finger_pose = torch.zeros(7, device=self._device) finger_pose[0:3] = (lfinger_pose[0:3] + rfinger_pose[0:3]) / 2.0 finger_pose[3:7] = lfinger_pose[3:7] hand_pose_inv_rot, hand_pose_inv_pos = tf_inverse(hand_pose[3:7], hand_pose[0:3]) grasp_pose_axis = 1 franka_local_grasp_pose_rot, franka_local_pose_pos = tf_combine( hand_pose_inv_rot, hand_pose_inv_pos, finger_pose[3:7], finger_pose[0:3] ) franka_local_pose_pos += torch.tensor([0, 0.04, 0], device=self._device) self.franka_local_grasp_pos = franka_local_pose_pos.repeat((self._num_envs, 1)) self.franka_local_grasp_rot = franka_local_grasp_pose_rot.repeat((self._num_envs, 1)) drawer_local_grasp_pose = torch.tensor([0.3, 0.01, 0.0, 1.0, 0.0, 0.0, 0.0], device=self._device) self.drawer_local_grasp_pos = drawer_local_grasp_pose[0:3].repeat((self._num_envs, 1)) self.drawer_local_grasp_rot = drawer_local_grasp_pose[3:7].repeat((self._num_envs, 1)) self.gripper_forward_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat( (self._num_envs, 1) ) self.drawer_inward_axis = torch.tensor([-1, 0, 0], device=self._device, dtype=torch.float).repeat( (self._num_envs, 1) ) self.gripper_up_axis = torch.tensor([0, 1, 0], device=self._device, dtype=torch.float).repeat( (self._num_envs, 1) ) self.drawer_up_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat( (self._num_envs, 1) ) self.franka_default_dof_pos = torch.tensor( [1.157, -1.066, -0.155, -2.239, -1.841, 1.003, 0.469, 0.035, 0.035], device=self._device ) self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device) def get_observations(self) -> dict: hand_pos, hand_rot = self._frankas._hands.get_world_poses(clone=False) drawer_pos, drawer_rot = self._cabinets._drawers.get_world_poses(clone=False) franka_dof_pos = self._frankas.get_joint_positions(clone=False) franka_dof_vel = self._frankas.get_joint_velocities(clone=False) self.cabinet_dof_pos = self._cabinets.get_joint_positions(clone=False) self.cabinet_dof_vel = self._cabinets.get_joint_velocities(clone=False) self.franka_dof_pos = franka_dof_pos ( self.franka_grasp_rot, self.franka_grasp_pos, self.drawer_grasp_rot, self.drawer_grasp_pos, ) = self.compute_grasp_transforms( hand_rot, hand_pos, self.franka_local_grasp_rot, self.franka_local_grasp_pos, drawer_rot, drawer_pos, self.drawer_local_grasp_rot, self.drawer_local_grasp_pos, ) self.franka_lfinger_pos, self.franka_lfinger_rot = self._frankas._lfingers.get_world_poses(clone=False) self.franka_rfinger_pos, self.franka_rfinger_rot = self._frankas._lfingers.get_world_poses(clone=False) dof_pos_scaled = ( 2.0 * (franka_dof_pos - self.franka_dof_lower_limits) / (self.franka_dof_upper_limits - self.franka_dof_lower_limits) - 1.0 ) to_target = self.drawer_grasp_pos - self.franka_grasp_pos self.obs_buf = torch.cat( ( dof_pos_scaled, franka_dof_vel * self.dof_vel_scale, to_target, self.cabinet_dof_pos[:, 3].unsqueeze(-1), self.cabinet_dof_vel[:, 3].unsqueeze(-1), ), dim=-1, ) observations = {self._frankas.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) targets = self.franka_dof_targets + self.franka_dof_speed_scales * self.dt * self.actions * self.action_scale self.franka_dof_targets[:] = tensor_clamp(targets, self.franka_dof_lower_limits, self.franka_dof_upper_limits) env_ids_int32 = torch.arange(self._frankas.count, dtype=torch.int32, device=self._device) self._frankas.set_joint_position_targets(self.franka_dof_targets, indices=env_ids_int32) def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) num_indices = len(indices) # reset franka pos = tensor_clamp( self.franka_default_dof_pos.unsqueeze(0) + 0.25 * (torch.rand((len(env_ids), self.num_franka_dofs), device=self._device) - 0.5), self.franka_dof_lower_limits, self.franka_dof_upper_limits, ) dof_pos = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_vel = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_pos[:, :] = pos self.franka_dof_targets[env_ids, :] = pos self.franka_dof_pos[env_ids, :] = pos # reset cabinet self._cabinets.set_joint_positions( torch.zeros_like(self._cabinets.get_joint_positions(clone=False)[env_ids]), indices=indices ) self._cabinets.set_joint_velocities( torch.zeros_like(self._cabinets.get_joint_velocities(clone=False)[env_ids]), indices=indices ) # reset props if self.num_props > 0: self._props.set_world_poses( self.default_prop_pos[self.prop_indices[env_ids].flatten()], self.default_prop_rot[self.prop_indices[env_ids].flatten()], self.prop_indices[env_ids].flatten().to(torch.int32), ) self._frankas.set_joint_position_targets(self.franka_dof_targets[env_ids], indices=indices) self._frankas.set_joint_positions(dof_pos, indices=indices) self._frankas.set_joint_velocities(dof_vel, indices=indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self.num_franka_dofs = self._frankas.num_dof self.franka_dof_pos = torch.zeros((self.num_envs, self.num_franka_dofs), device=self._device) dof_limits = self._frankas.get_dof_limits() self.franka_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.franka_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.franka_dof_speed_scales = torch.ones_like(self.franka_dof_lower_limits) self.franka_dof_speed_scales[self._frankas.gripper_indices] = 0.1 self.franka_dof_targets = torch.zeros( (self._num_envs, self.num_franka_dofs), dtype=torch.float, device=self._device ) if self.num_props > 0: self.default_prop_pos, self.default_prop_rot = self._props.get_world_poses() self.prop_indices = torch.arange(self._num_envs * self.num_props, device=self._device).view( self._num_envs, self.num_props ) # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = self.compute_franka_reward( self.reset_buf, self.progress_buf, self.actions, self.cabinet_dof_pos, self.franka_grasp_pos, self.drawer_grasp_pos, self.franka_grasp_rot, self.drawer_grasp_rot, self.franka_lfinger_pos, self.franka_rfinger_pos, self.gripper_forward_axis, self.drawer_inward_axis, self.gripper_up_axis, self.drawer_up_axis, self._num_envs, self.dist_reward_scale, self.rot_reward_scale, self.around_handle_reward_scale, self.open_reward_scale, self.finger_dist_reward_scale, self.action_penalty_scale, self.distX_offset, self._max_episode_length, self.franka_dof_pos, self.finger_close_reward_scale, ) def is_done(self) -> None: # reset if drawer is open or max length reached self.reset_buf = torch.where(self.cabinet_dof_pos[:, 3] > 0.39, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where( self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf ) def compute_grasp_transforms( self, hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos, drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos, ): global_franka_rot, global_franka_pos = tf_combine( hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos ) global_drawer_rot, global_drawer_pos = tf_combine( drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos ) return global_franka_rot, global_franka_pos, global_drawer_rot, global_drawer_pos def compute_franka_reward( self, reset_buf, progress_buf, actions, cabinet_dof_pos, franka_grasp_pos, drawer_grasp_pos, franka_grasp_rot, drawer_grasp_rot, franka_lfinger_pos, franka_rfinger_pos, gripper_forward_axis, drawer_inward_axis, gripper_up_axis, drawer_up_axis, num_envs, dist_reward_scale, rot_reward_scale, around_handle_reward_scale, open_reward_scale, finger_dist_reward_scale, action_penalty_scale, distX_offset, max_episode_length, joint_positions, finger_close_reward_scale, ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, int, float, float, float, float, float, float, float, float, Tensor) -> Tuple[Tensor, Tensor] # distance from hand to the drawer d = torch.norm(franka_grasp_pos - drawer_grasp_pos, p=2, dim=-1) dist_reward = 1.0 / (1.0 + d**2) dist_reward *= dist_reward dist_reward = torch.where(d <= 0.02, dist_reward * 2, dist_reward) axis1 = tf_vector(franka_grasp_rot, gripper_forward_axis) axis2 = tf_vector(drawer_grasp_rot, drawer_inward_axis) axis3 = tf_vector(franka_grasp_rot, gripper_up_axis) axis4 = tf_vector(drawer_grasp_rot, drawer_up_axis) dot1 = ( torch.bmm(axis1.view(num_envs, 1, 3), axis2.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) ) # alignment of forward axis for gripper dot2 = ( torch.bmm(axis3.view(num_envs, 1, 3), axis4.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) ) # alignment of up axis for gripper # reward for matching the orientation of the hand to the drawer (fingers wrapped) rot_reward = 0.5 * (torch.sign(dot1) * dot1**2 + torch.sign(dot2) * dot2**2) # bonus if left finger is above the drawer handle and right below around_handle_reward = torch.zeros_like(rot_reward) around_handle_reward = torch.where( franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where( franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], around_handle_reward + 0.5, around_handle_reward ), around_handle_reward, ) # reward for distance of each finger from the drawer finger_dist_reward = torch.zeros_like(rot_reward) lfinger_dist = torch.abs(franka_lfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) rfinger_dist = torch.abs(franka_rfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) finger_dist_reward = torch.where( franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where( franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], (0.04 - lfinger_dist) + (0.04 - rfinger_dist), finger_dist_reward, ), finger_dist_reward, ) finger_close_reward = torch.zeros_like(rot_reward) finger_close_reward = torch.where( d <= 0.03, (0.04 - joint_positions[:, 7]) + (0.04 - joint_positions[:, 8]), finger_close_reward ) # regularization on the actions (summed for each environment) action_penalty = torch.sum(actions**2, dim=-1) # how far the cabinet has been opened out open_reward = cabinet_dof_pos[:, 3] * around_handle_reward + cabinet_dof_pos[:, 3] # drawer_top_joint rewards = ( dist_reward_scale * dist_reward + rot_reward_scale * rot_reward + around_handle_reward_scale * around_handle_reward + open_reward_scale * open_reward + finger_dist_reward_scale * finger_dist_reward - action_penalty_scale * action_penalty + finger_close_reward * finger_close_reward_scale ) # bonus for opening drawer properly rewards = torch.where(cabinet_dof_pos[:, 3] > 0.01, rewards + 0.5, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.2, rewards + around_handle_reward, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.39, rewards + (2.0 * around_handle_reward), rewards) # # prevent bad style in opening drawer # rewards = torch.where(franka_lfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset, # torch.ones_like(rewards) * -1, rewards) # rewards = torch.where(franka_rfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset, # torch.ones_like(rewards) * -1, rewards) return rewards
22,939
Python
41.324723
222
0.599895
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/crazyflie.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import torch from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.crazyflie import Crazyflie from omniisaacgymenvs.robots.articulations.views.crazyflie_view import CrazyflieView EPS = 1e-6 # small constant to avoid divisions by 0 and log(0) class CrazyflieTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._num_observations = 18 self._num_actions = 4 self._crazyflie_position = torch.tensor([0, 0, 1.0]) self._ball_position = torch.tensor([0, 0, 1.0]) RLTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] self.dt = self._task_cfg["sim"]["dt"] # parameters for the crazyflie self.arm_length = 0.05 # parameters for the controller self.motor_damp_time_up = 0.15 self.motor_damp_time_down = 0.15 # I use the multiplier 4, since 4*T ~ time for a step response to finish, where # T is a time constant of the first-order filter self.motor_tau_up = 4 * self.dt / (self.motor_damp_time_up + EPS) self.motor_tau_down = 4 * self.dt / (self.motor_damp_time_down + EPS) # thrust max self.mass = 0.028 self.thrust_to_weight = 1.9 self.motor_assymetry = np.array([1.0, 1.0, 1.0, 1.0]) # re-normalizing to sum-up to 4 self.motor_assymetry = self.motor_assymetry * 4.0 / np.sum(self.motor_assymetry) self.grav_z = -1.0 * self._task_cfg["sim"]["gravity"][2] def set_up_scene(self, scene) -> None: self.get_crazyflie() self.get_target() RLTask.set_up_scene(self, scene) self._copters = CrazyflieView(prim_paths_expr="/World/envs/.*/Crazyflie", name="crazyflie_view") self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="ball_view") scene.add(self._copters) scene.add(self._balls) for i in range(4): scene.add(self._copters.physics_rotors[i]) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("crazyflie_view"): scene.remove_object("crazyflie_view", registry_only=True) if scene.object_exists("ball_view"): scene.remove_object("ball_view", registry_only=True) for i in range(1, 5): scene.remove_object(f"m{i}_prop_view", registry_only=True) self._copters = CrazyflieView(prim_paths_expr="/World/envs/.*/Crazyflie", name="crazyflie_view") self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="ball_view") scene.add(self._copters) scene.add(self._balls) for i in range(4): scene.add(self._copters.physics_rotors[i]) def get_crazyflie(self): copter = Crazyflie( prim_path=self.default_zero_env_path + "/Crazyflie", name="crazyflie", translation=self._crazyflie_position ) self._sim_config.apply_articulation_settings( "crazyflie", get_prim_at_path(copter.prim_path), self._sim_config.parse_actor_config("crazyflie") ) def get_target(self): radius = 0.2 color = torch.tensor([1, 0, 0]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", translation=self._ball_position, name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings( "ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball") ) ball.set_collision_enabled(False) def get_observations(self) -> dict: self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot rot_x = quat_axis(root_quats, 0) rot_y = quat_axis(root_quats, 1) rot_z = quat_axis(root_quats, 2) root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = self.target_positions - root_positions self.obs_buf[..., 3:6] = rot_x self.obs_buf[..., 6:9] = rot_y self.obs_buf[..., 9:12] = rot_z self.obs_buf[..., 12:15] = root_linvels self.obs_buf[..., 15:18] = root_angvels observations = {self._copters.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero(as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) actions = actions.clone().to(self._device) self.actions = actions # clamp to [-1.0, 1.0] thrust_cmds = torch.clamp(actions, min=-1.0, max=1.0) # scale to [0.0, 1.0] thrust_cmds = (thrust_cmds + 1.0) / 2.0 # filtering the thruster and adding noise motor_tau = self.motor_tau_up * torch.ones((self._num_envs, 4), dtype=torch.float32, device=self._device) motor_tau[thrust_cmds < self.thrust_cmds_damp] = self.motor_tau_down motor_tau[motor_tau > 1.0] = 1.0 # Since NN commands thrusts we need to convert to rot vel and back thrust_rot = thrust_cmds**0.5 self.thrust_rot_damp = motor_tau * (thrust_rot - self.thrust_rot_damp) + self.thrust_rot_damp self.thrust_cmds_damp = self.thrust_rot_damp**2 ## Adding noise thrust_noise = 0.01 * torch.randn(4, dtype=torch.float32, device=self._device) thrust_noise = thrust_cmds * thrust_noise self.thrust_cmds_damp = torch.clamp(self.thrust_cmds_damp + thrust_noise, min=0.0, max=1.0) thrusts = self.thrust_max * self.thrust_cmds_damp # thrusts given rotation root_quats = self.root_rot rot_x = quat_axis(root_quats, 0) rot_y = quat_axis(root_quats, 1) rot_z = quat_axis(root_quats, 2) rot_matrix = torch.cat((rot_x, rot_y, rot_z), 1).reshape(-1, 3, 3) force_x = torch.zeros(self._num_envs, 4, dtype=torch.float32, device=self._device) force_y = torch.zeros(self._num_envs, 4, dtype=torch.float32, device=self._device) force_xy = torch.cat((force_x, force_y), 1).reshape(-1, 4, 2) thrusts = thrusts.reshape(-1, 4, 1) thrusts = torch.cat((force_xy, thrusts), 2) thrusts_0 = thrusts[:, 0] thrusts_0 = thrusts_0[:, :, None] thrusts_1 = thrusts[:, 1] thrusts_1 = thrusts_1[:, :, None] thrusts_2 = thrusts[:, 2] thrusts_2 = thrusts_2[:, :, None] thrusts_3 = thrusts[:, 3] thrusts_3 = thrusts_3[:, :, None] mod_thrusts_0 = torch.matmul(rot_matrix, thrusts_0) mod_thrusts_1 = torch.matmul(rot_matrix, thrusts_1) mod_thrusts_2 = torch.matmul(rot_matrix, thrusts_2) mod_thrusts_3 = torch.matmul(rot_matrix, thrusts_3) self.thrusts[:, 0] = torch.squeeze(mod_thrusts_0) self.thrusts[:, 1] = torch.squeeze(mod_thrusts_1) self.thrusts[:, 2] = torch.squeeze(mod_thrusts_2) self.thrusts[:, 3] = torch.squeeze(mod_thrusts_3) # clear actions for reset envs self.thrusts[reset_env_ids] = 0 # spin spinning rotors prop_rot = self.thrust_cmds_damp * self.prop_max_rot self.dof_vel[:, 0] = prop_rot[:, 0] self.dof_vel[:, 1] = -1.0 * prop_rot[:, 1] self.dof_vel[:, 2] = prop_rot[:, 2] self.dof_vel[:, 3] = -1.0 * prop_rot[:, 3] self._copters.set_joint_velocities(self.dof_vel) # apply actions for i in range(4): self._copters.physics_rotors[i].apply_forces(self.thrusts[:, i], indices=self.all_indices) def post_reset(self): thrust_max = self.grav_z * self.mass * self.thrust_to_weight * self.motor_assymetry / 4.0 self.thrusts = torch.zeros((self._num_envs, 4, 3), dtype=torch.float32, device=self._device) self.thrust_cmds_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.thrust_rot_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.thrust_max = torch.tensor(thrust_max, device=self._device, dtype=torch.float32) self.motor_linearity = 1.0 self.prop_max_rot = 433.3 self.target_positions = torch.zeros((self._num_envs, 3), device=self._device, dtype=torch.float32) self.target_positions[:, 2] = 1 self.actions = torch.zeros((self._num_envs, 4), device=self._device, dtype=torch.float32) self.all_indices = torch.arange(self._num_envs, dtype=torch.int32, device=self._device) # Extra info self.extras = {} torch_zeros = lambda: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.episode_sums = { "rew_pos": torch_zeros(), "rew_orient": torch_zeros(), "rew_effort": torch_zeros(), "rew_spin": torch_zeros(), "raw_dist": torch_zeros(), "raw_orient": torch_zeros(), "raw_effort": torch_zeros(), "raw_spin": torch_zeros(), } self.root_pos, self.root_rot = self._copters.get_world_poses() self.root_velocities = self._copters.get_velocities() self.dof_pos = self._copters.get_joint_positions() self.dof_vel = self._copters.get_joint_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses(clone=False) self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # control parameters self.thrusts = torch.zeros((self._num_envs, 4, 3), dtype=torch.float32, device=self._device) self.thrust_cmds_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.thrust_rot_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.set_targets(self.all_indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (0, 0) and z in (2) self.target_positions[envs_long, 0:2] = torch.zeros((num_sets, 2), device=self._device) self.target_positions[envs_long, 2] = torch.ones(num_sets, device=self._device) * 2.0 # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] ball_pos[:, 2] += 0.0 self._balls.set_world_poses(ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def reset_idx(self, env_ids): num_resets = len(env_ids) self.dof_pos[env_ids, :] = torch_rand_float(-0.0, 0.0, (num_resets, self._copters.num_dof), device=self._device) self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._copters.set_joint_positions(self.dof_pos[env_ids], indices=env_ids) self._copters.set_joint_velocities(self.dof_vel[env_ids], indices=env_ids) self._copters.set_world_poses(root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._copters.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.thrust_cmds_damp[env_ids] = 0 self.thrust_rot_damp[env_ids] = 0 # fill extras self.extras["episode"] = {} for key in self.episode_sums.keys(): self.extras["episode"][key] = torch.mean(self.episode_sums[key][env_ids]) / self._max_episode_length self.episode_sums[key][env_ids] = 0.0 def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_angvels = self.root_velocities[:, 3:] # pos reward target_dist = torch.sqrt(torch.square(self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + target_dist) self.target_dist = target_dist self.root_positions = root_positions # orient reward ups = quat_axis(root_quats, 2) self.orient_z = ups[..., 2] up_reward = torch.clamp(ups[..., 2], min=0.0, max=1.0) # effort reward effort = torch.square(self.actions).sum(-1) effort_reward = 0.05 * torch.exp(-0.5 * effort) # spin reward spin = torch.square(root_angvels).sum(-1) spin_reward = 0.01 * torch.exp(-1.0 * spin) # combined reward self.rew_buf[:] = pos_reward + pos_reward * (up_reward + spin_reward) - effort_reward # log episode reward sums self.episode_sums["rew_pos"] += pos_reward self.episode_sums["rew_orient"] += up_reward self.episode_sums["rew_effort"] += effort_reward self.episode_sums["rew_spin"] += spin_reward # log raw info self.episode_sums["raw_dist"] += target_dist self.episode_sums["raw_orient"] += ups[..., 2] self.episode_sums["raw_effort"] += effort self.episode_sums["raw_spin"] += spin def is_done(self) -> None: # resets due to misbehavior ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 5.0, ones, die) # z >= 0.5 & z <= 5.0 & up > 0 die = torch.where(self.root_positions[..., 2] < 0.5, ones, die) die = torch.where(self.root_positions[..., 2] > 5.0, ones, die) die = torch.where(self.orient_z < 0.0, ones, die) # resets due to episode length self.reset_buf[:] = torch.where(self.progress_buf >= self._max_episode_length - 1, ones, die)
16,830
Python
41.502525
120
0.61937
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/humanoid.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, unscale from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.humanoid import Humanoid from omniisaacgymenvs.tasks.shared.locomotion import LocomotionTask from pxr import PhysxSchema class HumanoidLocomotionTask(LocomotionTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._num_observations = 87 self._num_actions = 21 self._humanoid_positions = torch.tensor([0, 0, 1.34]) LocomotionTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config LocomotionTask.update_config(self) def set_up_scene(self, scene) -> None: self.get_humanoid() RLTask.set_up_scene(self, scene) self._humanoids = ArticulationView( prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False ) scene.add(self._humanoids) return def initialize_views(self, scene): RLTask.initialize_views(self, scene) if scene.object_exists("humanoid_view"): scene.remove_object("humanoid_view", registry_only=True) self._humanoids = ArticulationView( prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False ) scene.add(self._humanoids) def get_humanoid(self): humanoid = Humanoid( prim_path=self.default_zero_env_path + "/Humanoid", name="Humanoid", translation=self._humanoid_positions ) self._sim_config.apply_articulation_settings( "Humanoid", get_prim_at_path(humanoid.prim_path), self._sim_config.parse_actor_config("Humanoid") ) def get_robot(self): return self._humanoids def post_reset(self): self.joint_gears = torch.tensor( [ 67.5000, # lower_waist 67.5000, # lower_waist 67.5000, # right_upper_arm 67.5000, # right_upper_arm 67.5000, # left_upper_arm 67.5000, # left_upper_arm 67.5000, # pelvis 45.0000, # right_lower_arm 45.0000, # left_lower_arm 45.0000, # right_thigh: x 135.0000, # right_thigh: y 45.0000, # right_thigh: z 45.0000, # left_thigh: x 135.0000, # left_thigh: y 45.0000, # left_thigh: z 90.0000, # right_knee 90.0000, # left_knee 22.5, # right_foot 22.5, # right_foot 22.5, # left_foot 22.5, # left_foot ], device=self._device, ) self.max_motor_effort = torch.max(self.joint_gears) self.motor_effort_ratio = self.joint_gears / self.max_motor_effort dof_limits = self._humanoids.get_dof_limits() self.dof_limits_lower = dof_limits[0, :, 0].to(self._device) self.dof_limits_upper = dof_limits[0, :, 1].to(self._device) force_links = ["left_foot", "right_foot"] self._sensor_indices = torch.tensor( [self._humanoids._body_indices[j] for j in force_links], device=self._device, dtype=torch.long ) LocomotionTask.post_reset(self) def get_dof_at_limit_cost(self): return get_dof_at_limit_cost(self.obs_buf, self.motor_effort_ratio, self.joints_at_limit_cost_scale) @torch.jit.script def get_dof_at_limit_cost(obs_buf, motor_effort_ratio, joints_at_limit_cost_scale): # type: (Tensor, Tensor, float) -> Tensor scaled_cost = joints_at_limit_cost_scale * (torch.abs(obs_buf[:, 12:33]) - 0.98) / 0.02 dof_at_limit_cost = torch.sum( (torch.abs(obs_buf[:, 12:33]) > 0.98) * scaled_cost * motor_effort_ratio.unsqueeze(0), dim=-1 ) return dof_at_limit_cost
5,980
Python
41.119718
117
0.651003
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/franka_deformable.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.franka import Franka from omniisaacgymenvs.robots.articulations.views.franka_view import FrankaView from omni.isaac.core.prims import RigidPrim, RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage, add_reference_to_stage from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.torch.transformations import * from omni.isaac.core.utils.torch.rotations import * import omni.isaac.core.utils.deformable_mesh_utils as deformableMeshUtils from omni.isaac.core.materials.deformable_material import DeformableMaterial from omni.isaac.core.prims.soft.deformable_prim import DeformablePrim from omni.isaac.core.prims.soft.deformable_prim_view import DeformablePrimView from omni.physx.scripts import deformableUtils, physicsUtils import numpy as np import torch import math from pxr import Usd, UsdGeom, Gf, UsdPhysics, PhysxSchema class FrankaDeformableTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self.update_config(sim_config) self.dt = 1/60. self._num_observations = 39 self._num_actions = 9 RLTask.__init__(self, name, env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.action_scale = self._task_cfg["env"]["actionScale"] def set_up_scene(self, scene) -> None: self.stage = get_current_stage() self.assets_root_path = get_assets_root_path() if self.assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self.get_franka() self.get_beaker() self.get_deformable_tube() super().set_up_scene(scene=scene, replicate_physics=False) self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view") self.deformableView = DeformablePrimView( prim_paths_expr="/World/envs/.*/deformableTube/tube/mesh", name="deformabletube_view" ) scene.add(self.deformableView) scene.add(self._frankas) scene.add(self._frankas._hands) scene.add(self._frankas._lfingers) scene.add(self._frankas._rfingers) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("franka_view"): scene.remove_object("franka_view", registry_only=True) if scene.object_exists("hands_view"): scene.remove_object("hands_view", registry_only=True) if scene.object_exists("lfingers_view"): scene.remove_object("lfingers_view", registry_only=True) if scene.object_exists("rfingers_view"): scene.remove_object("rfingers_view", registry_only=True) if scene.object_exists("deformabletube_view"): scene.remove_object("deformabletube_view", registry_only=True) self._frankas = FrankaView( prim_paths_expr="/World/envs/.*/franka", name="franka_view" ) self.deformableView = DeformablePrimView( prim_paths_expr="/World/envs/.*/deformableTube/tube/mesh", name="deformabletube_view" ) scene.add(self._frankas) scene.add(self._frankas._hands) scene.add(self._frankas._lfingers) scene.add(self._frankas._rfingers) scene.add(self.deformableView) def get_franka(self): franka = Franka( prim_path=self.default_zero_env_path + "/franka", name="franka", orientation=torch.tensor([1.0, 0.0, 0.0, 0.0]), translation=torch.tensor([0.0, 0.0, 0.0]), ) self._sim_config.apply_articulation_settings( "franka", get_prim_at_path(franka.prim_path), self._sim_config.parse_actor_config("franka") ) franka.set_franka_properties(stage=self.stage, prim=franka.prim) def get_beaker(self): _usd_path = self.assets_root_path + "/Isaac/Props/Beaker/beaker_500ml.usd" mesh_path = self.default_zero_env_path + "/beaker" add_reference_to_stage(_usd_path, mesh_path) beaker = RigidPrim( prim_path=mesh_path+"/beaker", name="beaker", position=torch.tensor([0.5, 0.2, 0.095]), ) self._sim_config.apply_articulation_settings("beaker", beaker.prim, self._sim_config.parse_actor_config("beaker")) def get_deformable_tube(self): _usd_path = self.assets_root_path + "/Isaac/Props/DeformableTube/tube.usd" mesh_path = self.default_zero_env_path + "/deformableTube/tube" add_reference_to_stage(_usd_path, mesh_path) skin_mesh = get_prim_at_path(mesh_path) physicsUtils.setup_transform_as_scale_orient_translate(skin_mesh) physicsUtils.set_or_add_translate_op(skin_mesh, (0.6, 0.0, 0.005)) physicsUtils.set_or_add_orient_op(skin_mesh, Gf.Rotation(Gf.Vec3d([0, 0, 1]), 90).GetQuat()) def get_observations(self) -> dict: franka_dof_pos = self._frankas.get_joint_positions(clone=False) franka_dof_vel = self._frankas.get_joint_velocities(clone=False) self.franka_dof_pos = franka_dof_pos dof_pos_scaled = ( 2.0 * (franka_dof_pos - self.franka_dof_lower_limits) / (self.franka_dof_upper_limits - self.franka_dof_lower_limits) - 1.0 ) self.lfinger_pos, _ = self._frankas._lfingers.get_world_poses(clone=False) self.rfinger_pos, _ = self._frankas._rfingers.get_world_poses(clone=False) self.gripper_site_pos = (self.lfinger_pos + self.rfinger_pos)/2 - self._env_pos tube_positions = self.deformableView.get_simulation_mesh_nodal_positions(clone=False) tube_velocities = self.deformableView.get_simulation_mesh_nodal_velocities(clone=False) self.tube_front_positions = tube_positions[:, 200, :] - self._env_pos self.tube_front_velocities = tube_velocities[:, 200, :] self.tube_back_positions = tube_positions[:, -1, :] - self._env_pos self.tube_back_velocities = tube_velocities[:, -1, :] front_to_gripper = self.tube_front_positions - self.gripper_site_pos to_front_goal = self.front_goal_pos - self.tube_front_positions to_back_goal = self.back_goal_pos - self.tube_back_positions self.obs_buf = torch.cat( ( dof_pos_scaled, franka_dof_vel * self.dof_vel_scale, front_to_gripper, to_front_goal, to_back_goal, self.tube_front_positions, self.tube_front_velocities, self.tube_back_positions, self.tube_back_velocities, ), dim=-1, ) observations = { self._frankas.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) targets = self.franka_dof_targets + self.franka_dof_speed_scales * self.dt * self.actions * self.action_scale self.franka_dof_targets[:] = tensor_clamp(targets, self.franka_dof_lower_limits, self.franka_dof_upper_limits) self.franka_dof_targets[:, -1] = self.franka_dof_targets[:, -2] env_ids_int32 = torch.arange(self._frankas.count, dtype=torch.int32, device=self._device) self._frankas.set_joint_position_targets(self.franka_dof_targets, indices=env_ids_int32) def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) num_indices = len(indices) pos = self.franka_default_dof_pos dof_pos = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_vel = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_pos[:, :] = pos self.franka_dof_targets[env_ids, :] = pos self.franka_dof_pos[env_ids, :] = pos self._frankas.set_joint_position_targets(self.franka_dof_targets[env_ids], indices=indices) self._frankas.set_joint_positions(dof_pos, indices=indices) self._frankas.set_joint_velocities(dof_vel, indices=indices) self.deformableView.set_simulation_mesh_nodal_positions(self.initial_tube_positions[env_ids], indices) self.deformableView.set_simulation_mesh_nodal_velocities(self.initial_tube_velocities[env_ids], indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self.franka_default_dof_pos = torch.tensor( [0.00, 0.63, 0.00, -2.15, 0.00, 2.76, 0.75, 0.02, 0.02], device=self._device ) self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device) self.front_goal_pos = torch.tensor([0.36, 0.0, 0.23], device=self._device).repeat((self._num_envs, 1)) self.back_goal_pos = torch.tensor([0.5, 0.2, 0.0], device=self._device).repeat((self._num_envs, 1)) self.goal_hand_rot = torch.tensor([0.0, 1.0, 0.0, 0.0], device=self._device).repeat((self.num_envs, 1)) self.lfinger_pos, _ = self._frankas._lfingers.get_world_poses(clone=False) self.rfinger_pos, _ = self._frankas._rfingers.get_world_poses(clone=False) self.gripper_site_pos = (self.lfinger_pos + self.rfinger_pos)/2 - self._env_pos self.initial_tube_positions = self.deformableView.get_simulation_mesh_nodal_positions() self.initial_tube_velocities = self.deformableView.get_simulation_mesh_nodal_velocities() self.tube_front_positions = self.initial_tube_positions[:, 0, :] - self._env_pos self.tube_front_velocities = self.initial_tube_velocities[:, 0, :] self.tube_back_positions = self.initial_tube_positions[:, -1, :] - self._env_pos self.tube_back_velocities = self.initial_tube_velocities[:, -1, :] self.num_franka_dofs = self._frankas.num_dof self.franka_dof_pos = torch.zeros((self.num_envs, self.num_franka_dofs), device=self._device) dof_limits = self._frankas.get_dof_limits() self.franka_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.franka_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.franka_dof_speed_scales = torch.ones_like(self.franka_dof_lower_limits) self.franka_dof_speed_scales[self._frankas.gripper_indices] = 0.1 self.franka_dof_targets = torch.zeros( (self._num_envs, self.num_franka_dofs), dtype=torch.float, device=self._device ) # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: goal_distance_error = torch.norm(self.tube_back_positions[:, 0:2] - self.back_goal_pos[:, 0:2], p = 2, dim = -1) goal_dist_reward = 1.0 / (5*goal_distance_error + .025) current_z_level = self.tube_back_positions[:, 2:3] z_lift_level = torch.where( goal_distance_error < 0.07, torch.zeros_like(current_z_level), torch.ones_like(current_z_level)*0.18 ) front_lift_error = torch.norm(current_z_level - z_lift_level, p = 2, dim = -1) front_lift_reward = 1.0 / (5*front_lift_error + .025) rewards = goal_dist_reward + 4*front_lift_reward self.rew_buf[:] = rewards def is_done(self) -> None: self.reset_buf = torch.where(self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.tube_front_positions[:, 0] < 0, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.tube_front_positions[:, 0] > 1.0, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.tube_front_positions[:, 1] < -1.0, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.tube_front_positions[:, 1] > 1.0, torch.ones_like(self.reset_buf), self.reset_buf)
13,322
Python
42.825658
136
0.641045
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/ant.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, unscale from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.ant import Ant from omniisaacgymenvs.tasks.shared.locomotion import LocomotionTask from pxr import PhysxSchema class AntLocomotionTask(LocomotionTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) LocomotionTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_observations = 60 self._num_actions = 8 self._ant_positions = torch.tensor([0, 0, 0.5]) LocomotionTask.update_config(self) def set_up_scene(self, scene) -> None: self.get_ant() RLTask.set_up_scene(self, scene) self._ants = ArticulationView( prim_paths_expr="/World/envs/.*/Ant/torso", name="ant_view", reset_xform_properties=False ) scene.add(self._ants) return def initialize_views(self, scene): RLTask.initialize_views(self, scene) if scene.object_exists("ant_view"): scene.remove_object("ant_view", registry_only=True) self._ants = ArticulationView( prim_paths_expr="/World/envs/.*/Ant/torso", name="ant_view", reset_xform_properties=False ) scene.add(self._ants) def get_ant(self): ant = Ant(prim_path=self.default_zero_env_path + "/Ant", name="Ant", translation=self._ant_positions) self._sim_config.apply_articulation_settings( "Ant", get_prim_at_path(ant.prim_path), self._sim_config.parse_actor_config("Ant") ) def get_robot(self): return self._ants def post_reset(self): self.joint_gears = torch.tensor([15, 15, 15, 15, 15, 15, 15, 15], dtype=torch.float32, device=self._device) dof_limits = self._ants.get_dof_limits() self.dof_limits_lower = dof_limits[0, :, 0].to(self._device) self.dof_limits_upper = dof_limits[0, :, 1].to(self._device) self.motor_effort_ratio = torch.ones_like(self.joint_gears, device=self._device) force_links = ["front_left_foot", "front_right_foot", "left_back_foot", "right_back_foot"] self._sensor_indices = torch.tensor( [self._ants._body_indices[j] for j in force_links], device=self._device, dtype=torch.long ) LocomotionTask.post_reset(self) def get_dof_at_limit_cost(self): return get_dof_at_limit_cost(self.obs_buf, self._ants.num_dof) @torch.jit.script def get_dof_at_limit_cost(obs_buf, num_dof): # type: (Tensor, int) -> Tensor return torch.sum(obs_buf[:, 12 : 12 + num_dof] > 0.99, dim=-1)
4,691
Python
41.654545
115
0.69708
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/cartpole.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.cartpole import Cartpole class CartpoleTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._max_episode_length = 500 self._num_observations = 4 self._num_actions = 1 RLTask.__init__(self, name, env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._cartpole_positions = torch.tensor([0.0, 0.0, 2.0]) self._reset_dist = self._task_cfg["env"]["resetDist"] self._max_push_effort = self._task_cfg["env"]["maxEffort"] def set_up_scene(self, scene) -> None: self.get_cartpole() super().set_up_scene(scene) self._cartpoles = ArticulationView( prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False ) scene.add(self._cartpoles) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("cartpole_view"): scene.remove_object("cartpole_view", registry_only=True) self._cartpoles = ArticulationView( prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False ) scene.add(self._cartpoles) def get_cartpole(self): cartpole = Cartpole( prim_path=self.default_zero_env_path + "/Cartpole", name="Cartpole", translation=self._cartpole_positions ) # applies articulation settings from the task configuration yaml file self._sim_config.apply_articulation_settings( "Cartpole", get_prim_at_path(cartpole.prim_path), self._sim_config.parse_actor_config("Cartpole") ) def get_observations(self) -> dict: dof_pos = self._cartpoles.get_joint_positions(clone=False) dof_vel = self._cartpoles.get_joint_velocities(clone=False) self.cart_pos = dof_pos[:, self._cart_dof_idx] self.cart_vel = dof_vel[:, self._cart_dof_idx] self.pole_pos = dof_pos[:, self._pole_dof_idx] self.pole_vel = dof_vel[:, self._pole_dof_idx] self.obs_buf[:, 0] = self.cart_pos self.obs_buf[:, 1] = self.cart_vel self.obs_buf[:, 2] = self.pole_pos self.obs_buf[:, 3] = self.pole_vel observations = {self._cartpoles.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) actions = actions.to(self._device) forces = torch.zeros((self._cartpoles.count, self._cartpoles.num_dof), dtype=torch.float32, device=self._device) forces[:, self._cart_dof_idx] = self._max_push_effort * actions[:, 0] indices = torch.arange(self._cartpoles.count, dtype=torch.int32, device=self._device) self._cartpoles.set_joint_efforts(forces, indices=indices) def reset_idx(self, env_ids): num_resets = len(env_ids) # randomize DOF positions dof_pos = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device) dof_pos[:, self._cart_dof_idx] = 1.0 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) dof_pos[:, self._pole_dof_idx] = 0.125 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) # randomize DOF velocities dof_vel = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device) dof_vel[:, self._cart_dof_idx] = 0.5 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) dof_vel[:, self._pole_dof_idx] = 0.25 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) # apply resets indices = env_ids.to(dtype=torch.int32) self._cartpoles.set_joint_positions(dof_pos, indices=indices) self._cartpoles.set_joint_velocities(dof_vel, indices=indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self._cart_dof_idx = self._cartpoles.get_dof_index("cartJoint") self._pole_dof_idx = self._cartpoles.get_dof_index("poleJoint") # randomize all envs indices = torch.arange(self._cartpoles.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: reward = 1.0 - self.pole_pos * self.pole_pos - 0.01 * torch.abs(self.cart_vel) - 0.005 * torch.abs(self.pole_vel) reward = torch.where(torch.abs(self.cart_pos) > self._reset_dist, torch.ones_like(reward) * -2.0, reward) reward = torch.where(torch.abs(self.pole_pos) > np.pi / 2, torch.ones_like(reward) * -2.0, reward) self.rew_buf[:] = reward def is_done(self) -> None: resets = torch.where(torch.abs(self.cart_pos) > self._reset_dist, 1, 0) resets = torch.where(torch.abs(self.pole_pos) > math.pi / 2, 1, resets) resets = torch.where(self.progress_buf >= self._max_episode_length, 1, resets) self.reset_buf[:] = resets
7,256
Python
42.981818
121
0.659179
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/dofbot_reacher.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Ref: /omniisaacgymenvs/tasks/shadow_hand.py import math import numpy as np import torch from omniisaacgymenvs.sim2real.dofbot import RealWorldDofbot from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig from omniisaacgymenvs.robots.articulations.views.dofbot_view import DofbotView from omniisaacgymenvs.robots.articulations.dofbot import Dofbot from omniisaacgymenvs.tasks.shared.reacher import ReacherTask from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch import * from omni.isaac.gym.vec_env import VecEnvBase class DofbotReacherTask(ReacherTask): def __init__( self, name: str, sim_config: SimConfig, env: VecEnvBase, offset=None ) -> None: self.update_config(sim_config) ReacherTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.obs_type = self._task_cfg["env"]["observationType"] if not (self.obs_type in ["full"]): raise Exception( "Unknown type of observations!\nobservationType should be one of: [full]") print("Obs type:", self.obs_type) self.num_obs_dict = { "full": 29, # 6: dofbot joints position (action space) # 6: dofbot joints velocity # 3: goal position # 4: goal rotation # 4: goal relative rotation # 6: previous action } self.object_scale = torch.tensor([0.1] * 3) self.goal_scale = torch.tensor([0.5] * 3) self._num_observations = self.num_obs_dict[self.obs_type] self._num_actions = 6 self._num_states = 0 pi = math.pi # For actions self._dof_limits = torch.tensor([[ [-pi/2, pi/2], [-pi/4, pi/4], [-pi/4, pi/4], [-pi/4, pi/4], [-pi/2, pi/2], [-0.1, 0.1], # The gripper joint will be ignored, since it is not used in the Reacher task ]], dtype=torch.float32, device=self._cfg["sim_device"]) # The last action space cannot be [0, 0] # It will introduce the following error: # ValueError: Expected parameter loc (Tensor of shape (2048, 6)) of distribution Normal(loc: torch.Size([2048, 6]), scale: torch.Size([2048, 6])) to satisfy the constraint Real(), but found invalid values self.useURDF = self._task_cfg["env"]["useURDF"] # Setup Sim2Real sim2real_config = self._task_cfg['sim2real'] if sim2real_config['enabled'] and self.test and self.num_envs == 1: self.real_world_dofbot = RealWorldDofbot( sim2real_config['ip'], sim2real_config['port'], sim2real_config['fail_quietely'], sim2real_config['verbose'] ) ReacherTask.update_config(self) def get_num_dof(self): # assert self._arms.num_dof == 11 return min(self._arms.num_dof, 6) def get_arm(self): if not self.useURDF: usd_path = "omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_instanceable.usd" else: usd_path = "omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_urdf_instanceable.usd" dofbot = Dofbot( prim_path=self.default_zero_env_path + "/Dofbot", name="Dofbot", usd_path=usd_path ) self._sim_config.apply_articulation_settings( "dofbot", get_prim_at_path(dofbot.prim_path), self._sim_config.parse_actor_config("dofbot"), ) def get_arm_view(self, scene): if not self.useURDF: end_effector_prim_paths_expr = "/World/envs/.*/Dofbot/link5/Wrist_Twist" else: end_effector_prim_paths_expr = "/World/envs/.*/Dofbot/link5" arm_view = DofbotView( prim_paths_expr="/World/envs/.*/Dofbot", end_effector_prim_paths_expr=end_effector_prim_paths_expr, name="dofbot_view" ) scene.add(arm_view._end_effectors) return arm_view def get_object_displacement_tensor(self): return torch.tensor([0.0, 0.015, 0.1], device=self.device).repeat((self.num_envs, 1)) def get_observations(self): self.arm_dof_pos = self._arms.get_joint_positions() self.arm_dof_vel = self._arms.get_joint_velocities() if self.obs_type == "full_no_vel": self.compute_full_observations(True) elif self.obs_type == "full": self.compute_full_observations() else: print("Unkown observations type!") observations = {self._arms.name: {"obs_buf": self.obs_buf}} return observations def get_reset_target_new_pos(self, n_reset_envs): # Randomly generate goal positions, although the resulting goal may still not be reachable. new_pos = torch_rand_float(-1, 1, (n_reset_envs, 3), device=self.device) new_pos[:, 0] = new_pos[:, 0] * 0.05 + 0.15 * torch.sign(new_pos[:, 0]) new_pos[:, 1] = new_pos[:, 1] * 0.05 + 0.15 * torch.sign(new_pos[:, 1]) new_pos[:, 2] = torch.abs(new_pos[:, 2] * 0.2) + 0.15 return new_pos def compute_full_observations(self, no_vel=False): if no_vel: raise NotImplementedError() else: # There are many redundant information for the simple Reacher task, but we'll keep them for now. self.obs_buf[:, 0:self.num_arm_dofs] = unscale(self.arm_dof_pos[:, :self.num_arm_dofs], self.arm_dof_lower_limits, self.arm_dof_upper_limits) self.obs_buf[:, self.num_arm_dofs:2*self.num_arm_dofs] = self.vel_obs_scale * self.arm_dof_vel[:, :self.num_arm_dofs] base = 2 * self.num_arm_dofs self.obs_buf[:, base+0:base+3] = self.goal_pos self.obs_buf[:, base+3:base+7] = self.goal_rot self.obs_buf[:, base+7:base+11] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, base+11:base+17] = self.actions def send_joint_pos(self, joint_pos): self.real_world_dofbot.send_joint_pos(joint_pos)
7,961
Python
41.57754
212
0.633589
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/quadcopter.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.quadcopter import Quadcopter from omniisaacgymenvs.robots.articulations.views.quadcopter_view import QuadcopterView class QuadcopterTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._num_observations = 21 self._num_actions = 12 self._copter_position = torch.tensor([0, 0, 1.0]) RLTask.__init__(self, name=name, env=env) max_thrust = 2.0 self.thrust_lower_limits = -max_thrust * torch.ones(4, device=self._device, dtype=torch.float32) self.thrust_upper_limits = max_thrust * torch.ones(4, device=self._device, dtype=torch.float32) self.all_indices = torch.arange(self._num_envs, dtype=torch.int32, device=self._device) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] self.dt = self._task_cfg["sim"]["dt"] def set_up_scene(self, scene) -> None: self.get_copter() self.get_target() RLTask.set_up_scene(self, scene) self._copters = QuadcopterView(prim_paths_expr="/World/envs/.*/Quadcopter", name="quadcopter_view") self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False ) self._balls._non_root_link = True # do not set states for kinematics scene.add(self._copters) scene.add(self._copters.rotors) scene.add(self._balls) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("quadcopter_view"): scene.remove_object("quadcopter_view", registry_only=True) if scene.object_exists("rotors_view"): scene.remove_object("rotors_view", registry_only=True) if scene.object_exists("targets_view"): scene.remove_object("targets_view", registry_only=True) self._copters = QuadcopterView(prim_paths_expr="/World/envs/.*/Quadcopter", name="quadcopter_view") self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False ) scene.add(self._copters) scene.add(self._copters.rotors) scene.add(self._balls) def get_copter(self): copter = Quadcopter( prim_path=self.default_zero_env_path + "/Quadcopter", name="quadcopter", translation=self._copter_position ) self._sim_config.apply_articulation_settings( "copter", get_prim_at_path(copter.prim_path), self._sim_config.parse_actor_config("copter") ) def get_target(self): radius = 0.05 color = torch.tensor([1, 0, 0]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings( "ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball") ) ball.set_collision_enabled(False) def get_observations(self) -> dict: self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) self.dof_pos = self._copters.get_joint_positions(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi self.obs_buf[..., 13:21] = self.dof_pos observations = {self._copters.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) actions = actions.clone().to(self._device) dof_action_speed_scale = 8 * math.pi self.dof_position_targets += self.dt * dof_action_speed_scale * actions[:, 0:8] self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.dof_lower_limits, self.dof_upper_limits ) thrust_action_speed_scale = 100 self.thrusts += self.dt * thrust_action_speed_scale * actions[:, 8:12] self.thrusts[:] = tensor_clamp(self.thrusts, self.thrust_lower_limits, self.thrust_upper_limits) self.forces[:, 0, 2] = self.thrusts[:, 0] self.forces[:, 1, 2] = self.thrusts[:, 1] self.forces[:, 2, 2] = self.thrusts[:, 2] self.forces[:, 3, 2] = self.thrusts[:, 3] # clear actions for reset envs self.thrusts[reset_env_ids] = 0.0 self.forces[reset_env_ids] = 0.0 self.dof_position_targets[reset_env_ids] = self.dof_pos[reset_env_ids] # apply actions self._copters.set_joint_position_targets(self.dof_position_targets) self._copters.rotors.apply_forces(self.forces, is_global=False) def post_reset(self): # control tensors self.dof_position_targets = torch.zeros( (self._num_envs, self._copters.num_dof), dtype=torch.float32, device=self._device, requires_grad=False ) self.thrusts = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device, requires_grad=False) self.forces = torch.zeros( (self._num_envs, self._copters.rotors.count // self._num_envs, 3), dtype=torch.float32, device=self._device, requires_grad=False, ) self.target_positions = torch.zeros((self._num_envs, 3), device=self._device) self.target_positions[:, 2] = 1.0 self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) self.dof_pos = self._copters.get_joint_positions(clone=False) self.dof_vel = self._copters.get_joint_velocities(clone=False) self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() dof_limits = self._copters.get_dof_limits() self.dof_lower_limits = dof_limits[0][:, 0].to(device=self._device) self.dof_upper_limits = dof_limits[0][:, 1].to(device=self._device) def reset_idx(self, env_ids): num_resets = len(env_ids) self.dof_pos[env_ids, :] = torch_rand_float(-0.2, 0.2, (num_resets, self._copters.num_dof), device=self._device) self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-1.5, 1.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-1.5, 1.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float(-0.2, 1.5, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._copters.set_joint_positions(self.dof_pos[env_ids], indices=env_ids) self._copters.set_joint_velocities(self.dof_vel[env_ids], indices=env_ids) self._copters.set_world_poses(root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._copters.set_velocities(root_velocities[env_ids], indices=env_ids) self._balls.set_world_poses(positions=self.target_positions[:, 0:3] + self._env_pos) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_angvels = self.root_velocities[:, 3:] # distance to target target_dist = torch.sqrt(torch.square(self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 3 * target_dist * target_dist) # 2 self.target_dist = target_dist self.root_positions = root_positions # uprightness ups = quat_axis(root_quats, 2) tiltage = torch.abs(1 - ups[..., 2]) up_reward = 1.0 / (1.0 + 10 * tiltage * tiltage) # spinning spinnage = torch.abs(root_angvels[..., 2]) spinnage_reward = 1.0 / (1.0 + 0.001 * spinnage * spinnage) rew = pos_reward + pos_reward * (up_reward + spinnage_reward + spinnage * spinnage * (-1 / 400)) rew = torch.clip(rew, 0.0, None) self.rew_buf[:] = rew def is_done(self) -> None: # resets due to misbehavior ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 3.0, ones, die) die = torch.where(self.root_positions[..., 2] < 0.3, ones, die) # resets due to episode length self.reset_buf[:] = torch.where(self.progress_buf >= self._max_episode_length - 1, ones, die)
11,498
Python
42.889313
120
0.640633
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/ingenuity.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.robots.articulations.ingenuity import Ingenuity from omniisaacgymenvs.robots.articulations.views.ingenuity_view import IngenuityView from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omniisaacgymenvs.tasks.base.rl_task import RLTask import numpy as np import torch import math class IngenuityTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self.update_config(sim_config) self.thrust_limit = 2000 self.thrust_lateral_component = 0.2 self._num_observations = 13 self._num_actions = 6 self._ingenuity_position = torch.tensor([0, 0, 1.0]) self._ball_position = torch.tensor([0, 0, 1.0]) RLTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] self.dt = self._task_cfg["sim"]["dt"] def set_up_scene(self, scene) -> None: self.get_ingenuity() self.get_target() RLTask.set_up_scene(self, scene) self._copters = IngenuityView(prim_paths_expr="/World/envs/.*/Ingenuity", name="ingenuity_view") self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) self._balls._non_root_link = True # do not set states for kinematics scene.add(self._copters) scene.add(self._balls) for i in range(2): scene.add(self._copters.physics_rotors[i]) scene.add(self._copters.visual_rotors[i]) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("ingenuity_view"): scene.remove_object("ingenuity_view", registry_only=True) for i in range(2): if scene.object_exists(f"physics_rotor_{i}_view"): scene.remove_object(f"physics_rotor_{i}_view", registry_only=True) if scene.object_exists(f"visual_rotor_{i}_view"): scene.remove_object(f"visual_rotor_{i}_view", registry_only=True) if scene.object_exists("targets_view"): scene.remove_object("targets_view", registry_only=True) self._copters = IngenuityView(prim_paths_expr="/World/envs/.*/Ingenuity", name="ingenuity_view") self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) scene.add(self._copters) scene.add(self._balls) for i in range(2): scene.add(self._copters.physics_rotors[i]) scene.add(self._copters.visual_rotors[i]) def get_ingenuity(self): copter = Ingenuity(prim_path=self.default_zero_env_path + "/Ingenuity", name="ingenuity", translation=self._ingenuity_position) self._sim_config.apply_articulation_settings("ingenuity", get_prim_at_path(copter.prim_path), self._sim_config.parse_actor_config("ingenuity")) def get_target(self): radius = 0.1 color = torch.tensor([1, 0, 0]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", translation=self._ball_position, name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings("ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball")) ball.set_collision_enabled(False) def get_observations(self) -> dict: self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi observations = { self._copters.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero(as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) actions = actions.clone().to(self._device) vertical_thrust_prop_0 = torch.clamp(actions[:, 2] * self.thrust_limit, -self.thrust_limit, self.thrust_limit) vertical_thrust_prop_1 = torch.clamp(actions[:, 5] * self.thrust_limit, -self.thrust_limit, self.thrust_limit) lateral_fraction_prop_0 = torch.clamp( actions[:, 0:2] * self.thrust_lateral_component, -self.thrust_lateral_component, self.thrust_lateral_component, ) lateral_fraction_prop_1 = torch.clamp( actions[:, 3:5] * self.thrust_lateral_component, -self.thrust_lateral_component, self.thrust_lateral_component, ) self.thrusts[:, 0, 2] = self.dt * vertical_thrust_prop_0 self.thrusts[:, 0, 0:2] = self.thrusts[:, 0, 2, None] * lateral_fraction_prop_0 self.thrusts[:, 1, 2] = self.dt * vertical_thrust_prop_1 self.thrusts[:, 1, 0:2] = self.thrusts[:, 1, 2, None] * lateral_fraction_prop_1 # clear actions for reset envs self.thrusts[reset_env_ids] = 0 # spin spinning rotors self.dof_vel[:, self.spinning_indices[0]] = 50 self.dof_vel[:, self.spinning_indices[1]] = -50 self._copters.set_joint_velocities(self.dof_vel) # apply actions for i in range(2): self._copters.physics_rotors[i].apply_forces(self.thrusts[:, i], indices=self.all_indices) def post_reset(self): self.spinning_indices = torch.tensor([1, 3], device=self._device) self.all_indices = torch.arange(self._num_envs, dtype=torch.int32, device=self._device) self.target_positions = torch.zeros((self._num_envs, 3), device=self._device, dtype=torch.float32) self.target_positions[:, 2] = 1 self.root_pos, self.root_rot = self._copters.get_world_poses() self.root_velocities = self._copters.get_velocities() self.dof_pos = self._copters.get_joint_positions() self.dof_vel = self._copters.get_joint_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # control tensors self.thrusts = torch.zeros((self._num_envs, 2, 3), dtype=torch.float32, device=self._device) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (-1, 1) and z in (1, 2) self.target_positions[envs_long, 0:2] = torch.rand((num_sets, 2), device=self._device) * 2 - 1 self.target_positions[envs_long, 2] = torch.rand(num_sets, device=self._device) + 1 # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] ball_pos[:, 2] += 0.4 self._balls.set_world_poses(ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def reset_idx(self, env_ids): num_resets = len(env_ids) self.dof_pos[env_ids, 1] = torch_rand_float(-0.2, 0.2, (num_resets, 1), device=self._device).squeeze() self.dof_pos[env_ids, 3] = torch_rand_float(-0.2, 0.2, (num_resets, 1), device=self._device).squeeze() self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._copters.set_joint_positions(self.dof_pos[env_ids], indices=env_ids) self._copters.set_joint_velocities(self.dof_vel[env_ids], indices=env_ids) self._copters.set_world_poses(root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._copters.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_angvels = self.root_velocities[:, 3:] # distance to target target_dist = torch.sqrt(torch.square(self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist) self.target_dist = target_dist self.root_positions = root_positions # uprightness ups = quat_axis(root_quats, 2) tiltage = torch.abs(1 - ups[..., 2]) up_reward = 1.0 / (1.0 + 30 * tiltage * tiltage) # spinning spinnage = torch.abs(root_angvels[..., 2]) spinnage_reward = 1.0 / (1.0 + 10 * spinnage * spinnage) # combined reward # uprightness and spinning only matter when close to the target self.rew_buf[:] = pos_reward + pos_reward * (up_reward + spinnage_reward) def is_done(self) -> None: # resets due to misbehavior ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 20.0, ones, die) die = torch.where(self.root_positions[..., 2] < 0.5, ones, die) # resets due to episode length self.reset_buf[:] = torch.where(self.progress_buf >= self._max_episode_length - 1, ones, die)
12,391
Python
42.943262
151
0.635138
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/anymal.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.anymal import Anymal from omniisaacgymenvs.robots.articulations.views.anymal_view import AnymalView from omniisaacgymenvs.tasks.utils.usd_utils import set_drive class AnymalTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._num_observations = 48 self._num_actions = 12 RLTask.__init__(self, name, env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # normalization self.lin_vel_scale = self._task_cfg["env"]["learn"]["linearVelocityScale"] self.ang_vel_scale = self._task_cfg["env"]["learn"]["angularVelocityScale"] self.dof_pos_scale = self._task_cfg["env"]["learn"]["dofPositionScale"] self.dof_vel_scale = self._task_cfg["env"]["learn"]["dofVelocityScale"] self.action_scale = self._task_cfg["env"]["control"]["actionScale"] # reward scales self.rew_scales = {} self.rew_scales["lin_vel_xy"] = self._task_cfg["env"]["learn"]["linearVelocityXYRewardScale"] self.rew_scales["ang_vel_z"] = self._task_cfg["env"]["learn"]["angularVelocityZRewardScale"] self.rew_scales["lin_vel_z"] = self._task_cfg["env"]["learn"]["linearVelocityZRewardScale"] self.rew_scales["joint_acc"] = self._task_cfg["env"]["learn"]["jointAccRewardScale"] self.rew_scales["action_rate"] = self._task_cfg["env"]["learn"]["actionRateRewardScale"] self.rew_scales["cosmetic"] = self._task_cfg["env"]["learn"]["cosmeticRewardScale"] # command ranges self.command_x_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_x"] self.command_y_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_y"] self.command_yaw_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["yaw"] # base init state pos = self._task_cfg["env"]["baseInitState"]["pos"] rot = self._task_cfg["env"]["baseInitState"]["rot"] v_lin = self._task_cfg["env"]["baseInitState"]["vLinear"] v_ang = self._task_cfg["env"]["baseInitState"]["vAngular"] state = pos + rot + v_lin + v_ang self.base_init_state = state # default joint positions self.named_default_joint_angles = self._task_cfg["env"]["defaultJointAngles"] # other self.dt = 1 / 60 self.max_episode_length_s = self._task_cfg["env"]["learn"]["episodeLength_s"] self.max_episode_length = int(self.max_episode_length_s / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] for key in self.rew_scales.keys(): self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._anymal_translation = torch.tensor([0.0, 0.0, 0.62]) self._env_spacing = self._task_cfg["env"]["envSpacing"] def set_up_scene(self, scene) -> None: self.get_anymal() super().set_up_scene(scene) self._anymals = AnymalView(prim_paths_expr="/World/envs/.*/anymal", name="anymalview") scene.add(self._anymals) scene.add(self._anymals._knees) scene.add(self._anymals._base) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("anymalview"): scene.remove_object("anymalview", registry_only=True) if scene.object_exists("knees_view"): scene.remove_object("knees_view", registry_only=True) if scene.object_exists("base_view"): scene.remove_object("base_view", registry_only=True) self._anymals = AnymalView(prim_paths_expr="/World/envs/.*/anymal", name="anymalview") scene.add(self._anymals) scene.add(self._anymals._knees) scene.add(self._anymals._base) def get_anymal(self): anymal = Anymal( prim_path=self.default_zero_env_path + "/anymal", name="Anymal", translation=self._anymal_translation ) self._sim_config.apply_articulation_settings( "Anymal", get_prim_at_path(anymal.prim_path), self._sim_config.parse_actor_config("Anymal") ) # Configure joint properties joint_paths = [] for quadrant in ["LF", "LH", "RF", "RH"]: for component, abbrev in [("HIP", "H"), ("THIGH", "K")]: joint_paths.append(f"{quadrant}_{component}/{quadrant}_{abbrev}FE") joint_paths.append(f"base/{quadrant}_HAA") for joint_path in joint_paths: set_drive(f"{anymal.prim_path}/{joint_path}", "angular", "position", 0, 400, 40, 1000) def get_observations(self) -> dict: torso_position, torso_rotation = self._anymals.get_world_poses(clone=False) root_velocities = self._anymals.get_velocities(clone=False) dof_pos = self._anymals.get_joint_positions(clone=False) dof_vel = self._anymals.get_joint_velocities(clone=False) velocity = root_velocities[:, 0:3] ang_velocity = root_velocities[:, 3:6] base_lin_vel = quat_rotate_inverse(torso_rotation, velocity) * self.lin_vel_scale base_ang_vel = quat_rotate_inverse(torso_rotation, ang_velocity) * self.ang_vel_scale projected_gravity = quat_rotate(torso_rotation, self.gravity_vec) dof_pos_scaled = (dof_pos - self.default_dof_pos) * self.dof_pos_scale commands_scaled = self.commands * torch.tensor( [self.lin_vel_scale, self.lin_vel_scale, self.ang_vel_scale], requires_grad=False, device=self.commands.device, ) obs = torch.cat( ( base_lin_vel, base_ang_vel, projected_gravity, commands_scaled, dof_pos_scaled, dof_vel * self.dof_vel_scale, self.actions, ), dim=-1, ) self.obs_buf[:] = obs observations = {self._anymals.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) indices = torch.arange(self._anymals.count, dtype=torch.int32, device=self._device) self.actions[:] = actions.clone().to(self._device) current_targets = self.current_targets + self.action_scale * self.actions * self.dt self.current_targets[:] = tensor_clamp( current_targets, self.anymal_dof_lower_limits, self.anymal_dof_upper_limits ) self._anymals.set_joint_position_targets(self.current_targets, indices) def reset_idx(self, env_ids): num_resets = len(env_ids) # randomize DOF velocities velocities = torch_rand_float(-0.1, 0.1, (num_resets, self._anymals.num_dof), device=self._device) dof_pos = self.default_dof_pos[env_ids] dof_vel = velocities self.current_targets[env_ids] = dof_pos[:] root_vel = torch.zeros((num_resets, 6), device=self._device) # apply resets indices = env_ids.to(dtype=torch.int32) self._anymals.set_joint_positions(dof_pos, indices) self._anymals.set_joint_velocities(dof_vel, indices) self._anymals.set_world_poses( self.initial_root_pos[env_ids].clone(), self.initial_root_rot[env_ids].clone(), indices ) self._anymals.set_velocities(root_vel, indices) self.commands_x[env_ids] = torch_rand_float( self.command_x_range[0], self.command_x_range[1], (num_resets, 1), device=self._device ).squeeze() self.commands_y[env_ids] = torch_rand_float( self.command_y_range[0], self.command_y_range[1], (num_resets, 1), device=self._device ).squeeze() self.commands_yaw[env_ids] = torch_rand_float( self.command_yaw_range[0], self.command_yaw_range[1], (num_resets, 1), device=self._device ).squeeze() # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.last_actions[env_ids] = 0.0 self.last_dof_vel[env_ids] = 0.0 def post_reset(self): self.default_dof_pos = torch.zeros( (self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False ) dof_names = self._anymals.dof_names for i in range(self.num_actions): name = dof_names[i] angle = self.named_default_joint_angles[name] self.default_dof_pos[:, i] = angle self.initial_root_pos, self.initial_root_rot = self._anymals.get_world_poses() self.current_targets = self.default_dof_pos.clone() dof_limits = self._anymals.get_dof_limits() self.anymal_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.anymal_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.commands = torch.zeros(self._num_envs, 3, dtype=torch.float, device=self._device, requires_grad=False) self.commands_y = self.commands.view(self._num_envs, 3)[..., 1] self.commands_x = self.commands.view(self._num_envs, 3)[..., 0] self.commands_yaw = self.commands.view(self._num_envs, 3)[..., 2] # initialize some data used later on self.extras = {} self.gravity_vec = torch.tensor([0.0, 0.0, -1.0], device=self._device).repeat((self._num_envs, 1)) self.actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.last_dof_vel = torch.zeros( (self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False ) self.last_actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.time_out_buf = torch.zeros_like(self.reset_buf) # randomize all envs indices = torch.arange(self._anymals.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: torso_position, torso_rotation = self._anymals.get_world_poses(clone=False) root_velocities = self._anymals.get_velocities(clone=False) dof_pos = self._anymals.get_joint_positions(clone=False) dof_vel = self._anymals.get_joint_velocities(clone=False) velocity = root_velocities[:, 0:3] ang_velocity = root_velocities[:, 3:6] base_lin_vel = quat_rotate_inverse(torso_rotation, velocity) base_ang_vel = quat_rotate_inverse(torso_rotation, ang_velocity) # velocity tracking reward lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - base_lin_vel[:, :2]), dim=1) ang_vel_error = torch.square(self.commands[:, 2] - base_ang_vel[:, 2]) rew_lin_vel_xy = torch.exp(-lin_vel_error / 0.25) * self.rew_scales["lin_vel_xy"] rew_ang_vel_z = torch.exp(-ang_vel_error / 0.25) * self.rew_scales["ang_vel_z"] rew_lin_vel_z = torch.square(base_lin_vel[:, 2]) * self.rew_scales["lin_vel_z"] rew_joint_acc = torch.sum(torch.square(self.last_dof_vel - dof_vel), dim=1) * self.rew_scales["joint_acc"] rew_action_rate = ( torch.sum(torch.square(self.last_actions - self.actions), dim=1) * self.rew_scales["action_rate"] ) rew_cosmetic = ( torch.sum(torch.abs(dof_pos[:, 0:4] - self.default_dof_pos[:, 0:4]), dim=1) * self.rew_scales["cosmetic"] ) total_reward = rew_lin_vel_xy + rew_ang_vel_z + rew_joint_acc + rew_action_rate + rew_cosmetic + rew_lin_vel_z total_reward = torch.clip(total_reward, 0.0, None) self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = dof_vel[:] self.fallen_over = self._anymals.is_base_below_threshold(threshold=0.51, ground_heights=0.0) total_reward[torch.nonzero(self.fallen_over)] = -1 self.rew_buf[:] = total_reward.detach() def is_done(self) -> None: # reset agents time_out = self.progress_buf >= self.max_episode_length - 1 self.reset_buf[:] = time_out | self.fallen_over
14,350
Python
44.55873
118
0.630941
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/warp/humanoid.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.warp.shared.locomotion import LocomotionTask from omniisaacgymenvs.robots.articulations.humanoid import Humanoid from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omniisaacgymenvs.tasks.base.rl_task import RLTaskWarp import numpy as np import torch import warp as wp import math class HumanoidLocomotionTask(LocomotionTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_observations = 87 self._num_actions = 21 self._humanoid_positions = torch.tensor([0, 0, 1.34]) LocomotionTask.__init__(self, name=name, env=env) return def set_up_scene(self, scene) -> None: self.get_humanoid() RLTaskWarp.set_up_scene(self, scene) self._humanoids = ArticulationView(prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False) scene.add(self._humanoids) return def get_humanoid(self): humanoid = Humanoid(prim_path=self.default_zero_env_path + "/Humanoid", name="Humanoid", translation=self._humanoid_positions) self._sim_config.apply_articulation_settings("Humanoid", get_prim_at_path(humanoid.prim_path), self._sim_config.parse_actor_config("Humanoid")) def get_robot(self): return self._humanoids def post_reset(self): self.joint_gears = wp.array( [ 67.5000, # lower_waist 67.5000, # lower_waist 67.5000, # right_upper_arm 67.5000, # right_upper_arm 67.5000, # left_upper_arm 67.5000, # left_upper_arm 67.5000, # pelvis 45.0000, # right_lower_arm 45.0000, # left_lower_arm 45.0000, # right_thigh: x 135.0000, # right_thigh: y 45.0000, # right_thigh: z 45.0000, # left_thigh: x 135.0000, # left_thigh: y 45.0000, # left_thigh: z 90.0000, # right_knee 90.0000, # left_knee 22.5, # right_foot 22.5, # right_foot 22.5, # left_foot 22.5, # left_foot ], device=self._device, dtype=wp.float32 ) self.max_motor_effort = 135.0 self.motor_effort_ratio = wp.zeros(self._humanoids._num_dof, dtype=wp.float32, device=self._device) wp.launch(compute_effort_ratio, dim=self._humanoids._num_dof, inputs=[self.motor_effort_ratio, self.joint_gears, self.max_motor_effort], device=self._device) dof_limits = self._humanoids.get_dof_limits().to(self._device) self.dof_limits_lower = wp.zeros(self._humanoids._num_dof, dtype=wp.float32, device=self._device) self.dof_limits_upper = wp.zeros(self._humanoids._num_dof, dtype=wp.float32, device=self._device) wp.launch(parse_dof_limits, dim=self._humanoids._num_dof, inputs=[self.dof_limits_lower, self.dof_limits_upper, dof_limits], device=self._device) self.dof_at_limit_cost = wp.zeros(self._num_envs, dtype=wp.float32, device=self._device) force_links = ["left_foot", "right_foot"] self._sensor_indices = wp.array([self._humanoids._body_indices[j] for j in force_links], device=self._device, dtype=wp.int32) LocomotionTask.post_reset(self) def get_dof_at_limit_cost(self): wp.launch(get_dof_at_limit_cost, dim=(self._num_envs, self._humanoids._num_dof), inputs=[self.dof_at_limit_cost, self.obs_buf, self.motor_effort_ratio, self.joints_at_limit_cost_scale]) return self.dof_at_limit_cost @wp.kernel def compute_effort_ratio(motor_effort_ratio: wp.array(dtype=wp.float32), joint_gears: wp.array(dtype=wp.float32), max_motor_effort: float): tid = wp.tid() motor_effort_ratio[tid] = joint_gears[tid] / max_motor_effort @wp.kernel def parse_dof_limits(dof_limits_lower: wp.array(dtype=wp.float32), dof_limits_upper: wp.array(dtype=wp.float32), dof_limits: wp.array(dtype=wp.float32, ndim=3)): tid = wp.tid() dof_limits_lower[tid] = dof_limits[0, tid, 0] dof_limits_upper[tid] = dof_limits[0, tid, 1] @wp.kernel def get_dof_at_limit_cost(dof_at_limit_cost: wp.array(dtype=wp.float32), obs_buf: wp.array(dtype=wp.float32, ndim=2), motor_effort_ratio: wp.array(dtype=wp.float32), joints_at_limit_cost_scale: float): i, j = wp.tid() dof_i = j + 12 scaled_cost = joints_at_limit_cost_scale * (wp.abs(obs_buf[i, dof_i]) - 0.98) / 0.02 cost = 0.0 if wp.abs(obs_buf[i, dof_i]) > 0.98: cost = scaled_cost * motor_effort_ratio[j] dof_at_limit_cost[i] = cost
6,686
Python
42.422078
143
0.639994
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/warp/ant.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.robots.articulations.ant import Ant from omniisaacgymenvs.tasks.warp.shared.locomotion import LocomotionTask from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omni.isaac.core.utils.torch.maths import torch_rand_float, tensor_clamp, unscale from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omniisaacgymenvs.tasks.base.rl_task import RLTaskWarp import numpy as np import torch import warp as wp class AntLocomotionTask(LocomotionTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_observations = 60 self._num_actions = 8 self._ant_positions = wp.array([0, 0, 0.5], dtype=wp.float32, device="cpu") LocomotionTask.__init__(self, name=name, env=env) return def set_up_scene(self, scene) -> None: self.get_ant() RLTaskWarp.set_up_scene(self, scene) self._ants = ArticulationView(prim_paths_expr="/World/envs/.*/Ant/torso", name="ant_view", reset_xform_properties=False) scene.add(self._ants) return def get_ant(self): ant = Ant(prim_path=self.default_zero_env_path + "/Ant", name="Ant", translation=self._ant_positions) self._sim_config.apply_articulation_settings("Ant", get_prim_at_path(ant.prim_path), self._sim_config.parse_actor_config("Ant")) def get_robot(self): return self._ants def post_reset(self): self.joint_gears = wp.array([15, 15, 15, 15, 15, 15, 15, 15], dtype=wp.float32, device=self._device) dof_limits = self._ants.get_dof_limits().to(self._device) self.dof_limits_lower = wp.zeros(self._ants._num_dof, dtype=wp.float32, device=self._device) self.dof_limits_upper = wp.zeros(self._ants._num_dof, dtype=wp.float32, device=self._device) wp.launch(parse_dof_limits, dim=self._ants._num_dof, inputs=[self.dof_limits_lower, self.dof_limits_upper, dof_limits], device=self._device) self.motor_effort_ratio = wp.array([1, 1, 1, 1, 1, 1, 1, 1], dtype=wp.float32, device=self._device) self.dof_at_limit_cost = wp.zeros(self._num_envs, dtype=wp.float32, device=self._device) force_links = ["front_left_foot", "front_right_foot", "left_back_foot", "right_back_foot"] self._sensor_indices = wp.array([self._ants._body_indices[j] for j in force_links], device=self._device, dtype=wp.int32) LocomotionTask.post_reset(self) def get_dof_at_limit_cost(self): wp.launch(get_dof_at_limit_cost, dim=(self._num_envs, self._ants._num_dof), inputs=[self.dof_at_limit_cost, self.obs_buf, self.motor_effort_ratio]) return self.dof_at_limit_cost @wp.kernel def get_dof_at_limit_cost(dof_at_limit_cost: wp.array(dtype=wp.float32), obs_buf: wp.array(dtype=wp.float32, ndim=2), motor_effort_ratio: wp.array(dtype=wp.float32)): i, j = wp.tid() dof_i = j + 12 cost = 0.0 if wp.abs(obs_buf[i, dof_i]) > 0.99: cost = 1.0 dof_at_limit_cost[i] = cost @wp.kernel def parse_dof_limits(dof_limits_lower: wp.array(dtype=wp.float32), dof_limits_upper: wp.array(dtype=wp.float32), dof_limits: wp.array(dtype=wp.float32, ndim=3)): tid = wp.tid() dof_limits_lower[tid] = dof_limits[0, tid, 0] dof_limits_upper[tid] = dof_limits[0, tid, 1]
5,221
Python
44.807017
136
0.685309
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/warp/cartpole.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.robots.articulations.cartpole import Cartpole from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path import omni.isaac.core.utils.warp as warp_utils from omniisaacgymenvs.tasks.base.rl_task import RLTaskWarp import numpy as np import torch import warp as wp import math class CartpoleTask(RLTaskWarp): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._cartpole_positions = wp.array([0.0, 0.0, 2.0], dtype=wp.float32) self._reset_dist = self._task_cfg["env"]["resetDist"] self._max_push_effort = self._task_cfg["env"]["maxEffort"] self._max_episode_length = 500 self._num_observations = 4 self._num_actions = 1 RLTaskWarp.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.get_cartpole() super().set_up_scene(scene) self._cartpoles = ArticulationView(prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False) scene.add(self._cartpoles) return def get_cartpole(self): cartpole = Cartpole(prim_path=self.default_zero_env_path + "/Cartpole", name="Cartpole", translation=self._cartpole_positions) # applies articulation settings from the task configuration yaml file self._sim_config.apply_articulation_settings("Cartpole", get_prim_at_path(cartpole.prim_path), self._sim_config.parse_actor_config("Cartpole")) def get_observations(self) -> dict: dof_pos = self._cartpoles.get_joint_positions(clone=False) dof_vel = self._cartpoles.get_joint_velocities(clone=False) wp.launch(get_observations, dim=self._num_envs, inputs=[self.obs_buf, dof_pos, dof_vel, self._cart_dof_idx, self._pole_dof_idx], device=self._device) observations = { self._cartpoles.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: self.reset_idx() actions_wp = wp.from_torch(actions) forces = wp.zeros((self._cartpoles.count, self._cartpoles.num_dof), dtype=wp.float32, device=self._device) wp.launch(compute_forces, dim=self._num_envs, inputs=[forces, actions_wp, self._cart_dof_idx, self._max_push_effort], device=self._device) self._cartpoles.set_joint_efforts(forces) def reset_idx(self): reset_env_ids = wp.to_torch(self.reset_buf).nonzero(as_tuple=False).squeeze(-1) num_resets = len(reset_env_ids) indices = wp.from_torch(reset_env_ids.to(dtype=torch.int32), dtype=wp.int32) if num_resets > 0: wp.launch(reset_idx, num_resets, inputs=[self.dof_pos, self.dof_vel, indices, self.reset_buf, self.progress_buf, self._cart_dof_idx, self._pole_dof_idx, self._rand_seed], device=self._device) # apply resets self._cartpoles.set_joint_positions(self.dof_pos[indices], indices=indices) self._cartpoles.set_joint_velocities(self.dof_vel[indices], indices=indices) def post_reset(self): self._cart_dof_idx = self._cartpoles.get_dof_index("cartJoint") self._pole_dof_idx = self._cartpoles.get_dof_index("poleJoint") self.dof_pos = wp.zeros((self._num_envs, self._cartpoles.num_dof), device=self._device, dtype=wp.float32) self.dof_vel = wp.zeros((self._num_envs, self._cartpoles.num_dof), device=self._device, dtype=wp.float32) # randomize all envs self.reset_idx() def calculate_metrics(self) -> None: wp.launch(calculate_metrics, dim=self._num_envs, inputs=[self.obs_buf, self.rew_buf, self._reset_dist], device=self._device) def is_done(self) -> None: wp.launch(is_done, dim=self._num_envs, inputs=[self.obs_buf, self.reset_buf, self.progress_buf, self._reset_dist, self._max_episode_length], device=self._device) @wp.kernel def reset_idx(dof_pos: wp.array(dtype=wp.float32, ndim=2), dof_vel: wp.array(dtype=wp.float32, ndim=2), indices: wp.array(dtype=wp.int32), reset_buf: wp.array(dtype=wp.int32), progress_buf: wp.array(dtype=wp.int32), cart_dof_idx: int, pole_dof_idx: int, rand_seed: int): i = wp.tid() idx = indices[i] rand_state = wp.rand_init(rand_seed, i) # randomize DOF positions dof_pos[idx, cart_dof_idx] = 1.0 * (1.0 - 2.0 * wp.randf(rand_state)) dof_pos[idx, pole_dof_idx] = 0.125 * warp_utils.PI * (1.0 - 2.0 * wp.randf(rand_state)) # randomize DOF velocities dof_vel[idx, cart_dof_idx] = 0.5 * (1.0 - 2.0 * wp.randf(rand_state)) dof_vel[idx, pole_dof_idx] = 0.25 * warp_utils.PI * (1.0 - 2.0 * wp.randf(rand_state)) # bookkeeping progress_buf[idx] = 0 reset_buf[idx] = 0 @wp.kernel def compute_forces(forces: wp.array(dtype=wp.float32, ndim=2), actions: wp.array(dtype=wp.float32, ndim=2), cart_dof_idx: int, max_push_effort: float): i = wp.tid() forces[i, cart_dof_idx] = max_push_effort * actions[i, 0] @wp.kernel def get_observations(obs_buf: wp.array(dtype=wp.float32, ndim=2), dof_pos: wp.indexedarray(dtype=wp.float32, ndim=2), dof_vel: wp.indexedarray(dtype=wp.float32, ndim=2), cart_dof_idx: int, pole_dof_idx: int): i = wp.tid() obs_buf[i, 0] = dof_pos[i, cart_dof_idx] obs_buf[i, 1] = dof_vel[i, cart_dof_idx] obs_buf[i, 2] = dof_pos[i, pole_dof_idx] obs_buf[i, 3] = dof_vel[i, pole_dof_idx] @wp.kernel def calculate_metrics(obs_buf: wp.array(dtype=wp.float32, ndim=2), rew_buf: wp.array(dtype=wp.float32), reset_dist: float): i = wp.tid() cart_pos = obs_buf[i, 0] cart_vel = obs_buf[i, 1] pole_angle = obs_buf[i, 2] pole_vel = obs_buf[i, 3] rew_buf[i] = 1.0 - pole_angle * pole_angle - 0.01 * wp.abs(cart_vel) - 0.005 * wp.abs(pole_vel) if wp.abs(cart_pos) > reset_dist or wp.abs(pole_angle) > warp_utils.PI / 2.0: rew_buf[i] = -2.0 @wp.kernel def is_done(obs_buf: wp.array(dtype=wp.float32, ndim=2), reset_buf: wp.array(dtype=wp.int32), progress_buf: wp.array(dtype=wp.int32), reset_dist: float, max_episode_length: int): i = wp.tid() cart_pos = obs_buf[i, 0] pole_pos = obs_buf[i, 2] if wp.abs(cart_pos) > reset_dist or wp.abs(pole_pos) > warp_utils.PI / 2.0 or progress_buf[i] > max_episode_length: reset_buf[i] = 1 else: reset_buf[i] = 0
8,665
Python
38.390909
154
0.635661
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/warp/shared/locomotion.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path import omni.isaac.core.utils.warp as warp_utils from omniisaacgymenvs.tasks.base.rl_task import RLTaskWarp import numpy as np import torch import warp as wp class LocomotionTask(RLTaskWarp): def __init__( self, name, env, offset=None ) -> None: self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.angular_velocity_scale = self._task_cfg["env"]["angularVelocityScale"] self.contact_force_scale = self._task_cfg["env"]["contactForceScale"] self.power_scale = self._task_cfg["env"]["powerScale"] self.heading_weight = self._task_cfg["env"]["headingWeight"] self.up_weight = self._task_cfg["env"]["upWeight"] self.actions_cost_scale = self._task_cfg["env"]["actionsCost"] self.energy_cost_scale = self._task_cfg["env"]["energyCost"] self.joints_at_limit_cost_scale = self._task_cfg["env"]["jointsAtLimitCost"] self.death_cost = self._task_cfg["env"]["deathCost"] self.termination_height = self._task_cfg["env"]["terminationHeight"] self.alive_reward_scale = self._task_cfg["env"]["alive_reward_scale"] self._num_sensors = 2 RLTaskWarp.__init__(self, name, env) return @abstractmethod def set_up_scene(self, scene) -> None: pass @abstractmethod def get_robot(self): pass def get_observations(self) -> dict: torso_position, torso_rotation = self._robots.get_world_poses(clone=False) velocities = self._robots.get_velocities(clone=False) dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) # force sensors attached to the feet sensor_force_torques = self._robots.get_measured_joint_forces() wp.launch(get_observations, dim=self._num_envs, inputs=[self.obs_buf, torso_position, torso_rotation, self._env_pos, velocities, dof_pos, dof_vel, self.prev_potentials, self.potentials, self.dt, self.target, self.basis_vec0, self.basis_vec1, self.dof_limits_lower, self.dof_limits_upper, self.dof_vel_scale, sensor_force_torques, self.contact_force_scale, self.actions, self.angular_velocity_scale, self._robots._num_dof, self._num_sensors, self._sensor_indices], device=self._device ) observations = { self._robots.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: self.reset_idx() actions_wp = wp.from_torch(actions) self.actions = actions_wp wp.launch(compute_forces, dim=(self._num_envs, self._robots._num_dof), inputs=[self.forces, self.actions, self.joint_gears, self.power_scale], device=self._device) # applies joint torques self._robots.set_joint_efforts(self.forces) def reset_idx(self): reset_env_ids = wp.to_torch(self.reset_buf).nonzero(as_tuple=False).squeeze(-1) num_resets = len(reset_env_ids) indices = wp.from_torch(reset_env_ids.to(dtype=torch.int32), dtype=wp.int32) if num_resets > 0: wp.launch(reset_dofs, dim=(num_resets, self._robots._num_dof), inputs=[self.dof_pos, self.dof_vel, self.initial_dof_pos, self.dof_limits_lower, self.dof_limits_upper, indices, self._rand_seed], device=self._device) wp.launch(reset_idx, dim=num_resets, inputs=[self.root_pos, self.root_rot, self.initial_root_pos, self.initial_root_rot, self._env_pos, self.target, self.prev_potentials, self.potentials, self.dt, self.reset_buf, self.progress_buf, indices, self._rand_seed], device=self._device) # apply resets self._robots.set_joint_positions(self.dof_pos[indices], indices=indices) self._robots.set_joint_velocities(self.dof_vel[indices], indices=indices) self._robots.set_world_poses(self.root_pos[indices], self.root_rot[indices], indices=indices) self._robots.set_velocities(self.root_vel[indices], indices=indices) def post_reset(self): self._robots = self.get_robot() self.initial_root_pos, self.initial_root_rot = self._robots.get_world_poses() self.initial_dof_pos = self._robots.get_joint_positions() # initialize some data used later on self.basis_vec0 = wp.vec3(1, 0, 0) self.basis_vec1 = wp.vec3(0, 0, 1) self.target = wp.vec3(1000, 0, 0) self.dt = 1.0 / 60.0 # initialize potentials self.potentials = wp.zeros(self._num_envs, dtype=wp.float32, device=self._device) self.prev_potentials = wp.zeros(self._num_envs, dtype=wp.float32, device=self._device) wp.launch(init_potentials, dim=self._num_envs, inputs=[self.potentials, self.prev_potentials, self.dt], device=self._device) self.actions = wp.zeros((self.num_envs, self.num_actions), device=self._device, dtype=wp.float32) self.forces = wp.zeros((self._num_envs, self._robots._num_dof), dtype=wp.float32, device=self._device) self.dof_pos = wp.zeros((self.num_envs, self._robots._num_dof), device=self._device, dtype=wp.float32) self.dof_vel = wp.zeros((self.num_envs, self._robots._num_dof), device=self._device, dtype=wp.float32) self.root_pos = wp.zeros((self.num_envs, 3), device=self._device, dtype=wp.float32) self.root_rot = wp.zeros((self.num_envs, 4), device=self._device, dtype=wp.float32) self.root_vel = wp.zeros((self.num_envs, 6), device=self._device, dtype=wp.float32) # randomize all env self.reset_idx() def calculate_metrics(self) -> None: dof_at_limit_cost = self.get_dof_at_limit_cost() wp.launch(calculate_metrics, dim=self._num_envs, inputs=[self.rew_buf, self.obs_buf, self.actions, self.up_weight, self.heading_weight, self.potentials, self.prev_potentials, self.actions_cost_scale, self.energy_cost_scale, self.termination_height, self.death_cost, self._robots.num_dof, dof_at_limit_cost, self.alive_reward_scale, self.motor_effort_ratio], device=self._device ) def is_done(self) -> None: wp.launch(is_done, dim=self._num_envs, inputs=[self.obs_buf, self.termination_height, self.reset_buf, self.progress_buf, self._max_episode_length], device=self._device ) ##################################################################### ###==========================warp kernels=========================### ##################################################################### @wp.kernel def init_potentials(potentials: wp.array(dtype=wp.float32), prev_potentials: wp.array(dtype=wp.float32), dt: float): i = wp.tid() potentials[i] = -1000.0 / dt prev_potentials[i] = -1000.0 / dt @wp.kernel def reset_idx(root_pos: wp.array(dtype=wp.float32, ndim=2), root_rot: wp.array(dtype=wp.float32, ndim=2), initial_root_pos: wp.indexedarray(dtype=wp.float32, ndim=2), initial_root_rot: wp.indexedarray(dtype=wp.float32, ndim=2), env_pos: wp.array(dtype=wp.float32, ndim=2), target: wp.vec3, prev_potentials: wp.array(dtype=wp.float32), potentials: wp.array(dtype=wp.float32), dt: float, reset_buf: wp.array(dtype=wp.int32), progress_buf: wp.array(dtype=wp.int32), indices: wp.array(dtype=wp.int32), rand_seed: int): i = wp.tid() idx = indices[i] # reset root states for j in range(3): root_pos[idx, j] = initial_root_pos[idx, j] for j in range(4): root_rot[idx, j] = initial_root_rot[idx, j] # reset potentials to_target = target - wp.vec3(initial_root_pos[idx, 0] - env_pos[idx, 0], initial_root_pos[idx, 1] - env_pos[idx, 1], target[2]) prev_potentials[idx] = -wp.length(to_target) / dt potentials[idx] = -wp.length(to_target) / dt temp = potentials[idx] - prev_potentials[idx] # bookkeeping reset_buf[idx] = 0 progress_buf[idx] = 0 @wp.kernel def reset_dofs(dof_pos: wp.array(dtype=wp.float32, ndim=2), dof_vel: wp.array(dtype=wp.float32, ndim=2), initial_dof_pos: wp.indexedarray(dtype=wp.float32, ndim=2), dof_limits_lower: wp.array(dtype=wp.float32), dof_limits_upper: wp.array(dtype=wp.float32), indices: wp.array(dtype=wp.int32), rand_seed: int): i, j = wp.tid() idx = indices[i] rand_state = wp.rand_init(rand_seed, i * j + j) # randomize DOF positions and velocities dof_pos[idx, j] = wp.clamp(wp.randf(rand_state, -0.2, 0.2) + initial_dof_pos[idx, j], dof_limits_lower[j], dof_limits_upper[j]) dof_vel[idx, j] = wp.randf(rand_state, -0.1, 0.1) @wp.kernel def compute_forces(forces: wp.array(dtype=wp.float32, ndim=2), actions: wp.array(dtype=wp.float32, ndim=2), joint_gears: wp.array(dtype=wp.float32), power_scale: float): i, j = wp.tid() forces[i, j] = actions[i, j] * joint_gears[j] * power_scale @wp.func def get_euler_xyz(q: wp.quat): qx = 0 qy = 1 qz = 2 qw = 3 # roll (x-axis rotation) sinr_cosp = 2.0 * (q[qw] * q[qx] + q[qy] * q[qz]) cosr_cosp = q[qw] * q[qw] - q[qx] * q[qx] - q[qy] * q[qy] + q[qz] * q[qz] roll = wp.atan2(sinr_cosp, cosr_cosp) # pitch (y-axis rotation) sinp = 2.0 * (q[qw] * q[qy] - q[qz] * q[qx]) if wp.abs(sinp) >= 1: pitch = warp_utils.PI / 2.0 * (wp.abs(sinp)/sinp) else: pitch = wp.asin(sinp) # yaw (z-axis rotation) siny_cosp = 2.0 * (q[qw] * q[qz] + q[qx] * q[qy]) cosy_cosp = q[qw] * q[qw] + q[qx] * q[qx] - q[qy] * q[qy] - q[qz] * q[qz] yaw = wp.atan2(siny_cosp, cosy_cosp) rpy = wp.vec3(roll % (2.0 * warp_utils.PI), pitch % (2.0 * warp_utils.PI), yaw % (2.0 * warp_utils.PI)) return rpy @wp.func def compute_up_vec(torso_rotation: wp.quat, vec1: wp.vec3): up_vec = wp.quat_rotate(torso_rotation, vec1) return up_vec @wp.func def compute_heading_vec(torso_rotation: wp.quat, vec0: wp.vec3): heading_vec = wp.quat_rotate(torso_rotation, vec0) return heading_vec @wp.func def unscale(x:float, lower:float, upper:float): return (2.0 * x - upper - lower) / (upper - lower) @wp.func def normalize_angle(x: float): return wp.atan2(wp.sin(x), wp.cos(x)) @wp.kernel def get_observations( obs_buf: wp.array(dtype=wp.float32, ndim=2), torso_pos: wp.indexedarray(dtype=wp.float32, ndim=2), torso_rot: wp.indexedarray(dtype=wp.float32, ndim=2), env_pos: wp.array(dtype=wp.float32, ndim=2), velocity: wp.indexedarray(dtype=wp.float32, ndim=2), dof_pos: wp.indexedarray(dtype=wp.float32, ndim=2), dof_vel: wp.indexedarray(dtype=wp.float32, ndim=2), prev_potentials: wp.array(dtype=wp.float32), potentials: wp.array(dtype=wp.float32), dt: float, target: wp.vec3, basis_vec0: wp.vec3, basis_vec1: wp.vec3, dof_limits_lower: wp.array(dtype=wp.float32), dof_limits_upper: wp.array(dtype=wp.float32), dof_vel_scale: float, sensor_force_torques: wp.indexedarray(dtype=wp.float32, ndim=3), contact_force_scale: float, actions: wp.array(dtype=wp.float32, ndim=2), angular_velocity_scale: float, num_dofs: int, num_sensors: int, sensor_indices: wp.array(dtype=wp.int32) ): i = wp.tid() torso_position_x = torso_pos[i, 0] - env_pos[i, 0] torso_position_y = torso_pos[i, 1] - env_pos[i, 1] torso_position_z = torso_pos[i, 2] - env_pos[i, 2] to_target = target - wp.vec3(torso_position_x, torso_position_y, target[2]) prev_potentials[i] = potentials[i] potentials[i] = -wp.length(to_target) / dt temp = potentials[i] - prev_potentials[i] torso_quat = wp.quat(torso_rot[i, 1], torso_rot[i, 2], torso_rot[i, 3], torso_rot[i, 0]) up_vec = compute_up_vec(torso_quat, basis_vec1) up_proj = up_vec[2] heading_vec = compute_heading_vec(torso_quat, basis_vec0) target_dir = wp.normalize(to_target) heading_proj = wp.dot(heading_vec, target_dir) lin_velocity = wp.vec3(velocity[i, 0], velocity[i, 1], velocity[i, 2]) ang_velocity = wp.vec3(velocity[i, 3], velocity[i, 4], velocity[i, 5]) rpy = get_euler_xyz(torso_quat) vel_loc = wp.quat_rotate_inv(torso_quat, lin_velocity) angvel_loc = wp.quat_rotate_inv(torso_quat, ang_velocity) walk_target_angle = wp.atan2(target[2] - torso_position_z, target[0] - torso_position_x) angle_to_target = walk_target_angle - rpy[2] # yaw # obs_buf shapes: 1, 3, 3, 1, 1, 1, 1, 1, num_dofs, num_dofs, num_sensors * 6, num_dofs obs_offset = 0 obs_buf[i, 0] = torso_position_z obs_offset = obs_offset + 1 for j in range(3): obs_buf[i, j+obs_offset] = vel_loc[j] obs_offset = obs_offset + 3 for j in range(3): obs_buf[i, j+obs_offset] = angvel_loc[j] * angular_velocity_scale obs_offset = obs_offset + 3 obs_buf[i, obs_offset+0] = normalize_angle(rpy[2]) obs_buf[i, obs_offset+1] = normalize_angle(rpy[0]) obs_buf[i, obs_offset+2] = normalize_angle(angle_to_target) obs_buf[i, obs_offset+3] = up_proj obs_buf[i, obs_offset+4] = heading_proj obs_offset = obs_offset + 5 for j in range(num_dofs): obs_buf[i, obs_offset+j] = unscale(dof_pos[i, j], dof_limits_lower[j], dof_limits_upper[j]) obs_offset = obs_offset + num_dofs for j in range(num_dofs): obs_buf[i, obs_offset+j] = dof_vel[i, j] * dof_vel_scale obs_offset = obs_offset + num_dofs for j in range(num_sensors): sensor_idx = sensor_indices[j] for k in range(6): obs_buf[i, obs_offset+j*6+k] = sensor_force_torques[i, sensor_idx, k] * contact_force_scale obs_offset = obs_offset + (num_sensors * 6) for j in range(num_dofs): obs_buf[i, obs_offset+j] = actions[i, j] @wp.kernel def is_done( obs_buf: wp.array(dtype=wp.float32, ndim=2), termination_height: float, reset_buf: wp.array(dtype=wp.int32), progress_buf: wp.array(dtype=wp.int32), max_episode_length: int ): i = wp.tid() if obs_buf[i, 0] < termination_height or progress_buf[i] >= max_episode_length - 1: reset_buf[i] = 1 else: reset_buf[i] = 0 @wp.kernel def calculate_metrics( rew_buf: wp.array(dtype=wp.float32), obs_buf: wp.array(dtype=wp.float32, ndim=2), actions: wp.array(dtype=wp.float32, ndim=2), up_weight: float, heading_weight: float, potentials: wp.array(dtype=wp.float32), prev_potentials: wp.array(dtype=wp.float32), actions_cost_scale: float, energy_cost_scale: float, termination_height: float, death_cost: float, num_dof: int, dof_at_limit_cost: wp.array(dtype=wp.float32), alive_reward_scale: float, motor_effort_ratio: wp.array(dtype=wp.float32) ): i = wp.tid() # heading reward if obs_buf[i, 11] > 0.8: heading_reward = heading_weight else: heading_reward = heading_weight * obs_buf[i, 11] / 0.8 # aligning up axis of robot and environment up_reward = 0.0 if obs_buf[i, 10] > 0.93: up_reward = up_weight # energy penalty for movement actions_cost = float(0.0) electricity_cost = float(0.0) for j in range(num_dof): actions_cost = actions_cost + (actions[i, j] * actions[i, j]) electricity_cost = electricity_cost + (wp.abs(actions[i, j] * obs_buf[i, 12+num_dof+j]) * motor_effort_ratio[j]) # reward for duration of staying alive progress_reward = potentials[i] - prev_potentials[i] total_reward = ( progress_reward + alive_reward_scale + up_reward + heading_reward - actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost[i] ) # adjust reward for fallen agents if obs_buf[i, 0] < termination_height: total_reward = death_cost rew_buf[i] = total_reward
18,233
Python
39.52
147
0.624198
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/base/rl_task.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import asyncio from abc import abstractmethod import numpy as np import omni.isaac.core.utils.warp.tensor as wp_utils import omni.kit import omni.usd import torch import warp as wp from gym import spaces from omni.isaac.cloner import GridCloner from omni.isaac.core.tasks import BaseTask from omni.isaac.core.utils.prims import define_prim from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.gym.tasks.rl_task import RLTaskInterface from omniisaacgymenvs.utils.domain_randomization.randomize import Randomizer from pxr import Gf, UsdGeom, UsdLux class RLTask(RLTaskInterface): """This class provides a PyTorch RL-specific interface for setting up RL tasks. It includes utilities for setting up RL task related parameters, cloning environments, and data collection for RL algorithms. """ def __init__(self, name, env, offset=None) -> None: """Initializes RL parameters, cloner object, and buffers. Args: name (str): name of the task. env (VecEnvBase): an instance of the environment wrapper class to register task. offset (Optional[np.ndarray], optional): offset applied to all assets of the task. Defaults to None. """ BaseTask.__init__(self, name=name, offset=offset) self._rand_seed = self._cfg["seed"] # optimization flags for pytorch JIT torch._C._jit_set_nvfuser_enabled(False) self.test = self._cfg["test"] self._device = self._cfg["sim_device"] # set up randomizer for DR self._dr_randomizer = Randomizer(self._cfg, self._task_cfg) if self._dr_randomizer.randomize: import omni.replicator.isaac as dr self.dr = dr # set up replicator for camera data collection if self._task_cfg["sim"].get("enable_cameras", False): from omni.replicator.isaac.scripts.writers.pytorch_writer import PytorchWriter from omni.replicator.isaac.scripts.writers.pytorch_listener import PytorchListener import omni.replicator.core as rep self.rep = rep self.PytorchWriter = PytorchWriter self.PytorchListener = PytorchListener print("Task Device:", self._device) self.randomize_actions = False self.randomize_observations = False self.clip_obs = self._task_cfg["env"].get("clipObservations", np.Inf) self.clip_actions = self._task_cfg["env"].get("clipActions", np.Inf) self.rl_device = self._cfg.get("rl_device", "cuda:0") self.control_frequency_inv = self._task_cfg["env"].get("controlFrequencyInv", 1) self.rendering_interval = self._task_cfg.get("renderingInterval", 1) print("RL device: ", self.rl_device) self._env = env if not hasattr(self, "_num_agents"): self._num_agents = 1 # used for multi-agent environments if not hasattr(self, "_num_states"): self._num_states = 0 # initialize data spaces (defaults to gym.Box) if not hasattr(self, "action_space"): self.action_space = spaces.Box( np.ones(self.num_actions, dtype=np.float32) * -1.0, np.ones(self.num_actions, dtype=np.float32) * 1.0 ) if not hasattr(self, "observation_space"): self.observation_space = spaces.Box( np.ones(self.num_observations, dtype=np.float32) * -np.Inf, np.ones(self.num_observations, dtype=np.float32) * np.Inf, ) if not hasattr(self, "state_space"): self.state_space = spaces.Box( np.ones(self.num_states, dtype=np.float32) * -np.Inf, np.ones(self.num_states, dtype=np.float32) * np.Inf, ) self.cleanup() def cleanup(self) -> None: """Prepares torch buffers for RL data collection.""" # prepare tensors self.obs_buf = torch.zeros((self._num_envs, self.num_observations), device=self._device, dtype=torch.float) self.states_buf = torch.zeros((self._num_envs, self.num_states), device=self._device, dtype=torch.float) self.rew_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.float) self.reset_buf = torch.ones(self._num_envs, device=self._device, dtype=torch.long) self.progress_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.extras = {} def set_up_scene( self, scene, replicate_physics=True, collision_filter_global_paths=[], filter_collisions=True, copy_from_source=False ) -> None: """Clones environments based on value provided in task config and applies collision filters to mask collisions across environments. Args: scene (Scene): Scene to add objects to. replicate_physics (bool): Clone physics using PhysX API for better performance. collision_filter_global_paths (list): Prim paths of global objects that should not have collision masked. filter_collisions (bool): Mask off collision between environments. copy_from_source (bool): Copy from source prim when cloning instead of inheriting. """ super().set_up_scene(scene) self._cloner = GridCloner(spacing=self._env_spacing) self._cloner.define_base_env(self.default_base_env_path) stage = omni.usd.get_context().get_stage() UsdGeom.Xform.Define(stage, self.default_zero_env_path) if self._task_cfg["sim"].get("add_ground_plane", True): self._ground_plane_path = "/World/defaultGroundPlane" collision_filter_global_paths.append(self._ground_plane_path) scene.add_default_ground_plane(prim_path=self._ground_plane_path) prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs) self._env_pos = self._cloner.clone( source_prim_path="/World/envs/env_0", prim_paths=prim_paths, replicate_physics=replicate_physics, copy_from_source=copy_from_source ) self._env_pos = torch.tensor(np.array(self._env_pos), device=self._device, dtype=torch.float) if filter_collisions: self._cloner.filter_collisions( self._env._world.get_physics_context().prim_path, "/World/collisions", prim_paths, collision_filter_global_paths, ) if self._env._render: self.set_initial_camera_params(camera_position=[10, 10, 3], camera_target=[0, 0, 0]) if self._task_cfg["sim"].get("add_distant_light", True): self._create_distant_light() def set_initial_camera_params(self, camera_position=[10, 10, 3], camera_target=[0, 0, 0]): from omni.kit.viewport.utility import get_viewport_from_window_name from omni.kit.viewport.utility.camera_state import ViewportCameraState viewport_api_2 = get_viewport_from_window_name("Viewport") viewport_api_2.set_active_camera("/OmniverseKit_Persp") camera_state = ViewportCameraState("/OmniverseKit_Persp", viewport_api_2) camera_state.set_position_world(Gf.Vec3d(camera_position[0], camera_position[1], camera_position[2]), True) camera_state.set_target_world(Gf.Vec3d(camera_target[0], camera_target[1], camera_target[2]), True) def _create_distant_light(self, prim_path="/World/defaultDistantLight", intensity=5000): stage = get_current_stage() light = UsdLux.DistantLight.Define(stage, prim_path) light.CreateIntensityAttr().Set(intensity) def initialize_views(self, scene): """Optionally implemented by individual task classes to initialize views used in the task. This API is required for the extension workflow, where tasks are expected to train on a pre-defined stage. Args: scene (Scene): Scene to remove existing views and initialize/add new views. """ self._cloner = GridCloner(spacing=self._env_spacing) pos, _ = self._cloner.get_clone_transforms(self._num_envs) self._env_pos = torch.tensor(np.array(pos), device=self._device, dtype=torch.float) @property def default_base_env_path(self): """Retrieves default path to the parent of all env prims. Returns: default_base_env_path(str): Defaults to "/World/envs". """ return "/World/envs" @property def default_zero_env_path(self): """Retrieves default path to the first env prim (index 0). Returns: default_zero_env_path(str): Defaults to "/World/envs/env_0". """ return f"{self.default_base_env_path}/env_0" def reset(self): """Flags all environments for reset.""" self.reset_buf = torch.ones_like(self.reset_buf) def post_physics_step(self): """Processes RL required computations for observations, states, rewards, resets, and extras. Also maintains progress buffer for tracking step count per environment. Returns: obs_buf(torch.Tensor): Tensor of observation data. rew_buf(torch.Tensor): Tensor of rewards data. reset_buf(torch.Tensor): Tensor of resets/dones data. extras(dict): Dictionary of extras data. """ self.progress_buf[:] += 1 if self._env._world.is_playing(): self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras class RLTaskWarp(RLTask): def cleanup(self) -> None: """Prepares torch buffers for RL data collection.""" # prepare tensors self.obs_buf = wp.zeros((self._num_envs, self.num_observations), device=self._device, dtype=wp.float32) self.states_buf = wp.zeros((self._num_envs, self.num_states), device=self._device, dtype=wp.float32) self.rew_buf = wp.zeros(self._num_envs, device=self._device, dtype=wp.float32) self.reset_buf = wp_utils.ones(self._num_envs, device=self._device, dtype=wp.int32) self.progress_buf = wp.zeros(self._num_envs, device=self._device, dtype=wp.int32) self.zero_states_buf_torch = torch.zeros( (self._num_envs, self.num_states), device=self._device, dtype=torch.float32 ) self.extras = {} def reset(self): """Flags all environments for reset.""" wp.launch(reset_progress, dim=self._num_envs, inputs=[self.progress_buf], device=self._device) def post_physics_step(self): """Processes RL required computations for observations, states, rewards, resets, and extras. Also maintains progress buffer for tracking step count per environment. Returns: obs_buf(torch.Tensor): Tensor of observation data. rew_buf(torch.Tensor): Tensor of rewards data. reset_buf(torch.Tensor): Tensor of resets/dones data. extras(dict): Dictionary of extras data. """ wp.launch(increment_progress, dim=self._num_envs, inputs=[self.progress_buf], device=self._device) if self._env._world.is_playing(): self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() obs_buf_torch = wp.to_torch(self.obs_buf) rew_buf_torch = wp.to_torch(self.rew_buf) reset_buf_torch = wp.to_torch(self.reset_buf) return obs_buf_torch, rew_buf_torch, reset_buf_torch, self.extras def get_states(self): """API for retrieving states buffer, used for asymmetric AC training. Returns: states_buf(torch.Tensor): States buffer. """ if self.num_states > 0: return wp.to_torch(self.states_buf) else: return self.zero_states_buf_torch def set_up_scene(self, scene) -> None: """Clones environments based on value provided in task config and applies collision filters to mask collisions across environments. Args: scene (Scene): Scene to add objects to. """ super().set_up_scene(scene) self._env_pos = wp.from_torch(self._env_pos) @wp.kernel def increment_progress(progress_buf: wp.array(dtype=wp.int32)): i = wp.tid() progress_buf[i] = progress_buf[i] + 1 @wp.kernel def reset_progress(progress_buf: wp.array(dtype=wp.int32)): i = wp.tid() progress_buf[i] = 1
14,224
Python
41.717718
143
0.653121
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/factory/factory_base.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: base class. Inherits Gym's RLTask class and abstract base class. Inherited by environment classes. Not directly executed. Configuration defined in FactoryBase.yaml. Asset info defined in factory_asset_info_franka_table.yaml. """ import carb import hydra import math import numpy as np import torch from omni.isaac.core.objects import FixedCuboid from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.factory_franka import FactoryFranka from pxr import PhysxSchema, UsdPhysics import omniisaacgymenvs.tasks.factory.factory_control as fc from omniisaacgymenvs.tasks.factory.factory_schema_class_base import FactoryABCBase from omniisaacgymenvs.tasks.factory.factory_schema_config_base import ( FactorySchemaConfigBase, ) class FactoryBase(RLTask, FactoryABCBase): def __init__(self, name, sim_config, env) -> None: """Initialize instance variables. Initialize RLTask superclass.""" # Set instance variables from base YAML self._get_base_yaml_params() self._env_spacing = self.cfg_base.env.env_spacing # Set instance variables from task and train YAMLs self._sim_config = sim_config self._cfg = sim_config.config # CL args, task config, and train config self._task_cfg = sim_config.task_config # just task config self._num_envs = sim_config.task_config["env"]["numEnvs"] self._num_observations = sim_config.task_config["env"]["numObservations"] self._num_actions = sim_config.task_config["env"]["numActions"] super().__init__(name, env) def _get_base_yaml_params(self): """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name="factory_schema_config_base", node=FactorySchemaConfigBase) config_path = ( "task/FactoryBase.yaml" # relative to Gym's Hydra search path (cfg dir) ) self.cfg_base = hydra.compose(config_name=config_path) self.cfg_base = self.cfg_base["task"] # strip superfluous nesting asset_info_path = "../tasks/factory/yaml/factory_asset_info_franka_table.yaml" # relative to Gym's Hydra search path (cfg dir) self.asset_info_franka_table = hydra.compose(config_name=asset_info_path) self.asset_info_franka_table = self.asset_info_franka_table[""][""][""][ "tasks" ]["factory"][ "yaml" ] # strip superfluous nesting def import_franka_assets(self, add_to_stage=True): """Set Franka and table asset options. Import assets.""" self._stage = get_current_stage() if add_to_stage: franka_translation = np.array([self.cfg_base.env.franka_depth, 0.0, 0.0]) franka_orientation = np.array([0.0, 0.0, 0.0, 1.0]) franka = FactoryFranka( prim_path=self.default_zero_env_path + "/franka", name="franka", translation=franka_translation, orientation=franka_orientation, ) self._sim_config.apply_articulation_settings( "franka", get_prim_at_path(franka.prim_path), self._sim_config.parse_actor_config("franka"), ) for link_prim in franka.prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get( self._stage, link_prim.GetPrimPath() ) rb.GetDisableGravityAttr().Set(True) rb.GetRetainAccelerationsAttr().Set(False) if self.cfg_base.sim.add_damping: rb.GetLinearDampingAttr().Set( 1.0 ) # default = 0.0; increased to improve stability rb.GetMaxLinearVelocityAttr().Set( 1.0 ) # default = 1000.0; reduced to prevent CUDA errors rb.GetAngularDampingAttr().Set( 5.0 ) # default = 0.5; increased to improve stability rb.GetMaxAngularVelocityAttr().Set( 2 / math.pi * 180 ) # default = 64.0; reduced to prevent CUDA errors else: rb.GetLinearDampingAttr().Set(0.0) rb.GetMaxLinearVelocityAttr().Set(1000.0) rb.GetAngularDampingAttr().Set(0.5) rb.GetMaxAngularVelocityAttr().Set(64 / math.pi * 180) table_translation = np.array( [0.0, 0.0, self.cfg_base.env.table_height * 0.5] ) table_orientation = np.array([1.0, 0.0, 0.0, 0.0]) table = FixedCuboid( prim_path=self.default_zero_env_path + "/table", name="table", translation=table_translation, orientation=table_orientation, scale=np.array( [ self.asset_info_franka_table.table_depth, self.asset_info_franka_table.table_width, self.cfg_base.env.table_height, ] ), size=1.0, color=np.array([0, 0, 0]), ) self.parse_controller_spec(add_to_stage=add_to_stage) def acquire_base_tensors(self): """Acquire tensors.""" self.num_dofs = 9 self.env_pos = self._env_pos self.dof_pos = torch.zeros((self.num_envs, self.num_dofs), device=self.device) self.dof_vel = torch.zeros((self.num_envs, self.num_dofs), device=self.device) self.dof_torque = torch.zeros( (self.num_envs, self.num_dofs), device=self.device ) self.fingertip_contact_wrench = torch.zeros( (self.num_envs, 6), device=self.device ) self.ctrl_target_fingertip_midpoint_pos = torch.zeros( (self.num_envs, 3), device=self.device ) self.ctrl_target_fingertip_midpoint_quat = torch.zeros( (self.num_envs, 4), device=self.device ) self.ctrl_target_dof_pos = torch.zeros( (self.num_envs, self.num_dofs), device=self.device ) self.ctrl_target_gripper_dof_pos = torch.zeros( (self.num_envs, 2), device=self.device ) self.ctrl_target_fingertip_contact_wrench = torch.zeros( (self.num_envs, 6), device=self.device ) self.prev_actions = torch.zeros( (self.num_envs, self.num_actions), device=self.device ) def refresh_base_tensors(self): """Refresh tensors.""" if not self._env._world.is_playing(): return self.dof_pos = self.frankas.get_joint_positions(clone=False) self.dof_vel = self.frankas.get_joint_velocities(clone=False) # Jacobian shape: [4, 11, 6, 9] (root has no Jacobian) self.franka_jacobian = self.frankas.get_jacobians() self.franka_mass_matrix = self.frankas.get_mass_matrices(clone=False) self.arm_dof_pos = self.dof_pos[:, 0:7] self.arm_mass_matrix = self.franka_mass_matrix[ :, 0:7, 0:7 ] # for Franka arm (not gripper) self.hand_pos, self.hand_quat = self.frankas._hands.get_world_poses(clone=False) self.hand_pos -= self.env_pos hand_velocities = self.frankas._hands.get_velocities(clone=False) self.hand_linvel = hand_velocities[:, 0:3] self.hand_angvel = hand_velocities[:, 3:6] ( self.left_finger_pos, self.left_finger_quat, ) = self.frankas._lfingers.get_world_poses(clone=False) self.left_finger_pos -= self.env_pos left_finger_velocities = self.frankas._lfingers.get_velocities(clone=False) self.left_finger_linvel = left_finger_velocities[:, 0:3] self.left_finger_angvel = left_finger_velocities[:, 3:6] self.left_finger_jacobian = self.franka_jacobian[:, 8, 0:6, 0:7] left_finger_forces = self.frankas._lfingers.get_net_contact_forces(clone=False) self.left_finger_force = left_finger_forces[:, 0:3] ( self.right_finger_pos, self.right_finger_quat, ) = self.frankas._rfingers.get_world_poses(clone=False) self.right_finger_pos -= self.env_pos right_finger_velocities = self.frankas._rfingers.get_velocities(clone=False) self.right_finger_linvel = right_finger_velocities[:, 0:3] self.right_finger_angvel = right_finger_velocities[:, 3:6] self.right_finger_jacobian = self.franka_jacobian[:, 9, 0:6, 0:7] right_finger_forces = self.frankas._rfingers.get_net_contact_forces(clone=False) self.right_finger_force = right_finger_forces[:, 0:3] self.gripper_dof_pos = self.dof_pos[:, 7:9] ( self.fingertip_centered_pos, self.fingertip_centered_quat, ) = self.frankas._fingertip_centered.get_world_poses(clone=False) self.fingertip_centered_pos -= self.env_pos fingertip_centered_velocities = self.frankas._fingertip_centered.get_velocities( clone=False ) self.fingertip_centered_linvel = fingertip_centered_velocities[:, 0:3] self.fingertip_centered_angvel = fingertip_centered_velocities[:, 3:6] self.fingertip_centered_jacobian = self.franka_jacobian[:, 10, 0:6, 0:7] self.finger_midpoint_pos = (self.left_finger_pos + self.right_finger_pos) / 2 self.fingertip_midpoint_pos = fc.translate_along_local_z( pos=self.finger_midpoint_pos, quat=self.hand_quat, offset=self.asset_info_franka_table.franka_finger_length, device=self.device, ) self.fingertip_midpoint_quat = self.fingertip_centered_quat # always equal # TODO: Add relative velocity term (see https://dynamicsmotioncontrol487379916.files.wordpress.com/2020/11/21-me258pointmovingrigidbody.pdf) self.fingertip_midpoint_linvel = self.fingertip_centered_linvel + torch.cross( self.fingertip_centered_angvel, (self.fingertip_midpoint_pos - self.fingertip_centered_pos), dim=1, ) # From sum of angular velocities (https://physics.stackexchange.com/questions/547698/understanding-addition-of-angular-velocity), # angular velocity of midpoint w.r.t. world is equal to sum of # angular velocity of midpoint w.r.t. hand and angular velocity of hand w.r.t. world. # Midpoint is in sliding contact (i.e., linear relative motion) with hand; angular velocity of midpoint w.r.t. hand is zero. # Thus, angular velocity of midpoint w.r.t. world is equal to angular velocity of hand w.r.t. world. self.fingertip_midpoint_angvel = self.fingertip_centered_angvel # always equal self.fingertip_midpoint_jacobian = ( self.left_finger_jacobian + self.right_finger_jacobian ) * 0.5 def parse_controller_spec(self, add_to_stage): """Parse controller specification into lower-level controller configuration.""" cfg_ctrl_keys = { "num_envs", "jacobian_type", "gripper_prop_gains", "gripper_deriv_gains", "motor_ctrl_mode", "gain_space", "ik_method", "joint_prop_gains", "joint_deriv_gains", "do_motion_ctrl", "task_prop_gains", "task_deriv_gains", "do_inertial_comp", "motion_ctrl_axes", "do_force_ctrl", "force_ctrl_method", "wrench_prop_gains", "force_ctrl_axes", } self.cfg_ctrl = {cfg_ctrl_key: None for cfg_ctrl_key in cfg_ctrl_keys} self.cfg_ctrl["num_envs"] = self.num_envs self.cfg_ctrl["jacobian_type"] = self.cfg_task.ctrl.all.jacobian_type self.cfg_ctrl["gripper_prop_gains"] = torch.tensor( self.cfg_task.ctrl.all.gripper_prop_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["gripper_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.all.gripper_deriv_gains, device=self.device ).repeat((self.num_envs, 1)) ctrl_type = self.cfg_task.ctrl.ctrl_type if ctrl_type == "gym_default": self.cfg_ctrl["motor_ctrl_mode"] = "gym" self.cfg_ctrl["gain_space"] = "joint" self.cfg_ctrl["ik_method"] = self.cfg_task.ctrl.gym_default.ik_method self.cfg_ctrl["joint_prop_gains"] = torch.tensor( self.cfg_task.ctrl.gym_default.joint_prop_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["joint_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.gym_default.joint_deriv_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["gripper_prop_gains"] = torch.tensor( self.cfg_task.ctrl.gym_default.gripper_prop_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["gripper_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.gym_default.gripper_deriv_gains, device=self.device ).repeat((self.num_envs, 1)) elif ctrl_type == "joint_space_ik": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "joint" self.cfg_ctrl["ik_method"] = self.cfg_task.ctrl.joint_space_ik.ik_method self.cfg_ctrl["joint_prop_gains"] = torch.tensor( self.cfg_task.ctrl.joint_space_ik.joint_prop_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["joint_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.joint_space_ik.joint_deriv_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_inertial_comp"] = False elif ctrl_type == "joint_space_id": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "joint" self.cfg_ctrl["ik_method"] = self.cfg_task.ctrl.joint_space_id.ik_method self.cfg_ctrl["joint_prop_gains"] = torch.tensor( self.cfg_task.ctrl.joint_space_id.joint_prop_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["joint_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.joint_space_id.joint_deriv_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_inertial_comp"] = True elif ctrl_type == "task_space_impedance": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "task" self.cfg_ctrl["do_motion_ctrl"] = True self.cfg_ctrl["task_prop_gains"] = torch.tensor( self.cfg_task.ctrl.task_space_impedance.task_prop_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["task_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.task_space_impedance.task_deriv_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_inertial_comp"] = False self.cfg_ctrl["motion_ctrl_axes"] = torch.tensor( self.cfg_task.ctrl.task_space_impedance.motion_ctrl_axes, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_force_ctrl"] = False elif ctrl_type == "operational_space_motion": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "task" self.cfg_ctrl["do_motion_ctrl"] = True self.cfg_ctrl["task_prop_gains"] = torch.tensor( self.cfg_task.ctrl.operational_space_motion.task_prop_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["task_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.operational_space_motion.task_deriv_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_inertial_comp"] = True self.cfg_ctrl["motion_ctrl_axes"] = torch.tensor( self.cfg_task.ctrl.operational_space_motion.motion_ctrl_axes, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_force_ctrl"] = False elif ctrl_type == "open_loop_force": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "task" self.cfg_ctrl["do_motion_ctrl"] = False self.cfg_ctrl["do_force_ctrl"] = True self.cfg_ctrl["force_ctrl_method"] = "open" self.cfg_ctrl["force_ctrl_axes"] = torch.tensor( self.cfg_task.ctrl.open_loop_force.force_ctrl_axes, device=self.device ).repeat((self.num_envs, 1)) elif ctrl_type == "closed_loop_force": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "task" self.cfg_ctrl["do_motion_ctrl"] = False self.cfg_ctrl["do_force_ctrl"] = True self.cfg_ctrl["force_ctrl_method"] = "closed" self.cfg_ctrl["wrench_prop_gains"] = torch.tensor( self.cfg_task.ctrl.closed_loop_force.wrench_prop_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["force_ctrl_axes"] = torch.tensor( self.cfg_task.ctrl.closed_loop_force.force_ctrl_axes, device=self.device ).repeat((self.num_envs, 1)) elif ctrl_type == "hybrid_force_motion": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "task" self.cfg_ctrl["do_motion_ctrl"] = True self.cfg_ctrl["task_prop_gains"] = torch.tensor( self.cfg_task.ctrl.hybrid_force_motion.task_prop_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["task_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.hybrid_force_motion.task_deriv_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_inertial_comp"] = True self.cfg_ctrl["motion_ctrl_axes"] = torch.tensor( self.cfg_task.ctrl.hybrid_force_motion.motion_ctrl_axes, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_force_ctrl"] = True self.cfg_ctrl["force_ctrl_method"] = "closed" self.cfg_ctrl["wrench_prop_gains"] = torch.tensor( self.cfg_task.ctrl.hybrid_force_motion.wrench_prop_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["force_ctrl_axes"] = torch.tensor( self.cfg_task.ctrl.hybrid_force_motion.force_ctrl_axes, device=self.device, ).repeat((self.num_envs, 1)) if add_to_stage: if self.cfg_ctrl["motor_ctrl_mode"] == "gym": for i in range(7): joint_prim = self._stage.GetPrimAtPath( self.default_zero_env_path + f"/franka/panda_link{i}/panda_joint{i+1}" ) drive = UsdPhysics.DriveAPI.Apply(joint_prim, "angular") drive.GetStiffnessAttr().Set( self.cfg_ctrl["joint_prop_gains"][0, i].item() * np.pi / 180 ) drive.GetDampingAttr().Set( self.cfg_ctrl["joint_deriv_gains"][0, i].item() * np.pi / 180 ) for i in range(2): joint_prim = self._stage.GetPrimAtPath( self.default_zero_env_path + f"/franka/panda_hand/panda_finger_joint{i+1}" ) drive = UsdPhysics.DriveAPI.Apply(joint_prim, "linear") drive.GetStiffnessAttr().Set( self.cfg_ctrl["gripper_deriv_gains"][0, i].item() ) drive.GetDampingAttr().Set( self.cfg_ctrl["gripper_deriv_gains"][0, i].item() ) elif self.cfg_ctrl["motor_ctrl_mode"] == "manual": for i in range(7): joint_prim = self._stage.GetPrimAtPath( self.default_zero_env_path + f"/franka/panda_link{i}/panda_joint{i+1}" ) joint_prim.RemoveAPI(UsdPhysics.DriveAPI, "angular") drive = UsdPhysics.DriveAPI.Apply(joint_prim, "None") drive.GetStiffnessAttr().Set(0.0) drive.GetDampingAttr().Set(0.0) for i in range(2): joint_prim = self._stage.GetPrimAtPath( self.default_zero_env_path + f"/franka/panda_hand/panda_finger_joint{i+1}" ) joint_prim.RemoveAPI(UsdPhysics.DriveAPI, "linear") drive = UsdPhysics.DriveAPI.Apply(joint_prim, "None") drive.GetStiffnessAttr().Set(0.0) drive.GetDampingAttr().Set(0.0) def generate_ctrl_signals(self): """Get Jacobian. Set Franka DOF position targets or DOF torques.""" # Get desired Jacobian if self.cfg_ctrl["jacobian_type"] == "geometric": self.fingertip_midpoint_jacobian_tf = self.fingertip_midpoint_jacobian elif self.cfg_ctrl["jacobian_type"] == "analytic": self.fingertip_midpoint_jacobian_tf = fc.get_analytic_jacobian( fingertip_quat=self.fingertip_quat, fingertip_jacobian=self.fingertip_midpoint_jacobian, num_envs=self.num_envs, device=self.device, ) # Set PD joint pos target or joint torque if self.cfg_ctrl["motor_ctrl_mode"] == "gym": self._set_dof_pos_target() elif self.cfg_ctrl["motor_ctrl_mode"] == "manual": self._set_dof_torque() def _set_dof_pos_target(self): """Set Franka DOF position target to move fingertips towards target pose.""" self.ctrl_target_dof_pos = fc.compute_dof_pos_target( cfg_ctrl=self.cfg_ctrl, arm_dof_pos=self.arm_dof_pos, fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, jacobian=self.fingertip_midpoint_jacobian_tf, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, ctrl_target_gripper_dof_pos=self.ctrl_target_gripper_dof_pos, device=self.device, ) self.frankas.set_joint_position_targets(positions=self.ctrl_target_dof_pos) def _set_dof_torque(self): """Set Franka DOF torque to move fingertips towards target pose.""" self.dof_torque = fc.compute_dof_torque( cfg_ctrl=self.cfg_ctrl, dof_pos=self.dof_pos, dof_vel=self.dof_vel, fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, fingertip_midpoint_linvel=self.fingertip_midpoint_linvel, fingertip_midpoint_angvel=self.fingertip_midpoint_angvel, left_finger_force=self.left_finger_force, right_finger_force=self.right_finger_force, jacobian=self.fingertip_midpoint_jacobian_tf, arm_mass_matrix=self.arm_mass_matrix, ctrl_target_gripper_dof_pos=self.ctrl_target_gripper_dof_pos, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, ctrl_target_fingertip_contact_wrench=self.ctrl_target_fingertip_contact_wrench, device=self.device, ) self.frankas.set_joint_efforts(efforts=self.dof_torque) def enable_gravity(self, gravity_mag): """Enable gravity.""" gravity = [0.0, 0.0, -gravity_mag] self._env._world._physics_sim_view.set_gravity( carb.Float3(gravity[0], gravity[1], gravity[2]) ) def disable_gravity(self): """Disable gravity.""" gravity = [0.0, 0.0, 0.0] self._env._world._physics_sim_view.set_gravity( carb.Float3(gravity[0], gravity[1], gravity[2]) )
26,838
Python
45.921329
148
0.588419
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/factory/factory_schema_config_task.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: schema for task class configurations. Used by Hydra. Defines template for task class YAML files. Not enforced. """ from __future__ import annotations from dataclasses import dataclass @dataclass class Sim: use_gpu_pipeline: bool # use GPU pipeline dt: float # timestep size gravity: list[float] # gravity vector @dataclass class Env: numObservations: int # number of observations per env; camel case required by VecTask numActions: int # number of actions per env; camel case required by VecTask numEnvs: int # number of envs; camel case required by VecTask @dataclass class Randomize: franka_arm_initial_dof_pos: list[float] # initial Franka arm DOF position (7) @dataclass class RL: pos_action_scale: list[ float ] # scale on pos displacement targets (3), to convert [-1, 1] to +- x m rot_action_scale: list[ float ] # scale on rot displacement targets (3), to convert [-1, 1] to +- x rad force_action_scale: list[ float ] # scale on force targets (3), to convert [-1, 1] to +- x N torque_action_scale: list[ float ] # scale on torque targets (3), to convert [-1, 1] to +- x Nm clamp_rot: bool # clamp small values of rotation actions to zero clamp_rot_thresh: float # smallest acceptable value max_episode_length: int # max number of timesteps in each episode @dataclass class All: jacobian_type: str # map between joint space and task space via geometric or analytic Jacobian {geometric, analytic} gripper_prop_gains: list[ float ] # proportional gains on left and right Franka gripper finger DOF position (2) gripper_deriv_gains: list[ float ] # derivative gains on left and right Franka gripper finger DOF position (2) @dataclass class GymDefault: joint_prop_gains: list[int] # proportional gains on Franka arm DOF position (7) joint_deriv_gains: list[int] # derivative gains on Franka arm DOF position (7) @dataclass class JointSpaceIK: ik_method: str # use Jacobian pseudoinverse, Jacobian transpose, damped least squares or adaptive SVD {pinv, trans, dls, svd} joint_prop_gains: list[int] joint_deriv_gains: list[int] @dataclass class JointSpaceID: ik_method: str joint_prop_gains: list[int] joint_deriv_gains: list[int] @dataclass class TaskSpaceImpedance: motion_ctrl_axes: list[bool] # axes for which to enable motion control {0, 1} (6) task_prop_gains: list[float] # proportional gains on Franka fingertip pose (6) task_deriv_gains: list[float] # derivative gains on Franka fingertip pose (6) @dataclass class OperationalSpaceMotion: motion_ctrl_axes: list[bool] task_prop_gains: list[float] task_deriv_gains: list[float] @dataclass class OpenLoopForce: force_ctrl_axes: list[bool] # axes for which to enable force control {0, 1} (6) @dataclass class ClosedLoopForce: force_ctrl_axes: list[bool] wrench_prop_gains: list[float] # proportional gains on Franka finger force (6) @dataclass class HybridForceMotion: motion_ctrl_axes: list[bool] task_prop_gains: list[float] task_deriv_gains: list[float] force_ctrl_axes: list[bool] wrench_prop_gains: list[float] @dataclass class Ctrl: ctrl_type: str # {gym_default, # joint_space_ik, # joint_space_id, # task_space_impedance, # operational_space_motion, # open_loop_force, # closed_loop_force, # hybrid_force_motion} gym_default: GymDefault joint_space_ik: JointSpaceIK joint_space_id: JointSpaceID task_space_impedance: TaskSpaceImpedance operational_space_motion: OperationalSpaceMotion open_loop_force: OpenLoopForce closed_loop_force: ClosedLoopForce hybrid_force_motion: HybridForceMotion @dataclass class FactorySchemaConfigTask: name: str physics_engine: str sim: Sim env: Env rl: RL ctrl: Ctrl
5,517
Python
30.895954
130
0.719413
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_place.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: Class for nut-bolt place task. Inherits nut-bolt environment class and abstract task class (not enforced). Can be executed with PYTHON_PATH omniisaacgymenvs/scripts/rlgames_train.py task=FactoryTaskNutBoltPlace """ import asyncio import hydra import math import omegaconf import torch from typing import Tuple import omni.kit from omni.isaac.core.simulation_context import SimulationContext import omni.isaac.core.utils.torch as torch_utils from omni.isaac.core.utils.torch.transformations import tf_combine import omniisaacgymenvs.tasks.factory.factory_control as fc from omniisaacgymenvs.tasks.factory.factory_env_nut_bolt import FactoryEnvNutBolt from omniisaacgymenvs.tasks.factory.factory_schema_class_task import FactoryABCTask from omniisaacgymenvs.tasks.factory.factory_schema_config_task import ( FactorySchemaConfigTask, ) class FactoryTaskNutBoltPlace(FactoryEnvNutBolt, FactoryABCTask): def __init__(self, name, sim_config, env, offset=None) -> None: """Initialize environment superclass. Initialize instance variables.""" super().__init__(name, sim_config, env) self._get_task_yaml_params() def _get_task_yaml_params(self) -> None: """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name="factory_schema_config_task", node=FactorySchemaConfigTask) self.cfg_task = omegaconf.OmegaConf.create(self._task_cfg) self.max_episode_length = ( self.cfg_task.rl.max_episode_length ) # required instance var for VecTask asset_info_path = "../tasks/factory/yaml/factory_asset_info_nut_bolt.yaml" # relative to Gym's Hydra search path (cfg dir) self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path) self.asset_info_nut_bolt = self.asset_info_nut_bolt[""][""][""]["tasks"][ "factory" ][ "yaml" ] # strip superfluous nesting ppo_path = "train/FactoryTaskNutBoltPlacePPO.yaml" # relative to Gym's Hydra search path (cfg dir) self.cfg_ppo = hydra.compose(config_name=ppo_path) self.cfg_ppo = self.cfg_ppo["train"] # strip superfluous nesting def post_reset(self) -> None: """Reset the world. Called only once, before simulation begins.""" if self.cfg_task.sim.disable_gravity: self.disable_gravity() self.acquire_base_tensors() self._acquire_task_tensors() self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() # Reset all envs indices = torch.arange(self.num_envs, dtype=torch.int64, device=self.device) asyncio.ensure_future( self.reset_idx_async(indices, randomize_gripper_pose=False) ) def _acquire_task_tensors(self) -> None: """Acquire tensors.""" # Nut-bolt tensors self.nut_base_pos_local = self.bolt_head_heights * torch.tensor( [0.0, 0.0, 1.0], device=self.device ).repeat((self.num_envs, 1)) bolt_heights = self.bolt_head_heights + self.bolt_shank_lengths self.bolt_tip_pos_local = bolt_heights * torch.tensor( [0.0, 0.0, 1.0], device=self.device ).repeat((self.num_envs, 1)) # Keypoint tensors self.keypoint_offsets = ( self._get_keypoint_offsets(self.cfg_task.rl.num_keypoints) * self.cfg_task.rl.keypoint_scale ) self.keypoints_nut = torch.zeros( (self.num_envs, self.cfg_task.rl.num_keypoints, 3), dtype=torch.float32, device=self.device, ) self.keypoints_bolt = torch.zeros_like(self.keypoints_nut, device=self.device) self.identity_quat = ( torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) .unsqueeze(0) .repeat(self.num_envs, 1) ) self.actions = torch.zeros( (self.num_envs, self.num_actions), device=self.device ) def pre_physics_step(self, actions) -> None: """Reset environments. Apply actions from policy. Simulation step called after this method.""" if not self._env._world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids, randomize_gripper_pose=True) self.actions = actions.clone().to( self.device ) # shape = (num_envs, num_actions); values = [-1, 1] self._apply_actions_as_ctrl_targets( actions=self.actions, ctrl_target_gripper_dof_pos=0.0, do_scale=True ) async def pre_physics_step_async(self, actions) -> None: """Reset environments. Apply actions from policy. Simulation step called after this method.""" if not self._env._world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: await self.reset_idx_async(env_ids, randomize_gripper_pose=True) self.actions = actions.clone().to( self.device ) # shape = (num_envs, num_actions); values = [-1, 1] self._apply_actions_as_ctrl_targets( actions=self.actions, ctrl_target_gripper_dof_pos=0.0, do_scale=True, ) def reset_idx(self, env_ids, randomize_gripper_pose) -> None: """Reset specified environments.""" self._reset_franka(env_ids) self._reset_object(env_ids) # Close gripper onto nut self.disable_gravity() # to prevent nut from falling self._close_gripper(sim_steps=self.cfg_task.env.num_gripper_close_sim_steps) self.enable_gravity(gravity_mag=self.cfg_task.sim.gravity_mag) if randomize_gripper_pose: self._randomize_gripper_pose( env_ids, sim_steps=self.cfg_task.env.num_gripper_move_sim_steps ) self._reset_buffers(env_ids) async def reset_idx_async(self, env_ids, randomize_gripper_pose) -> None: """Reset specified environments.""" self._reset_franka(env_ids) self._reset_object(env_ids) # Close gripper onto nut self.disable_gravity() # to prevent nut from falling await self._close_gripper_async( sim_steps=self.cfg_task.env.num_gripper_close_sim_steps ) self.enable_gravity(gravity_mag=self.cfg_task.sim.gravity_mag) if randomize_gripper_pose: await self._randomize_gripper_pose_async( env_ids, sim_steps=self.cfg_task.env.num_gripper_move_sim_steps ) self._reset_buffers(env_ids) def _reset_franka(self, env_ids) -> None: """Reset DOF states and DOF targets of Franka.""" self.dof_pos[env_ids] = torch.cat( ( torch.tensor( self.cfg_task.randomize.franka_arm_initial_dof_pos, device=self.device, ).repeat((len(env_ids), 1)), (self.nut_widths_max * 0.5) * 1.1, # buffer on gripper DOF pos to prevent initial contact (self.nut_widths_max * 0.5) * 1.1, ), # buffer on gripper DOF pos to prevent initial contact dim=-1, ) # shape = (num_envs, num_dofs) self.dof_vel[env_ids] = 0.0 # shape = (num_envs, num_dofs) self.ctrl_target_dof_pos[env_ids] = self.dof_pos[env_ids] indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_positions(self.dof_pos[env_ids], indices=indices) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) def _reset_object(self, env_ids) -> None: """Reset root states of nut and bolt.""" # Randomize root state of nut within gripper self.nut_pos[env_ids, 0] = 0.0 self.nut_pos[env_ids, 1] = 0.0 fingertip_midpoint_pos_reset = 0.58781 # self.fingertip_midpoint_pos at reset nut_base_pos_local = self.bolt_head_heights.squeeze(-1) self.nut_pos[env_ids, 2] = fingertip_midpoint_pos_reset - nut_base_pos_local nut_noise_pos_in_gripper = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] nut_noise_pos_in_gripper = nut_noise_pos_in_gripper @ torch.diag( torch.tensor( self.cfg_task.randomize.nut_noise_pos_in_gripper, device=self.device ) ) self.nut_pos[env_ids, :] += nut_noise_pos_in_gripper[env_ids] nut_rot_euler = torch.tensor( [0.0, 0.0, math.pi * 0.5], device=self.device ).repeat(len(env_ids), 1) nut_noise_rot_in_gripper = 2 * ( torch.rand(self.num_envs, dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] nut_noise_rot_in_gripper *= self.cfg_task.randomize.nut_noise_rot_in_gripper nut_rot_euler[:, 2] += nut_noise_rot_in_gripper nut_rot_quat = torch_utils.quat_from_euler_xyz( nut_rot_euler[:, 0], nut_rot_euler[:, 1], nut_rot_euler[:, 2] ) self.nut_quat[env_ids, :] = nut_rot_quat self.nut_linvel[env_ids, :] = 0.0 self.nut_angvel[env_ids, :] = 0.0 indices = env_ids.to(dtype=torch.int32) self.nuts.set_world_poses( self.nut_pos[env_ids] + self.env_pos[env_ids], self.nut_quat[env_ids], indices, ) self.nuts.set_velocities( torch.cat((self.nut_linvel[env_ids], self.nut_angvel[env_ids]), dim=1), indices, ) # Randomize root state of bolt bolt_noise_xy = 2 * ( torch.rand((self.num_envs, 2), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] bolt_noise_xy = bolt_noise_xy @ torch.diag( torch.tensor( self.cfg_task.randomize.bolt_pos_xy_noise, dtype=torch.float32, device=self.device, ) ) self.bolt_pos[env_ids, 0] = ( self.cfg_task.randomize.bolt_pos_xy_initial[0] + bolt_noise_xy[env_ids, 0] ) self.bolt_pos[env_ids, 1] = ( self.cfg_task.randomize.bolt_pos_xy_initial[1] + bolt_noise_xy[env_ids, 1] ) self.bolt_pos[env_ids, 2] = self.cfg_base.env.table_height self.bolt_quat[env_ids, :] = torch.tensor( [1.0, 0.0, 0.0, 0.0], dtype=torch.float32, device=self.device ).repeat(len(env_ids), 1) indices = env_ids.to(dtype=torch.int32) self.bolts.set_world_poses( self.bolt_pos[env_ids] + self.env_pos[env_ids], self.bolt_quat[env_ids], indices, ) def _reset_buffers(self, env_ids) -> None: """Reset buffers.""" self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def _apply_actions_as_ctrl_targets( self, actions, ctrl_target_gripper_dof_pos, do_scale ) -> None: """Apply actions from policy as position/rotation/force/torque targets.""" # Interpret actions as target pos displacements and set pos target pos_actions = actions[:, 0:3] if do_scale: pos_actions = pos_actions @ torch.diag( torch.tensor(self.cfg_task.rl.pos_action_scale, device=self.device) ) self.ctrl_target_fingertip_midpoint_pos = ( self.fingertip_midpoint_pos + pos_actions ) # Interpret actions as target rot (axis-angle) displacements rot_actions = actions[:, 3:6] if do_scale: rot_actions = rot_actions @ torch.diag( torch.tensor(self.cfg_task.rl.rot_action_scale, device=self.device) ) # Convert to quat and set rot target angle = torch.norm(rot_actions, p=2, dim=-1) axis = rot_actions / angle.unsqueeze(-1) rot_actions_quat = torch_utils.quat_from_angle_axis(angle, axis) if self.cfg_task.rl.clamp_rot: rot_actions_quat = torch.where( angle.unsqueeze(-1).repeat(1, 4) > self.cfg_task.rl.clamp_rot_thresh, rot_actions_quat, torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device).repeat( self.num_envs, 1 ), ) self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_mul( rot_actions_quat, self.fingertip_midpoint_quat ) if self.cfg_ctrl["do_force_ctrl"]: # Interpret actions as target forces and target torques force_actions = actions[:, 6:9] if do_scale: force_actions = force_actions @ torch.diag( torch.tensor( self.cfg_task.rl.force_action_scale, device=self.device ) ) torque_actions = actions[:, 9:12] if do_scale: torque_actions = torque_actions @ torch.diag( torch.tensor( self.cfg_task.rl.torque_action_scale, device=self.device ) ) self.ctrl_target_fingertip_contact_wrench = torch.cat( (force_actions, torque_actions), dim=-1 ) self.ctrl_target_gripper_dof_pos = ctrl_target_gripper_dof_pos self.generate_ctrl_signals() def post_physics_step( self, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.progress_buf[:] += 1 if self._env._world.is_playing(): self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() self.get_observations() self.calculate_metrics() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def _refresh_task_tensors(self) -> None: """Refresh tensors.""" # Compute pos of keypoints on gripper, nut, and bolt in world frame for idx, keypoint_offset in enumerate(self.keypoint_offsets): self.keypoints_nut[:, idx] = tf_combine( self.nut_quat, self.nut_pos, self.identity_quat, (keypoint_offset + self.nut_base_pos_local), )[1] self.keypoints_bolt[:, idx] = tf_combine( self.bolt_quat, self.bolt_pos, self.identity_quat, (keypoint_offset + self.bolt_tip_pos_local), )[1] def get_observations(self) -> dict: """Compute observations.""" # Shallow copies of tensors obs_tensors = [ self.fingertip_midpoint_pos, self.fingertip_midpoint_quat, self.fingertip_midpoint_linvel, self.fingertip_midpoint_angvel, self.nut_pos, self.nut_quat, self.bolt_pos, self.bolt_quat, ] if self.cfg_task.rl.add_obs_bolt_tip_pos: obs_tensors += [self.bolt_tip_pos_local] self.obs_buf = torch.cat( obs_tensors, dim=-1 ) # shape = (num_envs, num_observations) observations = {self.frankas.name: {"obs_buf": self.obs_buf}} return observations def calculate_metrics(self) -> None: """Update reset and reward buffers.""" self._update_reset_buf() self._update_rew_buf() def _update_reset_buf(self) -> None: """Assign environments for reset if successful or failed.""" # If max episode length has been reached self.reset_buf[:] = torch.where( self.progress_buf[:] >= self.max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf, ) def _update_rew_buf(self) -> None: """Compute reward at current timestep.""" keypoint_reward = -self._get_keypoint_dist() action_penalty = ( torch.norm(self.actions, p=2, dim=-1) * self.cfg_task.rl.action_penalty_scale ) self.rew_buf[:] = ( keypoint_reward * self.cfg_task.rl.keypoint_reward_scale - action_penalty * self.cfg_task.rl.action_penalty_scale ) # In this policy, episode length is constant across all envs is_last_step = self.progress_buf[0] == self.max_episode_length - 1 if is_last_step: # Check if nut is close enough to bolt is_nut_close_to_bolt = self._check_nut_close_to_bolt() self.rew_buf[:] += is_nut_close_to_bolt * self.cfg_task.rl.success_bonus self.extras["successes"] = torch.mean(is_nut_close_to_bolt.float()) def _get_keypoint_offsets(self, num_keypoints) -> torch.Tensor: """Get uniformly-spaced keypoints along a line of unit length, centered at 0.""" keypoint_offsets = torch.zeros((num_keypoints, 3), device=self.device) keypoint_offsets[:, -1] = ( torch.linspace(0.0, 1.0, num_keypoints, device=self.device) - 0.5 ) return keypoint_offsets def _get_keypoint_dist(self) -> torch.Tensor: """Get keypoint distance between nut and bolt.""" keypoint_dist = torch.sum( torch.norm(self.keypoints_bolt - self.keypoints_nut, p=2, dim=-1), dim=-1 ) return keypoint_dist def _randomize_gripper_pose(self, env_ids, sim_steps) -> None: """Move gripper to random pose.""" # Step once to update PhysX with new joint positions and velocities from reset_franka() SimulationContext.step(self._env._world, render=True) # Set target pos above table self.ctrl_target_fingertip_midpoint_pos = torch.tensor( [0.0, 0.0, self.cfg_base.env.table_height], device=self.device ) + torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_initial, device=self.device ) self.ctrl_target_fingertip_midpoint_pos = ( self.ctrl_target_fingertip_midpoint_pos.unsqueeze(0).repeat( self.num_envs, 1 ) ) fingertip_midpoint_pos_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_pos_noise = fingertip_midpoint_pos_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_noise, device=self.device ) ) self.ctrl_target_fingertip_midpoint_pos += fingertip_midpoint_pos_noise # Set target rot ctrl_target_fingertip_midpoint_euler = ( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_initial, device=self.device, ) .unsqueeze(0) .repeat(self.num_envs, 1) ) fingertip_midpoint_rot_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_rot_noise = fingertip_midpoint_rot_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_noise, device=self.device ) ) ctrl_target_fingertip_midpoint_euler += fingertip_midpoint_rot_noise self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz( ctrl_target_fingertip_midpoint_euler[:, 0], ctrl_target_fingertip_midpoint_euler[:, 1], ctrl_target_fingertip_midpoint_euler[:, 2], ) # Step sim and render for _ in range(sim_steps): self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() pos_error, axis_angle_error = fc.get_pose_error( fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, jacobian_type=self.cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_hand_pose = torch.cat((pos_error, axis_angle_error), dim=-1) actions = torch.zeros( (self.num_envs, self.cfg_task.env.numActions), device=self.device ) actions[:, :6] = delta_hand_pose self._apply_actions_as_ctrl_targets( actions=actions, ctrl_target_gripper_dof_pos=0.0, do_scale=False, ) SimulationContext.step(self._env._world, render=True) self.dof_vel[env_ids, :] = torch.zeros_like(self.dof_vel[env_ids]) indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) # Step once to update PhysX with new joint velocities SimulationContext.step(self._env._world, render=True) async def _randomize_gripper_pose_async(self, env_ids, sim_steps) -> None: """Move gripper to random pose.""" # Step once to update PhysX with new joint positions and velocities from reset_franka() self._env._world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() # Set target pos above table self.ctrl_target_fingertip_midpoint_pos = torch.tensor( [0.0, 0.0, self.cfg_base.env.table_height], device=self.device ) + torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_initial, device=self.device ) self.ctrl_target_fingertip_midpoint_pos = ( self.ctrl_target_fingertip_midpoint_pos.unsqueeze(0).repeat( self.num_envs, 1 ) ) fingertip_midpoint_pos_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_pos_noise = fingertip_midpoint_pos_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_noise, device=self.device ) ) self.ctrl_target_fingertip_midpoint_pos += fingertip_midpoint_pos_noise # Set target rot ctrl_target_fingertip_midpoint_euler = ( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_initial, device=self.device, ) .unsqueeze(0) .repeat(self.num_envs, 1) ) fingertip_midpoint_rot_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_rot_noise = fingertip_midpoint_rot_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_noise, device=self.device ) ) ctrl_target_fingertip_midpoint_euler += fingertip_midpoint_rot_noise self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz( ctrl_target_fingertip_midpoint_euler[:, 0], ctrl_target_fingertip_midpoint_euler[:, 1], ctrl_target_fingertip_midpoint_euler[:, 2], ) # Step sim and render for _ in range(sim_steps): self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() pos_error, axis_angle_error = fc.get_pose_error( fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, jacobian_type=self.cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_hand_pose = torch.cat((pos_error, axis_angle_error), dim=-1) actions = torch.zeros( (self.num_envs, self.cfg_task.env.numActions), device=self.device ) actions[:, :6] = delta_hand_pose self._apply_actions_as_ctrl_targets( actions=actions, ctrl_target_gripper_dof_pos=0.0, do_scale=False, ) self._env._world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() self.dof_vel[env_ids, :] = torch.zeros_like(self.dof_vel[env_ids]) indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) # Step once to update PhysX with new joint velocities self._env._world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() def _close_gripper(self, sim_steps) -> None: """Fully close gripper using controller. Called outside RL loop (i.e., after last step of episode).""" self._move_gripper_to_dof_pos(gripper_dof_pos=0.0, sim_steps=sim_steps) def _move_gripper_to_dof_pos(self, gripper_dof_pos, sim_steps) -> None: """Move gripper fingers to specified DOF position using controller.""" delta_hand_pose = torch.zeros( (self.num_envs, 6), device=self.device ) # No hand motion # Step sim for _ in range(sim_steps): self._apply_actions_as_ctrl_targets( delta_hand_pose, gripper_dof_pos, do_scale=False ) SimulationContext.step(self._env._world, render=True) async def _close_gripper_async(self, sim_steps) -> None: """Fully close gripper using controller. Called outside RL loop (i.e., after last step of episode).""" await self._move_gripper_to_dof_pos_async( gripper_dof_pos=0.0, sim_steps=sim_steps ) async def _move_gripper_to_dof_pos_async( self, gripper_dof_pos, sim_steps ) -> None: """Move gripper fingers to specified DOF position using controller.""" delta_hand_pose = torch.zeros( (self.num_envs, 6), device=self.device ) # No hand motion # Step sim for _ in range(sim_steps): self._apply_actions_as_ctrl_targets( delta_hand_pose, gripper_dof_pos, do_scale=False ) self._env._world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() def _check_nut_close_to_bolt(self) -> torch.Tensor: """Check if nut is close to bolt.""" keypoint_dist = torch.norm( self.keypoints_bolt - self.keypoints_nut, p=2, dim=-1 ) is_nut_close_to_bolt = torch.where( torch.sum(keypoint_dist, dim=-1) < self.cfg_task.rl.close_error_thresh, torch.ones_like(self.progress_buf), torch.zeros_like(self.progress_buf), ) return is_nut_close_to_bolt
29,034
Python
37.868809
131
0.594303
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/factory/factory_schema_class_task.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: abstract base class for task classes. Inherits ABC class. Inherited by task classes. Defines template for task classes. """ from abc import ABC, abstractmethod class FactoryABCTask(ABC): @abstractmethod def __init__(self): """Initialize instance variables. Initialize environment superclass.""" pass @abstractmethod def _get_task_yaml_params(self): """Initialize instance variables from YAML files.""" pass @abstractmethod def _acquire_task_tensors(self): """Acquire tensors.""" pass @abstractmethod def _refresh_task_tensors(self): """Refresh tensors.""" pass @abstractmethod def pre_physics_step(self): """Reset environments. Apply actions from policy as controller targets. Simulation step called after this method.""" pass @abstractmethod def post_physics_step(self): """Step buffers. Refresh tensors. Compute observations and reward.""" pass @abstractmethod def get_observations(self): """Compute observations.""" pass @abstractmethod def calculate_metrics(self): """Detect successes and failures. Update reward and reset buffers.""" pass @abstractmethod def _update_rew_buf(self): """Compute reward at current timestep.""" pass @abstractmethod def _update_reset_buf(self): """Assign environments for reset if successful or failed.""" pass @abstractmethod def reset_idx(self): """Reset specified environments.""" pass @abstractmethod def _reset_franka(self): """Reset DOF states and DOF targets of Franka.""" pass @abstractmethod def _reset_object(self): """Reset root state of object.""" pass @abstractmethod def _reset_buffers(self): """Reset buffers.""" pass
3,492
Python
31.342592
124
0.69559
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/factory/factory_schema_class_env.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: abstract base class for environment classes. Inherits ABC class. Inherited by environment classes. Defines template for environment classes. """ from abc import ABC, abstractmethod class FactoryABCEnv(ABC): @abstractmethod def __init__(self): """Initialize instance variables. Initialize base superclass. Acquire tensors.""" pass @abstractmethod def _get_env_yaml_params(self): """Initialize instance variables from YAML files.""" pass @abstractmethod def set_up_scene(self): """Set env options. Import assets. Create actors.""" pass @abstractmethod def _import_env_assets(self): """Set asset options. Import assets.""" pass @abstractmethod def refresh_env_tensors(self): """Refresh tensors.""" # NOTE: Tensor refresh functions should be called once per step, before setters. pass
2,489
Python
37.906249
95
0.73644
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_screw.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: Class for nut-bolt screw task. Inherits nut-bolt environment class and abstract task class (not enforced). Can be executed with PYTHON_PATH omniisaacgymenvs/scripts/rlgames_train.py task=FactoryTaskNutBoltScrew """ import hydra import math import omegaconf import torch from typing import Tuple import omni.isaac.core.utils.torch as torch_utils import omniisaacgymenvs.tasks.factory.factory_control as fc from omniisaacgymenvs.tasks.factory.factory_env_nut_bolt import FactoryEnvNutBolt from omniisaacgymenvs.tasks.factory.factory_schema_class_task import FactoryABCTask from omniisaacgymenvs.tasks.factory.factory_schema_config_task import ( FactorySchemaConfigTask, ) class FactoryTaskNutBoltScrew(FactoryEnvNutBolt, FactoryABCTask): def __init__(self, name, sim_config, env, offset=None) -> None: """Initialize environment superclass. Initialize instance variables.""" super().__init__(name, sim_config, env) self._get_task_yaml_params() def _get_task_yaml_params(self) -> None: """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name="factory_schema_config_task", node=FactorySchemaConfigTask) self.cfg_task = omegaconf.OmegaConf.create(self._task_cfg) self.max_episode_length = ( self.cfg_task.rl.max_episode_length ) # required instance var for VecTask asset_info_path = "../tasks/factory/yaml/factory_asset_info_nut_bolt.yaml" # relative to Gym's Hydra search path (cfg dir) self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path) self.asset_info_nut_bolt = self.asset_info_nut_bolt[""][""][""]["tasks"][ "factory" ][ "yaml" ] # strip superfluous nesting ppo_path = "train/FactoryTaskNutBoltScrewPPO.yaml" # relative to Gym's Hydra search path (cfg dir) self.cfg_ppo = hydra.compose(config_name=ppo_path) self.cfg_ppo = self.cfg_ppo["train"] # strip superfluous nesting def post_reset(self) -> None: """Reset the world. Called only once, before simulation begins.""" if self.cfg_task.sim.disable_gravity: self.disable_gravity() self.acquire_base_tensors() self._acquire_task_tensors() self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() # Reset all envs indices = torch.arange(self.num_envs, dtype=torch.int64, device=self.device) self.reset_idx(indices) def _acquire_task_tensors(self) -> None: """Acquire tensors.""" target_heights = ( self.cfg_base.env.table_height + self.bolt_head_heights + self.nut_heights * 0.5 ) self.target_pos = target_heights * torch.tensor( [0.0, 0.0, 1.0], device=self.device ).repeat((self.num_envs, 1)) self.identity_quat = ( torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) .unsqueeze(0) .repeat(self.num_envs, 1) ) self.actions = torch.zeros( (self.num_envs, self.num_actions), device=self.device ) def pre_physics_step(self, actions) -> None: """Reset environments. Apply actions from policy. Simulation step called after this method.""" if not self._env._world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids) self.actions = actions.clone().to( self.device ) # shape = (num_envs, num_actions); values = [-1, 1] self._apply_actions_as_ctrl_targets( actions=self.actions, ctrl_target_gripper_dof_pos=0.0, do_scale=True ) def reset_idx(self, env_ids) -> None: """Reset specified environments.""" self._reset_franka(env_ids) self._reset_object(env_ids) self._reset_buffers(env_ids) def _reset_franka(self, env_ids) -> None: """Reset DOF states and DOF targets of Franka.""" self.dof_pos[env_ids] = torch.cat( ( torch.tensor( self.cfg_task.randomize.franka_arm_initial_dof_pos, device=self.device, ).repeat((len(env_ids), 1)), (self.nut_widths_max[env_ids] * 0.5) * 1.1, # buffer on gripper DOF pos to prevent initial contact (self.nut_widths_max[env_ids] * 0.5) * 1.1, ), # buffer on gripper DOF pos to prevent initial contact dim=-1, ) # shape = (num_envs, num_dofs) self.dof_vel[env_ids] = 0.0 # shape = (num_envs, num_dofs) self.ctrl_target_dof_pos[env_ids] = self.dof_pos[env_ids] indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_positions(self.dof_pos[env_ids], indices=indices) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) def _reset_object(self, env_ids) -> None: """Reset root state of nut.""" nut_pos = self.cfg_base.env.table_height + self.bolt_shank_lengths[env_ids] self.nut_pos[env_ids, :] = nut_pos * torch.tensor( [0.0, 0.0, 1.0], device=self.device ).repeat(len(env_ids), 1) nut_rot = ( self.cfg_task.randomize.nut_rot_initial * torch.ones((len(env_ids), 1), device=self.device) * math.pi / 180.0 ) self.nut_quat[env_ids, :] = torch.cat( ( torch.cos(nut_rot * 0.5), torch.zeros((len(env_ids), 1), device=self.device), torch.zeros((len(env_ids), 1), device=self.device), torch.sin(nut_rot * 0.5), ), dim=-1, ) self.nut_linvel[env_ids, :] = 0.0 self.nut_angvel[env_ids, :] = 0.0 indices = env_ids.to(dtype=torch.int32) self.nuts.set_world_poses( self.nut_pos[env_ids] + self.env_pos[env_ids], self.nut_quat[env_ids], indices, ) self.nuts.set_velocities( torch.cat((self.nut_linvel[env_ids], self.nut_angvel[env_ids]), dim=1), indices, ) def _reset_buffers(self, env_ids) -> None: """Reset buffers.""" self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def _apply_actions_as_ctrl_targets( self, actions, ctrl_target_gripper_dof_pos, do_scale ) -> None: """Apply actions from policy as position/rotation/force/torque targets.""" # Interpret actions as target pos displacements and set pos target pos_actions = actions[:, 0:3] if self.cfg_task.rl.unidirectional_pos: pos_actions[:, 2] = -(pos_actions[:, 2] + 1.0) * 0.5 # [-1, 0] if do_scale: pos_actions = pos_actions @ torch.diag( torch.tensor(self.cfg_task.rl.pos_action_scale, device=self.device) ) self.ctrl_target_fingertip_midpoint_pos = ( self.fingertip_midpoint_pos + pos_actions ) # Interpret actions as target rot (axis-angle) displacements rot_actions = actions[:, 3:6] if self.cfg_task.rl.unidirectional_rot: rot_actions[:, 2] = -(rot_actions[:, 2] + 1.0) * 0.5 # [-1, 0] if do_scale: rot_actions = rot_actions @ torch.diag( torch.tensor(self.cfg_task.rl.rot_action_scale, device=self.device) ) # Convert to quat and set rot target angle = torch.norm(rot_actions, p=2, dim=-1) axis = rot_actions / angle.unsqueeze(-1) rot_actions_quat = torch_utils.quat_from_angle_axis(angle, axis) if self.cfg_task.rl.clamp_rot: rot_actions_quat = torch.where( angle.unsqueeze(-1).repeat(1, 4) > self.cfg_task.rl.clamp_rot_thresh, rot_actions_quat, torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device).repeat( self.num_envs, 1 ), ) self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_mul( rot_actions_quat, self.fingertip_midpoint_quat ) if self.cfg_ctrl["do_force_ctrl"]: # Interpret actions as target forces and target torques force_actions = actions[:, 6:9] if self.cfg_task.rl.unidirectional_force: force_actions[:, 2] = -(force_actions[:, 2] + 1.0) * 0.5 # [-1, 0] if do_scale: force_actions = force_actions @ torch.diag( torch.tensor( self.cfg_task.rl.force_action_scale, device=self.device ) ) torque_actions = actions[:, 9:12] if do_scale: torque_actions = torque_actions @ torch.diag( torch.tensor( self.cfg_task.rl.torque_action_scale, device=self.device ) ) self.ctrl_target_fingertip_contact_wrench = torch.cat( (force_actions, torque_actions), dim=-1 ) self.ctrl_target_gripper_dof_pos = ctrl_target_gripper_dof_pos self.generate_ctrl_signals() def post_physics_step( self, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.progress_buf[:] += 1 if self._env._world.is_playing(): self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() self.get_observations() self.calculate_metrics() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def _refresh_task_tensors(self) -> None: """Refresh tensors.""" self.fingerpad_midpoint_pos = fc.translate_along_local_z( pos=self.finger_midpoint_pos, quat=self.hand_quat, offset=self.asset_info_franka_table.franka_finger_length - self.asset_info_franka_table.franka_fingerpad_length * 0.5, device=self.device, ) self.finger_nut_keypoint_dist = self._get_keypoint_dist(body="finger_nut") self.nut_keypoint_dist = self._get_keypoint_dist(body="nut") self.nut_dist_to_target = torch.norm( self.target_pos - self.nut_com_pos, p=2, dim=-1 ) # distance between nut COM and target self.nut_dist_to_fingerpads = torch.norm( self.fingerpad_midpoint_pos - self.nut_com_pos, p=2, dim=-1 ) # distance between nut COM and midpoint between centers of fingerpads self.was_success = torch.zeros_like(self.progress_buf, dtype=torch.bool) def get_observations(self) -> dict: """Compute observations.""" # Shallow copies of tensors obs_tensors = [ self.fingertip_midpoint_pos, self.fingertip_midpoint_quat, self.fingertip_midpoint_linvel, self.fingertip_midpoint_angvel, self.nut_com_pos, self.nut_com_quat, self.nut_com_linvel, self.nut_com_angvel, ] if self.cfg_task.rl.add_obs_finger_force: obs_tensors += [self.left_finger_force, self.right_finger_force] else: obs_tensors += [ torch.zeros_like(self.left_finger_force), torch.zeros_like(self.right_finger_force), ] self.obs_buf = torch.cat( obs_tensors, dim=-1 ) # shape = (num_envs, num_observations) observations = {self.frankas.name: {"obs_buf": self.obs_buf}} return observations def calculate_metrics(self) -> None: """Update reset and reward buffers.""" # Get successful and failed envs at current timestep curr_successes = self._get_curr_successes() curr_failures = self._get_curr_failures(curr_successes) self._update_reset_buf(curr_successes, curr_failures) self._update_rew_buf(curr_successes) if torch.any(self.is_expired): self.extras["successes"] = torch.mean(curr_successes.float()) def _update_reset_buf(self, curr_successes, curr_failures) -> None: """Assign environments for reset if successful or failed.""" self.reset_buf[:] = self.is_expired def _update_rew_buf(self, curr_successes) -> None: """Compute reward at current timestep.""" keypoint_reward = -(self.nut_keypoint_dist + self.finger_nut_keypoint_dist) action_penalty = torch.norm(self.actions, p=2, dim=-1) self.rew_buf[:] = ( keypoint_reward * self.cfg_task.rl.keypoint_reward_scale - action_penalty * self.cfg_task.rl.action_penalty_scale + curr_successes * self.cfg_task.rl.success_bonus ) def _get_keypoint_dist(self, body) -> torch.Tensor: """Get keypoint distance.""" axis_length = ( self.asset_info_franka_table.franka_hand_length + self.asset_info_franka_table.franka_finger_length ) if body == "finger" or body == "nut": # Keypoint distance between finger/nut and target if body == "finger": self.keypoint1 = self.fingertip_midpoint_pos self.keypoint2 = fc.translate_along_local_z( pos=self.keypoint1, quat=self.fingertip_midpoint_quat, offset=-axis_length, device=self.device, ) elif body == "nut": self.keypoint1 = self.nut_com_pos self.keypoint2 = fc.translate_along_local_z( pos=self.nut_com_pos, quat=self.nut_com_quat, offset=axis_length, device=self.device, ) self.keypoint1_targ = self.target_pos self.keypoint2_targ = self.keypoint1_targ + torch.tensor( [0.0, 0.0, axis_length], device=self.device ) elif body == "finger_nut": # Keypoint distance between finger and nut self.keypoint1 = self.fingerpad_midpoint_pos self.keypoint2 = fc.translate_along_local_z( pos=self.keypoint1, quat=self.fingertip_midpoint_quat, offset=-axis_length, device=self.device, ) self.keypoint1_targ = self.nut_com_pos self.keypoint2_targ = fc.translate_along_local_z( pos=self.nut_com_pos, quat=self.nut_com_quat, offset=axis_length, device=self.device, ) self.keypoint3 = self.keypoint1 + (self.keypoint2 - self.keypoint1) * 1.0 / 3.0 self.keypoint4 = self.keypoint1 + (self.keypoint2 - self.keypoint1) * 2.0 / 3.0 self.keypoint3_targ = ( self.keypoint1_targ + (self.keypoint2_targ - self.keypoint1_targ) * 1.0 / 3.0 ) self.keypoint4_targ = ( self.keypoint1_targ + (self.keypoint2_targ - self.keypoint1_targ) * 2.0 / 3.0 ) keypoint_dist = ( torch.norm(self.keypoint1_targ - self.keypoint1, p=2, dim=-1) + torch.norm(self.keypoint2_targ - self.keypoint2, p=2, dim=-1) + torch.norm(self.keypoint3_targ - self.keypoint3, p=2, dim=-1) + torch.norm(self.keypoint4_targ - self.keypoint4, p=2, dim=-1) ) return keypoint_dist def _get_curr_successes(self) -> torch.Tensor: """Get success mask at current timestep.""" curr_successes = torch.zeros( (self.num_envs,), dtype=torch.bool, device=self.device ) # If nut is close enough to target pos is_close = torch.where( self.nut_dist_to_target < self.thread_pitches.squeeze(-1) * 5, torch.ones_like(curr_successes), torch.zeros_like(curr_successes), ) curr_successes = torch.logical_or(curr_successes, is_close) return curr_successes def _get_curr_failures(self, curr_successes) -> torch.Tensor: """Get failure mask at current timestep.""" curr_failures = torch.zeros( (self.num_envs,), dtype=torch.bool, device=self.device ) # If max episode length has been reached self.is_expired = torch.where( self.progress_buf[:] >= self.cfg_task.rl.max_episode_length, torch.ones_like(curr_failures), curr_failures, ) # If nut is too far from target pos self.is_far = torch.where( self.nut_dist_to_target > self.cfg_task.rl.far_error_thresh, torch.ones_like(curr_failures), curr_failures, ) # If nut has slipped (distance-based definition) self.is_slipped = torch.where( self.nut_dist_to_fingerpads > self.asset_info_franka_table.franka_fingerpad_length * 0.5 + self.nut_heights.squeeze(-1) * 0.5, torch.ones_like(curr_failures), curr_failures, ) self.is_slipped = torch.logical_and( self.is_slipped, torch.logical_not(curr_successes) ) # ignore slip if successful # If nut has fallen (i.e., if nut XY pos has drifted from center of bolt and nut Z pos has drifted below top of bolt) self.is_fallen = torch.logical_and( torch.norm(self.nut_com_pos[:, 0:2], p=2, dim=-1) > self.bolt_widths.squeeze(-1) * 0.5, self.nut_com_pos[:, 2] < self.cfg_base.env.table_height + self.bolt_head_heights.squeeze(-1) + self.bolt_shank_lengths.squeeze(-1) + self.nut_heights.squeeze(-1) * 0.5, ) curr_failures = torch.logical_or(curr_failures, self.is_expired) curr_failures = torch.logical_or(curr_failures, self.is_far) curr_failures = torch.logical_or(curr_failures, self.is_slipped) curr_failures = torch.logical_or(curr_failures, self.is_fallen) return curr_failures
20,039
Python
37.390805
131
0.589051
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_pick.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: Class for nut-bolt pick task. Inherits nut-bolt environment class and abstract task class (not enforced). Can be executed with PYTHON_PATH omniisaacgymenvs/scripts/rlgames_train.py task=FactoryTaskNutBoltPick """ import asyncio import hydra import omegaconf import torch import omni.kit from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.torch.transformations import tf_combine from typing import Tuple import omni.isaac.core.utils.torch as torch_utils import omniisaacgymenvs.tasks.factory.factory_control as fc from omniisaacgymenvs.tasks.factory.factory_env_nut_bolt import FactoryEnvNutBolt from omniisaacgymenvs.tasks.factory.factory_schema_class_task import FactoryABCTask from omniisaacgymenvs.tasks.factory.factory_schema_config_task import ( FactorySchemaConfigTask, ) class FactoryTaskNutBoltPick(FactoryEnvNutBolt, FactoryABCTask): def __init__(self, name, sim_config, env, offset=None) -> None: """Initialize environment superclass. Initialize instance variables.""" super().__init__(name, sim_config, env) self._get_task_yaml_params() def _get_task_yaml_params(self) -> None: """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name="factory_schema_config_task", node=FactorySchemaConfigTask) self.cfg_task = omegaconf.OmegaConf.create(self._task_cfg) self.max_episode_length = ( self.cfg_task.rl.max_episode_length ) # required instance var for VecTask asset_info_path = "../tasks/factory/yaml/factory_asset_info_nut_bolt.yaml" # relative to Gym's Hydra search path (cfg dir) self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path) self.asset_info_nut_bolt = self.asset_info_nut_bolt[""][""][""]["tasks"][ "factory" ][ "yaml" ] # strip superfluous nesting ppo_path = "train/FactoryTaskNutBoltPickPPO.yaml" # relative to Gym's Hydra search path (cfg dir) self.cfg_ppo = hydra.compose(config_name=ppo_path) self.cfg_ppo = self.cfg_ppo["train"] # strip superfluous nesting def post_reset(self) -> None: """Reset the world. Called only once, before simulation begins.""" if self.cfg_task.sim.disable_gravity: self.disable_gravity() self.acquire_base_tensors() self._acquire_task_tensors() self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() # Reset all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) asyncio.ensure_future( self.reset_idx_async(indices, randomize_gripper_pose=False) ) def _acquire_task_tensors(self) -> None: """Acquire tensors.""" # Grasp pose tensors nut_grasp_heights = self.bolt_head_heights + self.nut_heights * 0.5 # nut COM self.nut_grasp_pos_local = nut_grasp_heights * torch.tensor( [0.0, 0.0, 1.0], device=self.device ).repeat((self.num_envs, 1)) self.nut_grasp_quat_local = ( torch.tensor([0.0, 0.0, 1.0, 0.0], device=self.device) .unsqueeze(0) .repeat(self.num_envs, 1) ) # Keypoint tensors self.keypoint_offsets = ( self._get_keypoint_offsets(self.cfg_task.rl.num_keypoints) * self.cfg_task.rl.keypoint_scale ) self.keypoints_gripper = torch.zeros( (self.num_envs, self.cfg_task.rl.num_keypoints, 3), dtype=torch.float32, device=self.device, ) self.keypoints_nut = torch.zeros_like( self.keypoints_gripper, device=self.device ) self.identity_quat = ( torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) .unsqueeze(0) .repeat(self.num_envs, 1) ) self.actions = torch.zeros( (self.num_envs, self.num_actions), device=self.device ) def pre_physics_step(self, actions) -> None: """Reset environments. Apply actions from policy. Simulation step called after this method.""" if not self._env._world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids, randomize_gripper_pose=True) self.actions = actions.clone().to( self.device ) # shape = (num_envs, num_actions); values = [-1, 1] self._apply_actions_as_ctrl_targets( actions=self.actions, ctrl_target_gripper_dof_pos=self.asset_info_franka_table.franka_gripper_width_max, do_scale=True, ) async def pre_physics_step_async(self, actions) -> None: """Reset environments. Apply actions from policy. Simulation step called after this method.""" if not self._env._world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: await self.reset_idx_async(env_ids, randomize_gripper_pose=True) self.actions = actions.clone().to( self.device ) # shape = (num_envs, num_actions); values = [-1, 1] self._apply_actions_as_ctrl_targets( actions=self.actions, ctrl_target_gripper_dof_pos=self.asset_info_franka_table.franka_gripper_width_max, do_scale=True, ) def reset_idx(self, env_ids, randomize_gripper_pose) -> None: """Reset specified environments.""" self._reset_franka(env_ids) self._reset_object(env_ids) if randomize_gripper_pose: self._randomize_gripper_pose( env_ids, sim_steps=self.cfg_task.env.num_gripper_move_sim_steps ) self._reset_buffers(env_ids) async def reset_idx_async(self, env_ids, randomize_gripper_pose) -> None: """Reset specified environments.""" self._reset_franka(env_ids) self._reset_object(env_ids) if randomize_gripper_pose: await self._randomize_gripper_pose_async( env_ids, sim_steps=self.cfg_task.env.num_gripper_move_sim_steps ) self._reset_buffers(env_ids) def _reset_franka(self, env_ids) -> None: """Reset DOF states and DOF targets of Franka.""" self.dof_pos[env_ids] = torch.cat( ( torch.tensor( self.cfg_task.randomize.franka_arm_initial_dof_pos, device=self.device, ), torch.tensor( [self.asset_info_franka_table.franka_gripper_width_max], device=self.device, ), torch.tensor( [self.asset_info_franka_table.franka_gripper_width_max], device=self.device, ), ), dim=-1, ) # shape = (num_envs, num_dofs) self.dof_vel[env_ids] = 0.0 # shape = (num_envs, num_dofs) self.ctrl_target_dof_pos[env_ids] = self.dof_pos[env_ids] indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_positions(self.dof_pos[env_ids], indices=indices) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) def _reset_object(self, env_ids) -> None: """Reset root states of nut and bolt.""" # Randomize root state of nut nut_noise_xy = 2 * ( torch.rand((self.num_envs, 2), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] nut_noise_xy = nut_noise_xy @ torch.diag( torch.tensor(self.cfg_task.randomize.nut_pos_xy_noise, device=self.device) ) self.nut_pos[env_ids, 0] = ( self.cfg_task.randomize.nut_pos_xy_initial[0] + nut_noise_xy[env_ids, 0] ) self.nut_pos[env_ids, 1] = ( self.cfg_task.randomize.nut_pos_xy_initial[1] + nut_noise_xy[env_ids, 1] ) self.nut_pos[ env_ids, 2 ] = self.cfg_base.env.table_height - self.bolt_head_heights.squeeze(-1) self.nut_quat[env_ids, :] = torch.tensor( [1.0, 0.0, 0.0, 0.0], dtype=torch.float32, device=self.device ).repeat(len(env_ids), 1) self.nut_linvel[env_ids, :] = 0.0 self.nut_angvel[env_ids, :] = 0.0 indices = env_ids.to(dtype=torch.int32) self.nuts.set_world_poses( self.nut_pos[env_ids] + self.env_pos[env_ids], self.nut_quat[env_ids], indices, ) self.nuts.set_velocities( torch.cat((self.nut_linvel[env_ids], self.nut_angvel[env_ids]), dim=1), indices, ) # Randomize root state of bolt bolt_noise_xy = 2 * ( torch.rand((self.num_envs, 2), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] bolt_noise_xy = bolt_noise_xy @ torch.diag( torch.tensor(self.cfg_task.randomize.bolt_pos_xy_noise, device=self.device) ) self.bolt_pos[env_ids, 0] = ( self.cfg_task.randomize.bolt_pos_xy_initial[0] + bolt_noise_xy[env_ids, 0] ) self.bolt_pos[env_ids, 1] = ( self.cfg_task.randomize.bolt_pos_xy_initial[1] + bolt_noise_xy[env_ids, 1] ) self.bolt_pos[env_ids, 2] = self.cfg_base.env.table_height self.bolt_quat[env_ids, :] = torch.tensor( [1.0, 0.0, 0.0, 0.0], dtype=torch.float32, device=self.device ).repeat(len(env_ids), 1) indices = env_ids.to(dtype=torch.int32) self.bolts.set_world_poses( self.bolt_pos[env_ids] + self.env_pos[env_ids], self.bolt_quat[env_ids], indices, ) def _reset_buffers(self, env_ids) -> None: """Reset buffers.""" self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def _apply_actions_as_ctrl_targets( self, actions, ctrl_target_gripper_dof_pos, do_scale ) -> None: """Apply actions from policy as position/rotation/force/torque targets.""" # Interpret actions as target pos displacements and set pos target pos_actions = actions[:, 0:3] if do_scale: pos_actions = pos_actions @ torch.diag( torch.tensor(self.cfg_task.rl.pos_action_scale, device=self.device) ) self.ctrl_target_fingertip_midpoint_pos = ( self.fingertip_midpoint_pos + pos_actions ) # Interpret actions as target rot (axis-angle) displacements rot_actions = actions[:, 3:6] if do_scale: rot_actions = rot_actions @ torch.diag( torch.tensor(self.cfg_task.rl.rot_action_scale, device=self.device) ) # Convert to quat and set rot target angle = torch.norm(rot_actions, p=2, dim=-1) axis = rot_actions / angle.unsqueeze(-1) rot_actions_quat = torch_utils.quat_from_angle_axis(angle, axis) if self.cfg_task.rl.clamp_rot: rot_actions_quat = torch.where( angle.unsqueeze(-1).repeat(1, 4) > self.cfg_task.rl.clamp_rot_thresh, rot_actions_quat, torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device).repeat( self.num_envs, 1 ), ) self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_mul( rot_actions_quat, self.fingertip_midpoint_quat ) if self.cfg_ctrl["do_force_ctrl"]: # Interpret actions as target forces and target torques force_actions = actions[:, 6:9] if do_scale: force_actions = force_actions @ torch.diag( torch.tensor( self.cfg_task.rl.force_action_scale, device=self.device ) ) torque_actions = actions[:, 9:12] if do_scale: torque_actions = torque_actions @ torch.diag( torch.tensor( self.cfg_task.rl.torque_action_scale, device=self.device ) ) self.ctrl_target_fingertip_contact_wrench = torch.cat( (force_actions, torque_actions), dim=-1 ) self.ctrl_target_gripper_dof_pos = ctrl_target_gripper_dof_pos self.generate_ctrl_signals() def post_physics_step( self, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.progress_buf[:] += 1 if self._env._world.is_playing(): # In this policy, episode length is constant is_last_step = self.progress_buf[0] == self.max_episode_length - 1 if is_last_step: # At this point, robot has executed RL policy. Now close gripper and lift (open-loop) if self.cfg_task.env.close_and_lift: self._close_gripper( sim_steps=self.cfg_task.env.num_gripper_close_sim_steps ) self._lift_gripper( franka_gripper_width=0.0, lift_distance=0.3, sim_steps=self.cfg_task.env.num_gripper_lift_sim_steps, ) self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() self.get_observations() self.get_states() self.calculate_metrics() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras async def post_physics_step_async(self): """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.progress_buf[:] += 1 if self._env._world.is_playing(): # In this policy, episode length is constant is_last_step = self.progress_buf[0] == self.max_episode_length - 1 if self.cfg_task.env.close_and_lift: # At this point, robot has executed RL policy. Now close gripper and lift (open-loop) if is_last_step: await self._close_gripper_async( sim_steps=self.cfg_task.env.num_gripper_close_sim_steps ) await self._lift_gripper_async( sim_steps=self.cfg_task.env.num_gripper_lift_sim_steps ) self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() self.get_observations() self.get_states() self.calculate_metrics() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def _refresh_task_tensors(self): """Refresh tensors.""" # Compute pose of nut grasping frame self.nut_grasp_quat, self.nut_grasp_pos = tf_combine( self.nut_quat, self.nut_pos, self.nut_grasp_quat_local, self.nut_grasp_pos_local, ) # Compute pos of keypoints on gripper and nut in world frame for idx, keypoint_offset in enumerate(self.keypoint_offsets): self.keypoints_gripper[:, idx] = tf_combine( self.fingertip_midpoint_quat, self.fingertip_midpoint_pos, self.identity_quat, keypoint_offset.repeat(self.num_envs, 1), )[1] self.keypoints_nut[:, idx] = tf_combine( self.nut_grasp_quat, self.nut_grasp_pos, self.identity_quat, keypoint_offset.repeat(self.num_envs, 1), )[1] def get_observations(self) -> dict: """Compute observations.""" # Shallow copies of tensors obs_tensors = [ self.fingertip_midpoint_pos, self.fingertip_midpoint_quat, self.fingertip_midpoint_linvel, self.fingertip_midpoint_angvel, self.nut_grasp_pos, self.nut_grasp_quat, ] self.obs_buf = torch.cat( obs_tensors, dim=-1 ) # shape = (num_envs, num_observations) observations = {self.frankas.name: {"obs_buf": self.obs_buf}} return observations def calculate_metrics(self) -> None: """Update reward and reset buffers.""" self._update_reset_buf() self._update_rew_buf() def _update_reset_buf(self) -> None: """Assign environments for reset if successful or failed.""" # If max episode length has been reached self.reset_buf[:] = torch.where( self.progress_buf[:] >= self.max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf, ) def _update_rew_buf(self) -> None: """Compute reward at current timestep.""" keypoint_reward = -self._get_keypoint_dist() action_penalty = ( torch.norm(self.actions, p=2, dim=-1) * self.cfg_task.rl.action_penalty_scale ) self.rew_buf[:] = ( keypoint_reward * self.cfg_task.rl.keypoint_reward_scale - action_penalty * self.cfg_task.rl.action_penalty_scale ) # In this policy, episode length is constant across all envs is_last_step = self.progress_buf[0] == self.max_episode_length - 1 if is_last_step: # Check if nut is picked up and above table lift_success = self._check_lift_success(height_multiple=3.0) self.rew_buf[:] += lift_success * self.cfg_task.rl.success_bonus self.extras["successes"] = torch.mean(lift_success.float()) def _get_keypoint_offsets(self, num_keypoints) -> torch.Tensor: """Get uniformly-spaced keypoints along a line of unit length, centered at 0.""" keypoint_offsets = torch.zeros((num_keypoints, 3), device=self.device) keypoint_offsets[:, -1] = ( torch.linspace(0.0, 1.0, num_keypoints, device=self.device) - 0.5 ) return keypoint_offsets def _get_keypoint_dist(self) -> torch.Tensor: """Get keypoint distance.""" keypoint_dist = torch.sum( torch.norm(self.keypoints_nut - self.keypoints_gripper, p=2, dim=-1), dim=-1 ) return keypoint_dist def _close_gripper(self, sim_steps=20) -> None: """Fully close gripper using controller. Called outside RL loop (i.e., after last step of episode).""" self._move_gripper_to_dof_pos(gripper_dof_pos=0.0, sim_steps=sim_steps) def _move_gripper_to_dof_pos(self, gripper_dof_pos, sim_steps=20) -> None: """Move gripper fingers to specified DOF position using controller.""" delta_hand_pose = torch.zeros( (self.num_envs, 6), device=self.device ) # No hand motion self._apply_actions_as_ctrl_targets( delta_hand_pose, gripper_dof_pos, do_scale=False ) # Step sim for _ in range(sim_steps): SimulationContext.step(self._env._world, render=True) def _lift_gripper( self, franka_gripper_width=0.0, lift_distance=0.3, sim_steps=20 ) -> None: """Lift gripper by specified distance. Called outside RL loop (i.e., after last step of episode).""" delta_hand_pose = torch.zeros([self.num_envs, 6], device=self.device) delta_hand_pose[:, 2] = lift_distance # Step sim for _ in range(sim_steps): self._apply_actions_as_ctrl_targets( delta_hand_pose, franka_gripper_width, do_scale=False ) SimulationContext.step(self._env._world, render=True) async def _close_gripper_async(self, sim_steps=20) -> None: """Fully close gripper using controller. Called outside RL loop (i.e., after last step of episode).""" await self._move_gripper_to_dof_pos_async( gripper_dof_pos=0.0, sim_steps=sim_steps ) async def _move_gripper_to_dof_pos_async( self, gripper_dof_pos, sim_steps=20 ) -> None: """Move gripper fingers to specified DOF position using controller.""" delta_hand_pose = torch.zeros( (self.num_envs, self.cfg_task.env.numActions), device=self.device ) # No hand motion self._apply_actions_as_ctrl_targets( delta_hand_pose, gripper_dof_pos, do_scale=False ) # Step sim for _ in range(sim_steps): self._env._world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() async def _lift_gripper_async( self, franka_gripper_width=0.0, lift_distance=0.3, sim_steps=20 ) -> None: """Lift gripper by specified distance. Called outside RL loop (i.e., after last step of episode).""" delta_hand_pose = torch.zeros([self.num_envs, 6], device=self.device) delta_hand_pose[:, 2] = lift_distance # Step sim for _ in range(sim_steps): self._apply_actions_as_ctrl_targets( delta_hand_pose, franka_gripper_width, do_scale=False ) self._env._world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() def _check_lift_success(self, height_multiple) -> torch.Tensor: """Check if nut is above table by more than specified multiple times height of nut.""" lift_success = torch.where( self.nut_pos[:, 2] > self.cfg_base.env.table_height + self.nut_heights.squeeze(-1) * height_multiple, torch.ones((self.num_envs,), device=self.device), torch.zeros((self.num_envs,), device=self.device), ) return lift_success def _randomize_gripper_pose(self, env_ids, sim_steps) -> None: """Move gripper to random pose.""" # step once to update physx with the newly set joint positions from reset_franka() SimulationContext.step(self._env._world, render=True) # Set target pos above table self.ctrl_target_fingertip_midpoint_pos = torch.tensor( [0.0, 0.0, self.cfg_base.env.table_height], device=self.device ) + torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_initial, device=self.device ) self.ctrl_target_fingertip_midpoint_pos = ( self.ctrl_target_fingertip_midpoint_pos.unsqueeze(0).repeat( self.num_envs, 1 ) ) fingertip_midpoint_pos_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_pos_noise = fingertip_midpoint_pos_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_noise, device=self.device ) ) self.ctrl_target_fingertip_midpoint_pos += fingertip_midpoint_pos_noise # Set target rot ctrl_target_fingertip_midpoint_euler = ( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_initial, device=self.device, ) .unsqueeze(0) .repeat(self.num_envs, 1) ) fingertip_midpoint_rot_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_rot_noise = fingertip_midpoint_rot_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_noise, device=self.device ) ) ctrl_target_fingertip_midpoint_euler += fingertip_midpoint_rot_noise self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz( ctrl_target_fingertip_midpoint_euler[:, 0], ctrl_target_fingertip_midpoint_euler[:, 1], ctrl_target_fingertip_midpoint_euler[:, 2], ) # Step sim and render for _ in range(sim_steps): if not self._env._world.is_playing(): return self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() pos_error, axis_angle_error = fc.get_pose_error( fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, jacobian_type=self.cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_hand_pose = torch.cat((pos_error, axis_angle_error), dim=-1) actions = torch.zeros( (self.num_envs, self.cfg_task.env.numActions), device=self.device ) actions[:, :6] = delta_hand_pose self._apply_actions_as_ctrl_targets( actions=actions, ctrl_target_gripper_dof_pos=self.asset_info_franka_table.franka_gripper_width_max, do_scale=False, ) SimulationContext.step(self._env._world, render=True) self.dof_vel[env_ids, :] = torch.zeros_like(self.dof_vel[env_ids]) indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) # step once to update physx with the newly set joint velocities SimulationContext.step(self._env._world, render=True) async def _randomize_gripper_pose_async(self, env_ids, sim_steps) -> None: """Move gripper to random pose.""" # step once to update physx with the newly set joint positions from reset_franka() await omni.kit.app.get_app().next_update_async() # Set target pos above table self.ctrl_target_fingertip_midpoint_pos = torch.tensor( [0.0, 0.0, self.cfg_base.env.table_height], device=self.device ) + torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_initial, device=self.device ) self.ctrl_target_fingertip_midpoint_pos = ( self.ctrl_target_fingertip_midpoint_pos.unsqueeze(0).repeat( self.num_envs, 1 ) ) fingertip_midpoint_pos_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_pos_noise = fingertip_midpoint_pos_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_noise, device=self.device ) ) self.ctrl_target_fingertip_midpoint_pos += fingertip_midpoint_pos_noise # Set target rot ctrl_target_fingertip_midpoint_euler = ( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_initial, device=self.device, ) .unsqueeze(0) .repeat(self.num_envs, 1) ) fingertip_midpoint_rot_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_rot_noise = fingertip_midpoint_rot_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_noise, device=self.device ) ) ctrl_target_fingertip_midpoint_euler += fingertip_midpoint_rot_noise self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz( ctrl_target_fingertip_midpoint_euler[:, 0], ctrl_target_fingertip_midpoint_euler[:, 1], ctrl_target_fingertip_midpoint_euler[:, 2], ) # Step sim and render for _ in range(sim_steps): self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() pos_error, axis_angle_error = fc.get_pose_error( fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, jacobian_type=self.cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_hand_pose = torch.cat((pos_error, axis_angle_error), dim=-1) actions = torch.zeros( (self.num_envs, self.cfg_task.env.numActions), device=self.device ) actions[:, :6] = delta_hand_pose self._apply_actions_as_ctrl_targets( actions=actions, ctrl_target_gripper_dof_pos=self.asset_info_franka_table.franka_gripper_width_max, do_scale=False, ) self._env._world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() self.dof_vel[env_ids, :] = torch.zeros_like(self.dof_vel[env_ids]) indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) # step once to update physx with the newly set joint velocities self._env._world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async()
31,568
Python
37.926017
131
0.589268
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/factory/factory_schema_config_base.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: schema for base class configuration. Used by Hydra. Defines template for base class YAML file. """ from dataclasses import dataclass @dataclass class Mode: export_scene: bool # export scene to USD export_states: bool # export states to NPY @dataclass class Sim: dt: float # timestep size (default = 1.0 / 60.0) num_substeps: int # number of substeps (default = 2) num_pos_iters: int # number of position iterations for PhysX TGS solver (default = 4) num_vel_iters: int # number of velocity iterations for PhysX TGS solver (default = 1) gravity_mag: float # magnitude of gravitational acceleration add_damping: bool # add damping to stabilize gripper-object interactions @dataclass class Env: env_spacing: float # lateral offset between envs franka_depth: float # depth offset of Franka base relative to env origin table_height: float # height of table franka_friction: float # coefficient of friction associated with Franka table_friction: float # coefficient of friction associated with table @dataclass class FactorySchemaConfigBase: mode: Mode sim: Sim env: Env
2,724
Python
39.073529
90
0.757342
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/factory/factory_env_nut_bolt.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: class for nut-bolt env. Inherits base class and abstract environment class. Inherited by nut-bolt task classes. Not directly executed. Configuration defined in FactoryEnvNutBolt.yaml. Asset info defined in factory_asset_info_nut_bolt.yaml. """ import hydra import numpy as np import torch from omni.isaac.core.prims import RigidPrimView, XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omniisaacgymenvs.tasks.base.rl_task import RLTask from omni.physx.scripts import physicsUtils, utils from omniisaacgymenvs.robots.articulations.views.factory_franka_view import ( FactoryFrankaView, ) import omniisaacgymenvs.tasks.factory.factory_control as fc from omniisaacgymenvs.tasks.factory.factory_base import FactoryBase from omniisaacgymenvs.tasks.factory.factory_schema_class_env import FactoryABCEnv from omniisaacgymenvs.tasks.factory.factory_schema_config_env import ( FactorySchemaConfigEnv, ) class FactoryEnvNutBolt(FactoryBase, FactoryABCEnv): def __init__(self, name, sim_config, env) -> None: """Initialize base superclass. Initialize instance variables.""" super().__init__(name, sim_config, env) self._get_env_yaml_params() def _get_env_yaml_params(self): """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name="factory_schema_config_env", node=FactorySchemaConfigEnv) config_path = ( "task/FactoryEnvNutBolt.yaml" # relative to Hydra search path (cfg dir) ) self.cfg_env = hydra.compose(config_name=config_path) self.cfg_env = self.cfg_env["task"] # strip superfluous nesting asset_info_path = "../tasks/factory/yaml/factory_asset_info_nut_bolt.yaml" self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path) self.asset_info_nut_bolt = self.asset_info_nut_bolt[""][""][""]["tasks"][ "factory" ][ "yaml" ] # strip superfluous nesting def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._num_observations = self._task_cfg["env"]["numObservations"] self._num_actions = self._task_cfg["env"]["numActions"] self._env_spacing = self.cfg_base["env"]["env_spacing"] self._get_env_yaml_params() def set_up_scene(self, scene) -> None: """Import assets. Add to scene.""" # Increase buffer size to prevent overflow for Place and Screw tasks physxSceneAPI = self._env._world.get_physics_context()._physx_scene_api physxSceneAPI.CreateGpuCollisionStackSizeAttr().Set(256 * 1024 * 1024) self.import_franka_assets(add_to_stage=True) self.create_nut_bolt_material() RLTask.set_up_scene(self, scene, replicate_physics=False) self._import_env_assets(add_to_stage=True) self.frankas = FactoryFrankaView( prim_paths_expr="/World/envs/.*/franka", name="frankas_view" ) self.nuts = RigidPrimView( prim_paths_expr="/World/envs/.*/nut/factory_nut.*", name="nuts_view", track_contact_forces=True, ) self.bolts = RigidPrimView( prim_paths_expr="/World/envs/.*/bolt/factory_bolt.*", name="bolts_view", track_contact_forces=True, ) scene.add(self.nuts) scene.add(self.bolts) scene.add(self.frankas) scene.add(self.frankas._hands) scene.add(self.frankas._lfingers) scene.add(self.frankas._rfingers) scene.add(self.frankas._fingertip_centered) return def initialize_views(self, scene) -> None: """Initialize views for extension workflow.""" super().initialize_views(scene) self.import_franka_assets(add_to_stage=False) self._import_env_assets(add_to_stage=False) if scene.object_exists("frankas_view"): scene.remove_object("frankas_view", registry_only=True) if scene.object_exists("nuts_view"): scene.remove_object("nuts_view", registry_only=True) if scene.object_exists("bolts_view"): scene.remove_object("bolts_view", registry_only=True) if scene.object_exists("hands_view"): scene.remove_object("hands_view", registry_only=True) if scene.object_exists("lfingers_view"): scene.remove_object("lfingers_view", registry_only=True) if scene.object_exists("rfingers_view"): scene.remove_object("rfingers_view", registry_only=True) if scene.object_exists("fingertips_view"): scene.remove_object("fingertips_view", registry_only=True) self.frankas = FactoryFrankaView( prim_paths_expr="/World/envs/.*/franka", name="frankas_view" ) self.nuts = RigidPrimView( prim_paths_expr="/World/envs/.*/nut/factory_nut.*", name="nuts_view" ) self.bolts = RigidPrimView( prim_paths_expr="/World/envs/.*/bolt/factory_bolt.*", name="bolts_view" ) scene.add(self.nuts) scene.add(self.bolts) scene.add(self.frankas) scene.add(self.frankas._hands) scene.add(self.frankas._lfingers) scene.add(self.frankas._rfingers) scene.add(self.frankas._fingertip_centered) def create_nut_bolt_material(self): """Define nut and bolt material.""" self.nutboltPhysicsMaterialPath = "/World/Physics_Materials/NutBoltMaterial" utils.addRigidBodyMaterial( self._stage, self.nutboltPhysicsMaterialPath, density=self.cfg_env.env.nut_bolt_density, staticFriction=self.cfg_env.env.nut_bolt_friction, dynamicFriction=self.cfg_env.env.nut_bolt_friction, restitution=0.0, ) def _import_env_assets(self, add_to_stage=True): """Set nut and bolt asset options. Import assets.""" self.nut_heights = [] self.nut_widths_max = [] self.bolt_widths = [] self.bolt_head_heights = [] self.bolt_shank_lengths = [] self.thread_pitches = [] assets_root_path = get_assets_root_path() for i in range(0, self._num_envs): j = np.random.randint(0, len(self.cfg_env.env.desired_subassemblies)) subassembly = self.cfg_env.env.desired_subassemblies[j] components = list(self.asset_info_nut_bolt[subassembly]) nut_translation = torch.tensor( [ 0.0, self.cfg_env.env.nut_lateral_offset, self.cfg_base.env.table_height, ], device=self._device, ) nut_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) nut_height = self.asset_info_nut_bolt[subassembly][components[0]]["height"] nut_width_max = self.asset_info_nut_bolt[subassembly][components[0]][ "width_max" ] self.nut_heights.append(nut_height) self.nut_widths_max.append(nut_width_max) nut_file = ( assets_root_path + self.asset_info_nut_bolt[subassembly][components[0]]["usd_path"] ) if add_to_stage: add_reference_to_stage(nut_file, f"/World/envs/env_{i}" + "/nut") XFormPrim( prim_path=f"/World/envs/env_{i}" + "/nut", translation=nut_translation, orientation=nut_orientation, ) self._stage.GetPrimAtPath( f"/World/envs/env_{i}" + f"/nut/factory_{components[0]}/collisions" ).SetInstanceable( False ) # This is required to be able to edit physics material physicsUtils.add_physics_material_to_prim( self._stage, self._stage.GetPrimAtPath( f"/World/envs/env_{i}" + f"/nut/factory_{components[0]}/collisions/mesh_0" ), self.nutboltPhysicsMaterialPath, ) # applies articulation settings from the task configuration yaml file self._sim_config.apply_articulation_settings( "nut", self._stage.GetPrimAtPath(f"/World/envs/env_{i}" + "/nut"), self._sim_config.parse_actor_config("nut"), ) bolt_translation = torch.tensor( [0.0, 0.0, self.cfg_base.env.table_height], device=self._device ) bolt_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) bolt_width = self.asset_info_nut_bolt[subassembly][components[1]]["width"] bolt_head_height = self.asset_info_nut_bolt[subassembly][components[1]][ "head_height" ] bolt_shank_length = self.asset_info_nut_bolt[subassembly][components[1]][ "shank_length" ] self.bolt_widths.append(bolt_width) self.bolt_head_heights.append(bolt_head_height) self.bolt_shank_lengths.append(bolt_shank_length) if add_to_stage: bolt_file = ( assets_root_path + self.asset_info_nut_bolt[subassembly][components[1]]["usd_path"] ) add_reference_to_stage(bolt_file, f"/World/envs/env_{i}" + "/bolt") XFormPrim( prim_path=f"/World/envs/env_{i}" + "/bolt", translation=bolt_translation, orientation=bolt_orientation, ) self._stage.GetPrimAtPath( f"/World/envs/env_{i}" + f"/bolt/factory_{components[1]}/collisions" ).SetInstanceable( False ) # This is required to be able to edit physics material physicsUtils.add_physics_material_to_prim( self._stage, self._stage.GetPrimAtPath( f"/World/envs/env_{i}" + f"/bolt/factory_{components[1]}/collisions/mesh_0" ), self.nutboltPhysicsMaterialPath, ) # applies articulation settings from the task configuration yaml file self._sim_config.apply_articulation_settings( "bolt", self._stage.GetPrimAtPath(f"/World/envs/env_{i}" + "/bolt"), self._sim_config.parse_actor_config("bolt"), ) thread_pitch = self.asset_info_nut_bolt[subassembly]["thread_pitch"] self.thread_pitches.append(thread_pitch) # For computing body COM pos self.nut_heights = torch.tensor( self.nut_heights, device=self._device ).unsqueeze(-1) self.bolt_head_heights = torch.tensor( self.bolt_head_heights, device=self._device ).unsqueeze(-1) # For setting initial state self.nut_widths_max = torch.tensor( self.nut_widths_max, device=self._device ).unsqueeze(-1) self.bolt_shank_lengths = torch.tensor( self.bolt_shank_lengths, device=self._device ).unsqueeze(-1) # For defining success or failure self.bolt_widths = torch.tensor( self.bolt_widths, device=self._device ).unsqueeze(-1) self.thread_pitches = torch.tensor( self.thread_pitches, device=self._device ).unsqueeze(-1) def refresh_env_tensors(self): """Refresh tensors.""" # Nut tensors self.nut_pos, self.nut_quat = self.nuts.get_world_poses(clone=False) self.nut_pos -= self.env_pos self.nut_com_pos = fc.translate_along_local_z( pos=self.nut_pos, quat=self.nut_quat, offset=self.bolt_head_heights + self.nut_heights * 0.5, device=self.device, ) self.nut_com_quat = self.nut_quat # always equal nut_velocities = self.nuts.get_velocities(clone=False) self.nut_linvel = nut_velocities[:, 0:3] self.nut_angvel = nut_velocities[:, 3:6] self.nut_com_linvel = self.nut_linvel + torch.cross( self.nut_angvel, (self.nut_com_pos - self.nut_pos), dim=1 ) self.nut_com_angvel = self.nut_angvel # always equal self.nut_force = self.nuts.get_net_contact_forces(clone=False) # Bolt tensors self.bolt_pos, self.bolt_quat = self.bolts.get_world_poses(clone=False) self.bolt_pos -= self.env_pos self.bolt_force = self.bolts.get_net_contact_forces(clone=False)
14,709
Python
39.30137
110
0.603372
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/factory/factory_control.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: control module. Imported by base, environment, and task classes. Not directly executed. """ import math import omni.isaac.core.utils.torch as torch_utils import torch def compute_dof_pos_target( cfg_ctrl, arm_dof_pos, fingertip_midpoint_pos, fingertip_midpoint_quat, jacobian, ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat, ctrl_target_gripper_dof_pos, device, ): """Compute Franka DOF position target to move fingertips towards target pose.""" ctrl_target_dof_pos = torch.zeros((cfg_ctrl["num_envs"], 9), device=device) pos_error, axis_angle_error = get_pose_error( fingertip_midpoint_pos=fingertip_midpoint_pos, fingertip_midpoint_quat=fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=ctrl_target_fingertip_midpoint_quat, jacobian_type=cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_fingertip_pose = torch.cat((pos_error, axis_angle_error), dim=1) delta_arm_dof_pos = _get_delta_dof_pos( delta_pose=delta_fingertip_pose, ik_method=cfg_ctrl["ik_method"], jacobian=jacobian, device=device, ) ctrl_target_dof_pos[:, 0:7] = arm_dof_pos + delta_arm_dof_pos ctrl_target_dof_pos[:, 7:9] = ctrl_target_gripper_dof_pos # gripper finger joints return ctrl_target_dof_pos def compute_dof_torque( cfg_ctrl, dof_pos, dof_vel, fingertip_midpoint_pos, fingertip_midpoint_quat, fingertip_midpoint_linvel, fingertip_midpoint_angvel, left_finger_force, right_finger_force, jacobian, arm_mass_matrix, ctrl_target_gripper_dof_pos, ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat, ctrl_target_fingertip_contact_wrench, device, ): """Compute Franka DOF torque to move fingertips towards target pose.""" # References: # 1) https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf # 2) Modern Robotics dof_torque = torch.zeros((cfg_ctrl["num_envs"], 9), device=device) if cfg_ctrl["gain_space"] == "joint": pos_error, axis_angle_error = get_pose_error( fingertip_midpoint_pos=fingertip_midpoint_pos, fingertip_midpoint_quat=fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=ctrl_target_fingertip_midpoint_quat, jacobian_type=cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_fingertip_pose = torch.cat((pos_error, axis_angle_error), dim=1) # Set tau = k_p * joint_pos_error - k_d * joint_vel_error (ETH eq. 3.72) delta_arm_dof_pos = _get_delta_dof_pos( delta_pose=delta_fingertip_pose, ik_method=cfg_ctrl["ik_method"], jacobian=jacobian, device=device, ) dof_torque[:, 0:7] = cfg_ctrl[ "joint_prop_gains" ] * delta_arm_dof_pos + cfg_ctrl["joint_deriv_gains"] * (0.0 - dof_vel[:, 0:7]) if cfg_ctrl["do_inertial_comp"]: # Set tau = M * tau, where M is the joint-space mass matrix arm_mass_matrix_joint = arm_mass_matrix dof_torque[:, 0:7] = ( arm_mass_matrix_joint @ dof_torque[:, 0:7].unsqueeze(-1) ).squeeze(-1) elif cfg_ctrl["gain_space"] == "task": task_wrench = torch.zeros((cfg_ctrl["num_envs"], 6), device=device) if cfg_ctrl["do_motion_ctrl"]: pos_error, axis_angle_error = get_pose_error( fingertip_midpoint_pos=fingertip_midpoint_pos, fingertip_midpoint_quat=fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=ctrl_target_fingertip_midpoint_quat, jacobian_type=cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_fingertip_pose = torch.cat((pos_error, axis_angle_error), dim=1) # Set tau = k_p * task_pos_error - k_d * task_vel_error (building towards eq. 3.96-3.98) task_wrench_motion = _apply_task_space_gains( delta_fingertip_pose=delta_fingertip_pose, fingertip_midpoint_linvel=fingertip_midpoint_linvel, fingertip_midpoint_angvel=fingertip_midpoint_angvel, task_prop_gains=cfg_ctrl["task_prop_gains"], task_deriv_gains=cfg_ctrl["task_deriv_gains"], ) if cfg_ctrl["do_inertial_comp"]: # Set tau = Lambda * tau, where Lambda is the task-space mass matrix jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) arm_mass_matrix_task = torch.inverse( jacobian @ torch.inverse(arm_mass_matrix) @ jacobian_T ) # ETH eq. 3.86; geometric Jacobian is assumed task_wrench_motion = ( arm_mass_matrix_task @ task_wrench_motion.unsqueeze(-1) ).squeeze(-1) task_wrench = ( task_wrench + cfg_ctrl["motion_ctrl_axes"] * task_wrench_motion ) if cfg_ctrl["do_force_ctrl"]: # Set tau = tau + F_t, where F_t is the target contact wrench task_wrench_force = torch.zeros((cfg_ctrl["num_envs"], 6), device=device) task_wrench_force = ( task_wrench_force + ctrl_target_fingertip_contact_wrench ) # open-loop force control (building towards ETH eq. 3.96-3.98) if cfg_ctrl["force_ctrl_method"] == "closed": force_error, torque_error = _get_wrench_error( left_finger_force=left_finger_force, right_finger_force=right_finger_force, ctrl_target_fingertip_contact_wrench=ctrl_target_fingertip_contact_wrench, num_envs=cfg_ctrl["num_envs"], device=device, ) # Set tau = tau + k_p * contact_wrench_error task_wrench_force = task_wrench_force + cfg_ctrl[ "wrench_prop_gains" ] * torch.cat( (force_error, torque_error), dim=1 ) # part of Modern Robotics eq. 11.61 task_wrench = ( task_wrench + torch.tensor(cfg_ctrl["force_ctrl_axes"], device=device).unsqueeze(0) * task_wrench_force ) # Set tau = J^T * tau, i.e., map tau into joint space as desired jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) dof_torque[:, 0:7] = (jacobian_T @ task_wrench.unsqueeze(-1)).squeeze(-1) dof_torque[:, 7:9] = cfg_ctrl["gripper_prop_gains"] * ( ctrl_target_gripper_dof_pos - dof_pos[:, 7:9] ) + cfg_ctrl["gripper_deriv_gains"] * ( 0.0 - dof_vel[:, 7:9] ) # gripper finger joints dof_torque = torch.clamp(dof_torque, min=-100.0, max=100.0) return dof_torque def get_pose_error( fingertip_midpoint_pos, fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat, jacobian_type, rot_error_type, ): """Compute task-space error between target Franka fingertip pose and current pose.""" # Reference: https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf # Compute pos error pos_error = ctrl_target_fingertip_midpoint_pos - fingertip_midpoint_pos # Compute rot error if ( jacobian_type == "geometric" ): # See example 2.9.8; note use of J_g and transformation between rotation vectors # Compute quat error (i.e., difference quat) # Reference: https://personal.utdallas.edu/~sxb027100/dock/quat.html fingertip_midpoint_quat_norm = torch_utils.quat_mul( fingertip_midpoint_quat, torch_utils.quat_conjugate(fingertip_midpoint_quat) )[ :, 0 ] # scalar component fingertip_midpoint_quat_inv = torch_utils.quat_conjugate( fingertip_midpoint_quat ) / fingertip_midpoint_quat_norm.unsqueeze(-1) quat_error = torch_utils.quat_mul( ctrl_target_fingertip_midpoint_quat, fingertip_midpoint_quat_inv ) # Convert to axis-angle error axis_angle_error = axis_angle_from_quat(quat_error) elif ( jacobian_type == "analytic" ): # See example 2.9.7; note use of J_a and difference of rotation vectors # Compute axis-angle error axis_angle_error = axis_angle_from_quat( ctrl_target_fingertip_midpoint_quat ) - axis_angle_from_quat(fingertip_midpoint_quat) if rot_error_type == "quat": return pos_error, quat_error elif rot_error_type == "axis_angle": return pos_error, axis_angle_error def _get_wrench_error( left_finger_force, right_finger_force, ctrl_target_fingertip_contact_wrench, num_envs, device, ): """Compute task-space error between target Franka fingertip contact wrench and current wrench.""" fingertip_contact_wrench = torch.zeros((num_envs, 6), device=device) fingertip_contact_wrench[:, 0:3] = ( left_finger_force + right_finger_force ) # net contact force on fingers # Cols 3 to 6 are all zeros, as we do not have enough information force_error = ctrl_target_fingertip_contact_wrench[:, 0:3] - ( -fingertip_contact_wrench[:, 0:3] ) torque_error = ctrl_target_fingertip_contact_wrench[:, 3:6] - ( -fingertip_contact_wrench[:, 3:6] ) return force_error, torque_error def _get_delta_dof_pos(delta_pose, ik_method, jacobian, device): """Get delta Franka DOF position from delta pose using specified IK method.""" # References: # 1) https://www.cs.cmu.edu/~15464-s13/lectures/lecture6/iksurvey.pdf # 2) https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf (p. 47) if ik_method == "pinv": # Jacobian pseudoinverse k_val = 1.0 jacobian_pinv = torch.linalg.pinv(jacobian) delta_dof_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) elif ik_method == "trans": # Jacobian transpose k_val = 1.0 jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) delta_dof_pos = k_val * jacobian_T @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) elif ik_method == "dls": # damped least squares (Levenberg-Marquardt) lambda_val = 0.1 jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) lambda_matrix = (lambda_val**2) * torch.eye( n=jacobian.shape[1], device=device ) delta_dof_pos = ( jacobian_T @ torch.inverse(jacobian @ jacobian_T + lambda_matrix) @ delta_pose.unsqueeze(-1) ) delta_dof_pos = delta_dof_pos.squeeze(-1) elif ik_method == "svd": # adaptive SVD k_val = 1.0 U, S, Vh = torch.linalg.svd(jacobian) S_inv = 1.0 / S min_singular_value = 1.0e-5 S_inv = torch.where(S > min_singular_value, S_inv, torch.zeros_like(S_inv)) jacobian_pinv = ( torch.transpose(Vh, dim0=1, dim1=2)[:, :, :6] @ torch.diag_embed(S_inv) @ torch.transpose(U, dim0=1, dim1=2) ) delta_dof_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) return delta_dof_pos def _apply_task_space_gains( delta_fingertip_pose, fingertip_midpoint_linvel, fingertip_midpoint_angvel, task_prop_gains, task_deriv_gains, ): """Interpret PD gains as task-space gains. Apply to task-space error.""" task_wrench = torch.zeros_like(delta_fingertip_pose) # Apply gains to lin error components lin_error = delta_fingertip_pose[:, 0:3] task_wrench[:, 0:3] = task_prop_gains[:, 0:3] * lin_error + task_deriv_gains[ :, 0:3 ] * (0.0 - fingertip_midpoint_linvel) # Apply gains to rot error components rot_error = delta_fingertip_pose[:, 3:6] task_wrench[:, 3:6] = task_prop_gains[:, 3:6] * rot_error + task_deriv_gains[ :, 3:6 ] * (0.0 - fingertip_midpoint_angvel) return task_wrench def get_analytic_jacobian(fingertip_quat, fingertip_jacobian, num_envs, device): """Convert geometric Jacobian to analytic Jacobian.""" # Reference: https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf # NOTE: Gym returns world-space geometric Jacobians by default batch = num_envs # Overview: # x = [x_p; x_r] # From eq. 2.189 and 2.192, x_dot = J_a @ q_dot = (E_inv @ J_g) @ q_dot # From eq. 2.191, E = block(E_p, E_r); thus, E_inv = block(E_p_inv, E_r_inv) # Eq. 2.12 gives an expression for E_p_inv # Eq. 2.107 gives an expression for E_r_inv # Compute E_inv_top (i.e., [E_p_inv, 0]) I = torch.eye(3, device=device) E_p_inv = I.repeat((batch, 1)).reshape(batch, 3, 3) E_inv_top = torch.cat((E_p_inv, torch.zeros((batch, 3, 3), device=device)), dim=2) # Compute E_inv_bottom (i.e., [0, E_r_inv]) fingertip_axis_angle = axis_angle_from_quat(fingertip_quat) fingertip_axis_angle_cross = get_skew_symm_matrix( fingertip_axis_angle, device=device ) fingertip_angle = torch.linalg.vector_norm(fingertip_axis_angle, dim=1) factor_1 = 1 / (fingertip_angle**2) factor_2 = 1 - fingertip_angle * 0.5 * torch.sin(fingertip_angle) / ( 1 - torch.cos(fingertip_angle) ) factor_3 = factor_1 * factor_2 E_r_inv = ( I - 1 * 0.5 * fingertip_axis_angle_cross + (fingertip_axis_angle_cross @ fingertip_axis_angle_cross) * factor_3.unsqueeze(-1).repeat((1, 3 * 3)).reshape((batch, 3, 3)) ) E_inv_bottom = torch.cat( (torch.zeros((batch, 3, 3), device=device), E_r_inv), dim=2 ) E_inv = torch.cat( (E_inv_top.reshape((batch, 3 * 6)), E_inv_bottom.reshape((batch, 3 * 6))), dim=1 ).reshape((batch, 6, 6)) J_a = E_inv @ fingertip_jacobian return J_a def get_skew_symm_matrix(vec, device): """Convert vector to skew-symmetric matrix.""" # Reference: https://en.wikipedia.org/wiki/Cross_product#Conversion_to_matrix_multiplication batch = vec.shape[0] I = torch.eye(3, device=device) skew_symm = torch.transpose( torch.cross( vec.repeat((1, 3)).reshape((batch * 3, 3)), I.repeat((batch, 1)) ).reshape(batch, 3, 3), dim0=1, dim1=2, ) return skew_symm def translate_along_local_z(pos, quat, offset, device): """Translate global body position along local Z-axis and express in global coordinates.""" num_vecs = pos.shape[0] offset_vec = offset * torch.tensor([0.0, 0.0, 1.0], device=device).repeat( (num_vecs, 1) ) _, translated_pos = torch_utils.tf_combine( q1=quat, t1=pos, q2=torch.tensor([1.0, 0.0, 0.0, 0.0], device=device).repeat((num_vecs, 1)), t2=offset_vec, ) return translated_pos def axis_angle_from_euler(euler): """Convert tensor of Euler angles to tensor of axis-angles.""" quat = torch_utils.quat_from_euler_xyz( roll=euler[:, 0], pitch=euler[:, 1], yaw=euler[:, 2] ) quat = quat * torch.sign(quat[:, 0]).unsqueeze(-1) # smaller rotation axis_angle = axis_angle_from_quat(quat) return axis_angle def axis_angle_from_quat(quat, eps=1.0e-6): """Convert tensor of quaternions to tensor of axis-angles.""" # Reference: https://github.com/facebookresearch/pytorch3d/blob/bee31c48d3d36a8ea268f9835663c52ff4a476ec/pytorch3d/transforms/rotation_conversions.py#L516-L544 mag = torch.linalg.norm(quat[:, 1:4], dim=1) half_angle = torch.atan2(mag, quat[:, 0]) angle = 2.0 * half_angle sin_half_angle_over_angle = torch.where( torch.abs(angle) > eps, torch.sin(half_angle) / angle, 1 / 2 - angle**2.0 / 48 ) axis_angle = quat[:, 1:4] / sin_half_angle_over_angle.unsqueeze(-1) return axis_angle def axis_angle_from_quat_naive(quat): """Convert tensor of quaternions to tensor of axis-angles.""" # Reference: https://en.wikipedia.org/wiki/quats_and_spatial_rotation#Recovering_the_axis-angle_representation # NOTE: Susceptible to undesirable behavior due to divide-by-zero mag = torch.linalg.vector_norm(quat[:, 1:4], dim=1) # zero when quat = [1, 0, 0, 0] axis = quat[:, 1:4] / mag.unsqueeze(-1) angle = 2.0 * torch.atan2(mag, quat[:, 0]) axis_angle = axis * angle.unsqueeze(-1) return axis_angle def get_rand_quat(num_quats, device): """Generate tensor of random quaternions.""" # Reference: http://planning.cs.uiuc.edu/node198.html u = torch.rand((num_quats, 3), device=device) quat = torch.zeros((num_quats, 4), device=device) quat[:, 0] = torch.sqrt(u[:, 0]) * torch.cos(2 * math.pi * u[:, 2]) quat[:, 1] = torch.sqrt(1 - u[:, 0]) * torch.sin(2 * math.pi * u[:, 1]) quat[:, 2] = torch.sqrt(1 - u[:, 0]) * torch.cos(2 * math.pi * u[:, 1]) quat[:, 3] = torch.sqrt(u[:, 0]) * torch.sin(2 * math.pi * u[:, 2]) return quat def get_nonrand_quat(num_quats, rot_perturbation, device): """Generate tensor of non-random quaternions by composing random Euler rotations.""" quat = torch_utils.quat_from_euler_xyz( torch.rand((num_quats, 1), device=device).squeeze() * rot_perturbation * 2.0 - rot_perturbation, torch.rand((num_quats, 1), device=device).squeeze() * rot_perturbation * 2.0 - rot_perturbation, torch.rand((num_quats, 1), device=device).squeeze() * rot_perturbation * 2.0 - rot_perturbation, ) return quat
19,859
Python
37.864971
163
0.627574
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/utils/anymal_terrain_generator.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omniisaacgymenvs.utils.terrain_utils.terrain_utils import * # terrain generator class Terrain: def __init__(self, cfg, num_robots) -> None: self.horizontal_scale = 0.1 self.vertical_scale = 0.005 self.border_size = 20 self.num_per_env = 2 self.env_length = cfg["mapLength"] self.env_width = cfg["mapWidth"] self.proportions = [np.sum(cfg["terrainProportions"][: i + 1]) for i in range(len(cfg["terrainProportions"]))] self.env_rows = cfg["numLevels"] self.env_cols = cfg["numTerrains"] self.num_maps = self.env_rows * self.env_cols self.num_per_env = int(num_robots / self.num_maps) self.env_origins = np.zeros((self.env_rows, self.env_cols, 3)) self.width_per_env_pixels = int(self.env_width / self.horizontal_scale) self.length_per_env_pixels = int(self.env_length / self.horizontal_scale) self.border = int(self.border_size / self.horizontal_scale) self.tot_cols = int(self.env_cols * self.width_per_env_pixels) + 2 * self.border self.tot_rows = int(self.env_rows * self.length_per_env_pixels) + 2 * self.border self.height_field_raw = np.zeros((self.tot_rows, self.tot_cols), dtype=np.int16) if cfg["curriculum"]: self.curiculum(num_robots, num_terrains=self.env_cols, num_levels=self.env_rows) else: self.randomized_terrain() self.heightsamples = self.height_field_raw self.vertices, self.triangles = convert_heightfield_to_trimesh( self.height_field_raw, self.horizontal_scale, self.vertical_scale, cfg["slopeTreshold"] ) def randomized_terrain(self): for k in range(self.num_maps): # Env coordinates in the world (i, j) = np.unravel_index(k, (self.env_rows, self.env_cols)) # Heightfield coordinate system from now on start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels terrain = SubTerrain( "terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale, ) choice = np.random.uniform(0, 1) if choice < 0.1: if np.random.choice([0, 1]): pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.05, downsampled_scale=0.2) else: pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) elif choice < 0.6: # step_height = np.random.choice([-0.18, -0.15, -0.1, -0.05, 0.05, 0.1, 0.15, 0.18]) step_height = np.random.choice([-0.15, 0.15]) pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.0) elif choice < 1.0: discrete_obstacles_terrain(terrain, 0.15, 1.0, 2.0, 40, platform_size=3.0) self.height_field_raw[start_x:end_x, start_y:end_y] = terrain.height_field_raw env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length / 2.0 - 1) / self.horizontal_scale) x2 = int((self.env_length / 2.0 + 1) / self.horizontal_scale) y1 = int((self.env_width / 2.0 - 1) / self.horizontal_scale) y2 = int((self.env_width / 2.0 + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2]) * self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z] def curiculum(self, num_robots, num_terrains, num_levels): num_robots_per_map = int(num_robots / num_terrains) left_over = num_robots % num_terrains idx = 0 for j in range(num_terrains): for i in range(num_levels): terrain = SubTerrain( "terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale, ) difficulty = i / num_levels choice = j / num_terrains slope = difficulty * 0.4 step_height = 0.05 + 0.175 * difficulty discrete_obstacles_height = 0.025 + difficulty * 0.15 stepping_stones_size = 2 - 1.8 * difficulty if choice < self.proportions[0]: if choice < 0.05: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.0) elif choice < self.proportions[1]: if choice < 0.15: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.0) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.025, downsampled_scale=0.2) elif choice < self.proportions[3]: if choice < self.proportions[2]: step_height *= -1 pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.0) elif choice < self.proportions[4]: discrete_obstacles_terrain(terrain, discrete_obstacles_height, 1.0, 2.0, 40, platform_size=3.0) else: stepping_stones_terrain( terrain, stone_size=stepping_stones_size, stone_distance=0.1, max_height=0.0, platform_size=3.0 ) # Heightfield coordinate system start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels self.height_field_raw[start_x:end_x, start_y:end_y] = terrain.height_field_raw robots_in_map = num_robots_per_map if j < left_over: robots_in_map += 1 env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length / 2.0 - 1) / self.horizontal_scale) x2 = int((self.env_length / 2.0 + 1) / self.horizontal_scale) y1 = int((self.env_width / 2.0 - 1) / self.horizontal_scale) y2 = int((self.env_width / 2.0 + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2]) * self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z]
8,852
Python
50.47093
119
0.591618
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/utils/usd_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from pxr import UsdLux, UsdPhysics def set_drive_type(prim_path, drive_type): joint_prim = get_prim_at_path(prim_path) # set drive type ("angular" or "linear") drive = UsdPhysics.DriveAPI.Apply(joint_prim, drive_type) return drive def set_drive_target_position(drive, target_value): if not drive.GetTargetPositionAttr(): drive.CreateTargetPositionAttr(target_value) else: drive.GetTargetPositionAttr().Set(target_value) def set_drive_target_velocity(drive, target_value): if not drive.GetTargetVelocityAttr(): drive.CreateTargetVelocityAttr(target_value) else: drive.GetTargetVelocityAttr().Set(target_value) def set_drive_stiffness(drive, stiffness): if not drive.GetStiffnessAttr(): drive.CreateStiffnessAttr(stiffness) else: drive.GetStiffnessAttr().Set(stiffness) def set_drive_damping(drive, damping): if not drive.GetDampingAttr(): drive.CreateDampingAttr(damping) else: drive.GetDampingAttr().Set(damping) def set_drive_max_force(drive, max_force): if not drive.GetMaxForceAttr(): drive.CreateMaxForceAttr(max_force) else: drive.GetMaxForceAttr().Set(max_force) def set_drive(prim_path, drive_type, target_type, target_value, stiffness, damping, max_force) -> None: drive = set_drive_type(prim_path, drive_type) # set target type ("position" or "velocity") if target_type == "position": set_drive_target_position(drive, target_value) elif target_type == "velocity": set_drive_target_velocity(drive, target_value) set_drive_stiffness(drive, stiffness) set_drive_damping(drive, damping) set_drive_max_force(drive, max_force)
3,403
Python
36.406593
103
0.740229
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/shared/reacher.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Ref: /omniisaacgymenvs/tasks/shared/reacher.py import math from abc import abstractmethod import numpy as np import torch from omni.isaac.core.prims import RigidPrimView, XFormPrim from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage from omni.isaac.core.utils.torch import * from omniisaacgymenvs.tasks.base.rl_task import RLTask # `scale` maps [-1, 1] to [L, U]; `unscale` maps [L, U] to [-1, 1] from omni.isaac.core.utils.torch import scale, unscale from omni.isaac.gym.vec_env import VecEnvBase class ReacherTask(RLTask): def __init__( self, name: str, env: VecEnvBase, offset=None ) -> None: ReacherTask.update_config(self) RLTask.__init__(self, name, env) self.x_unit_tensor = torch.tensor([1, 0, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.y_unit_tensor = torch.tensor([0, 1, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.z_unit_tensor = torch.tensor([0, 0, 1], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.reset_goal_buf = self.reset_buf.clone() self.successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.consecutive_successes = torch.zeros(1, dtype=torch.float, device=self.device) self.av_factor = torch.tensor(self.av_factor, dtype=torch.float, device=self.device) self.total_successes = 0 self.total_resets = 0 def update_config(self): self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"] self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"] self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"] self.success_tolerance = self._task_cfg["env"]["successTolerance"] self.reach_goal_bonus = self._task_cfg["env"]["reachGoalBonus"] self.rot_eps = self._task_cfg["env"]["rotEps"] self.vel_obs_scale = self._task_cfg["env"]["velObsScale"] self.reset_position_noise = self._task_cfg["env"]["resetPositionNoise"] self.reset_rotation_noise = self._task_cfg["env"]["resetRotationNoise"] self.reset_dof_pos_noise = self._task_cfg["env"]["resetDofPosRandomInterval"] self.reset_dof_vel_noise = self._task_cfg["env"]["resetDofVelRandomInterval"] self.arm_dof_speed_scale = self._task_cfg["env"]["dofSpeedScale"] self.use_relative_control = self._task_cfg["env"]["useRelativeControl"] self.act_moving_average = self._task_cfg["env"]["actionsMovingAverage"] self.max_episode_length = self._task_cfg["env"]["episodeLength"] self.reset_time = self._task_cfg["env"].get("resetTime", -1.0) self.print_success_stat = self._task_cfg["env"]["printNumSuccesses"] self.max_consecutive_successes = self._task_cfg["env"]["maxConsecutiveSuccesses"] self.av_factor = self._task_cfg["env"].get("averFactor", 0.1) self.dt = 1.0 / 60 control_freq_inv = self._task_cfg["env"].get("controlFrequencyInv", 1) if self.reset_time > 0.0: self.max_episode_length = int(round(self.reset_time / (control_freq_inv * self.dt))) print("Reset time: ", self.reset_time) print("New episode length: ", self.max_episode_length) def set_up_scene(self, scene: Scene) -> None: self._stage = get_current_stage() self._assets_root_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0' self.get_arm() self.object_start_translation = torch.tensor([0.0, 0.0, 0.0], device=self.device) self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.goal_displacement_tensor = torch.tensor([0.0, 0.0, 0.0], device=self.device) self.goal_start_translation = torch.tensor([0.0, 0.0, 0.0], device=self.device) + self.goal_displacement_tensor self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.get_object() self.get_goal() super().set_up_scene(scene) self._arms = self.get_arm_view(scene) scene.add(self._arms) self._objects = RigidPrimView( prim_paths_expr="/World/envs/env_.*/object/object", name="object_view", reset_xform_properties=False, ) self._objects._non_root_link = True # hack to ignore kinematics scene.add(self._objects) self._goals = RigidPrimView( prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False ) self._goals._non_root_link = True # hack to ignore kinematics scene.add(self._goals) def initialize_views(self, scene): RLTask.initialize_views(self, scene) if scene.object_exists("dofbot_view"): scene.remove_object("dofbot_view", registry_only=True) if scene.object_exists("ur10_view"): scene.remove_object("ur10_view", registry_only=True) if scene.object_exists("kuka_view"): scene.remove_object("kuka_view", registry_only=True) if scene.object_exists("hiwin_view"): scene.remove_object("hiwin_view", registry_only=True) if scene.object_exists("goal_view"): scene.remove_object("goal_view", registry_only=True) if scene.object_exists("object_view"): scene.remove_object("object_view", registry_only=True) self.object_start_translation = torch.tensor([0.0, 0.0, 0.0], device=self.device) self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.goal_displacement_tensor = torch.tensor([0.0, 0.0, 0.0], device=self.device) self.goal_start_translation = torch.tensor([0.0, 0.0, 0.0], device=self.device) + self.goal_displacement_tensor self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self._arms = self.get_arm_view(scene) scene.add(self._arms) self._objects = RigidPrimView( prim_paths_expr="/World/envs/env_.*/object/object", name="object_view", reset_xform_properties=False, ) self._objects._non_root_link = True # hack to ignore kinematics scene.add(self._objects) self._goals = RigidPrimView( prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False ) self._goals._non_root_link = True # hack to ignore kinematics scene.add(self._goals) @abstractmethod def get_num_dof(self): pass @abstractmethod def get_arm(self): pass @abstractmethod def get_arm_view(self): pass @abstractmethod def get_observations(self): pass @abstractmethod def get_reset_target_new_pos(self, n_reset_envs): pass @abstractmethod def send_joint_pos(self, joint_pos): pass def get_object(self): self.object_usd_path = f"{self._assets_root_path}/Isaac/Props/Blocks/block_instanceable.usd" add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/object") obj = XFormPrim( prim_path=self.default_zero_env_path + "/object/object", name="object", translation=self.object_start_translation, orientation=self.object_start_orientation, scale=self.object_scale, ) self._sim_config.apply_articulation_settings( "object", get_prim_at_path(obj.prim_path), self._sim_config.parse_actor_config("object") ) def get_goal(self): self.goal_usd_path = f"{self._assets_root_path}/Isaac/Props/Blocks/block_instanceable.usd" add_reference_to_stage(self.goal_usd_path, self.default_zero_env_path + "/goal") goal = XFormPrim( prim_path=self.default_zero_env_path + "/goal/object", name="goal", translation=self.goal_start_translation, orientation=self.goal_start_orientation, scale=self.goal_scale ) self._sim_config.apply_articulation_settings("goal", get_prim_at_path(goal.prim_path), self._sim_config.parse_actor_config("goal_object")) def post_reset(self): self.num_arm_dofs = self.get_num_dof() self.actuated_dof_indices = torch.arange(self.num_arm_dofs, dtype=torch.long, device=self.device) self.arm_dof_targets = torch.zeros((self.num_envs, self._arms.num_dof), dtype=torch.float, device=self.device) self.prev_targets = torch.zeros((self.num_envs, self.num_arm_dofs), dtype=torch.float, device=self.device) self.cur_targets = torch.zeros((self.num_envs, self.num_arm_dofs), dtype=torch.float, device=self.device) dof_limits = self._dof_limits[:, :self.num_arm_dofs] self.arm_dof_lower_limits, self.arm_dof_upper_limits = torch.t(dof_limits[0].to(self.device)) self.arm_dof_default_pos = torch.zeros(self.num_arm_dofs, dtype=torch.float, device=self.device) self.arm_dof_default_vel = torch.zeros(self.num_arm_dofs, dtype=torch.float, device=self.device) self.end_effectors_init_pos, self.end_effectors_init_rot = self._arms._end_effectors.get_world_poses() self.goal_pos, self.goal_rot = self._goals.get_world_poses() self.goal_pos -= self._env_pos # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self): self.fall_dist = 0 self.fall_penalty = 0 ( self.rew_buf[:], self.reset_buf[:], self.reset_goal_buf[:], self.progress_buf[:], self.successes[:], self.consecutive_successes[:], ) = compute_arm_reward( self.rew_buf, self.reset_buf, self.reset_goal_buf, self.progress_buf, self.successes, self.consecutive_successes, self.max_episode_length, self.object_pos, self.object_rot, self.goal_pos, self.goal_rot, self.dist_reward_scale, self.rot_reward_scale, self.rot_eps, self.actions, self.action_penalty_scale, self.success_tolerance, self.reach_goal_bonus, self.fall_dist, self.fall_penalty, self.max_consecutive_successes, self.av_factor, ) self.extras["consecutive_successes"] = self.consecutive_successes.mean() if self.print_success_stat: self.total_resets = self.total_resets + self.reset_buf.sum() direct_average_successes = self.total_successes + self.successes.sum() self.total_successes = self.total_successes + (self.successes * self.reset_buf).sum() # The direct average shows the overall result more quickly, but slightly undershoots long term policy performance. print( "Direct average consecutive successes = {:.1f}".format( direct_average_successes / (self.total_resets + self.num_envs) ) ) if self.total_resets > 0: print( "Post-Reset average consecutive successes = {:.1f}".format(self.total_successes / self.total_resets) ) def pre_physics_step(self, actions): if not self._env._world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) goal_env_ids = self.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1) end_effectors_pos, end_effectors_rot = self._arms._end_effectors.get_world_poses() # Reverse the default rotation and rotate the displacement tensor according to the current rotation self.object_pos = end_effectors_pos + quat_rotate(end_effectors_rot, quat_rotate_inverse(self.end_effectors_init_rot, self.get_object_displacement_tensor())) self.object_pos -= self._env_pos # subtract world env pos self.object_rot = end_effectors_rot object_pos = self.object_pos + self._env_pos object_rot = self.object_rot self._objects.set_world_poses(object_pos, object_rot) # if only goals need reset, then call set API if len(goal_env_ids) > 0 and len(env_ids) == 0: self.reset_target_pose(goal_env_ids) elif len(goal_env_ids) > 0: self.reset_target_pose(goal_env_ids) if len(env_ids) > 0: self.reset_idx(env_ids) self.actions = actions.clone().to(self.device) # Reacher tasks don't require gripper actions, disable it. self.actions[:, 5] = 0.0 if self.use_relative_control: targets = ( self.prev_targets[:, self.actuated_dof_indices] + self.arm_dof_speed_scale * self.dt * self.actions ) self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp( targets, self.arm_dof_lower_limits[self.actuated_dof_indices], self.arm_dof_upper_limits[self.actuated_dof_indices], ) else: self.cur_targets[:, self.actuated_dof_indices] = scale( self.actions[:, :self.num_arm_dofs], self.arm_dof_lower_limits[self.actuated_dof_indices], self.arm_dof_upper_limits[self.actuated_dof_indices], ) self.cur_targets[:, self.actuated_dof_indices] = ( self.act_moving_average * self.cur_targets[:, self.actuated_dof_indices] + (1.0 - self.act_moving_average) * self.prev_targets[:, self.actuated_dof_indices] ) self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp( self.cur_targets[:, self.actuated_dof_indices], self.arm_dof_lower_limits[self.actuated_dof_indices], self.arm_dof_upper_limits[self.actuated_dof_indices], ) self.prev_targets[:, self.actuated_dof_indices] = self.cur_targets[:, self.actuated_dof_indices] self._arms.set_joint_position_targets( self.cur_targets[:, self.actuated_dof_indices], indices=None, joint_indices=self.actuated_dof_indices ) if self._task_cfg['sim2real']['enabled'] and self.test and self.num_envs == 1: # Only retrieve the 0-th joint position even when multiple envs are used cur_joint_pos = self._arms.get_joint_positions(indices=[0], joint_indices=self.actuated_dof_indices) # Send the current joint positions to the real robot joint_pos = cur_joint_pos[0] if torch.any(joint_pos < self.arm_dof_lower_limits) or torch.any(joint_pos > self.arm_dof_upper_limits): print("get_joint_positions out of bound, send_joint_pos skipped") else: self.send_joint_pos(joint_pos) def is_done(self): pass def reset_target_pose(self, env_ids): # reset goal indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), 4), device=self.device) new_pos = self.get_reset_target_new_pos(len(env_ids)) new_rot = randomize_rotation( rand_floats[:, 0], rand_floats[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids] ) self.goal_pos[env_ids] = new_pos self.goal_rot[env_ids] = new_rot goal_pos, goal_rot = self.goal_pos.clone(), self.goal_rot.clone() goal_pos[env_ids] = ( self.goal_pos[env_ids] + self._env_pos[env_ids] ) # add world env pos self._goals.set_world_poses(goal_pos[env_ids], goal_rot[env_ids], indices) self.reset_goal_buf[env_ids] = 0 def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), self.num_arm_dofs * 2 + 5), device=self.device) self.reset_target_pose(env_ids) # reset arm delta_max = self.arm_dof_upper_limits - self.arm_dof_default_pos delta_min = self.arm_dof_lower_limits - self.arm_dof_default_pos rand_delta = delta_min + (delta_max - delta_min) * (rand_floats[:, 5:5+self.num_arm_dofs] + 1.0) * 0.5 pos = self.arm_dof_default_pos + self.reset_dof_pos_noise * rand_delta dof_pos = torch.zeros((self.num_envs, self._arms.num_dof), device=self.device) dof_pos[env_ids, :self.num_arm_dofs] = pos dof_vel = torch.zeros((self.num_envs, self._arms.num_dof), device=self.device) dof_vel[env_ids, :self.num_arm_dofs] = self.arm_dof_default_vel + \ self.reset_dof_vel_noise * rand_floats[:, 5+self.num_arm_dofs:5+self.num_arm_dofs*2] self.prev_targets[env_ids, :self.num_arm_dofs] = pos self.cur_targets[env_ids, :self.num_arm_dofs] = pos self.arm_dof_targets[env_ids, :self.num_arm_dofs] = pos self._arms.set_joint_position_targets(self.arm_dof_targets[env_ids], indices) # set_joint_positions doesn't seem to apply immediately. self._arms.set_joint_positions(dof_pos[env_ids], indices) self._arms.set_joint_velocities(dof_vel[env_ids], indices) self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 0 self.successes[env_ids] = 0 ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def randomize_rotation(rand0, rand1, x_unit_tensor, y_unit_tensor): return quat_mul( quat_from_angle_axis(rand0 * np.pi, x_unit_tensor), quat_from_angle_axis(rand1 * np.pi, y_unit_tensor) ) @torch.jit.script def compute_arm_reward( rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes, max_episode_length: float, object_pos, object_rot, target_pos, target_rot, dist_reward_scale: float, rot_reward_scale: float, rot_eps: float, actions, action_penalty_scale: float, success_tolerance: float, reach_goal_bonus: float, fall_dist: float, fall_penalty: float, max_consecutive_successes: int, av_factor: float, ): goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1) # Orientation alignment for the cube in hand and goal cube quat_diff = quat_mul(object_rot, quat_conjugate(target_rot)) rot_dist = 2.0 * torch.asin( torch.clamp(torch.norm(quat_diff[:, 1:4], p=2, dim=-1), max=1.0) ) # changed quat convention dist_rew = goal_dist * dist_reward_scale rot_rew = 1.0 / (torch.abs(rot_dist) + rot_eps) * rot_reward_scale action_penalty = torch.sum(actions**2, dim=-1) # Total reward is: position distance + orientation alignment + action regularization + success bonus + fall penalty reward = dist_rew + action_penalty * action_penalty_scale # Find out which envs hit the goal and update successes count goal_resets = torch.where(torch.abs(goal_dist) <= success_tolerance, torch.ones_like(reset_goal_buf), reset_goal_buf) successes = successes + goal_resets # Success bonus: orientation is within `success_tolerance` of goal orientation reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward) resets = reset_buf if max_consecutive_successes > 0: # Reset progress buffer on goal envs if max_consecutive_successes > 0 progress_buf = torch.where( torch.abs(rot_dist) <= success_tolerance, torch.zeros_like(progress_buf), progress_buf ) resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets) resets = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(resets), resets) num_resets = torch.sum(resets) finished_cons_successes = torch.sum(successes * resets.float()) cons_successes = torch.where( num_resets > 0, av_factor * finished_cons_successes / num_resets + (1.0 - av_factor) * consecutive_successes, consecutive_successes, ) return reward, resets, goal_resets, progress_buf, successes, cons_successes
22,312
Python
42.836935
165
0.629482
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tasks/shared/locomotion.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math from abc import abstractmethod import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, unscale from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omniisaacgymenvs.tasks.base.rl_task import RLTask class LocomotionTask(RLTask): def __init__(self, name, env, offset=None) -> None: LocomotionTask.update_config(self) RLTask.__init__(self, name, env) return def update_config(self): self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.angular_velocity_scale = self._task_cfg["env"]["angularVelocityScale"] self.contact_force_scale = self._task_cfg["env"]["contactForceScale"] self.power_scale = self._task_cfg["env"]["powerScale"] self.heading_weight = self._task_cfg["env"]["headingWeight"] self.up_weight = self._task_cfg["env"]["upWeight"] self.actions_cost_scale = self._task_cfg["env"]["actionsCost"] self.energy_cost_scale = self._task_cfg["env"]["energyCost"] self.joints_at_limit_cost_scale = self._task_cfg["env"]["jointsAtLimitCost"] self.death_cost = self._task_cfg["env"]["deathCost"] self.termination_height = self._task_cfg["env"]["terminationHeight"] self.alive_reward_scale = self._task_cfg["env"]["alive_reward_scale"] @abstractmethod def set_up_scene(self, scene) -> None: pass @abstractmethod def get_robot(self): pass def get_observations(self) -> dict: torso_position, torso_rotation = self._robots.get_world_poses(clone=False) velocities = self._robots.get_velocities(clone=False) velocity = velocities[:, 0:3] ang_velocity = velocities[:, 3:6] dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) # force sensors attached to the feet sensor_force_torques = self._robots.get_measured_joint_forces(joint_indices=self._sensor_indices) ( self.obs_buf[:], self.potentials[:], self.prev_potentials[:], self.up_vec[:], self.heading_vec[:], ) = get_observations( torso_position, torso_rotation, velocity, ang_velocity, dof_pos, dof_vel, self.targets, self.potentials, self.dt, self.inv_start_rot, self.basis_vec0, self.basis_vec1, self.dof_limits_lower, self.dof_limits_upper, self.dof_vel_scale, sensor_force_torques, self._num_envs, self.contact_force_scale, self.actions, self.angular_velocity_scale, ) observations = {self._robots.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) forces = self.actions * self.joint_gears * self.power_scale indices = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) # applies joint torques self._robots.set_joint_efforts(forces, indices=indices) def reset_idx(self, env_ids): num_resets = len(env_ids) # randomize DOF positions and velocities dof_pos = torch_rand_float(-0.2, 0.2, (num_resets, self._robots.num_dof), device=self._device) dof_pos[:] = tensor_clamp(self.initial_dof_pos[env_ids] + dof_pos, self.dof_limits_lower, self.dof_limits_upper) dof_vel = torch_rand_float(-0.1, 0.1, (num_resets, self._robots.num_dof), device=self._device) root_pos, root_rot = self.initial_root_pos[env_ids], self.initial_root_rot[env_ids] root_vel = torch.zeros((num_resets, 6), device=self._device) # apply resets self._robots.set_joint_positions(dof_pos, indices=env_ids) self._robots.set_joint_velocities(dof_vel, indices=env_ids) self._robots.set_world_poses(root_pos, root_rot, indices=env_ids) self._robots.set_velocities(root_vel, indices=env_ids) to_target = self.targets[env_ids] - self.initial_root_pos[env_ids] to_target[:, 2] = 0.0 self.prev_potentials[env_ids] = -torch.norm(to_target, p=2, dim=-1) / self.dt self.potentials[env_ids] = self.prev_potentials[env_ids].clone() # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 num_resets = len(env_ids) def post_reset(self): self._robots = self.get_robot() self.initial_root_pos, self.initial_root_rot = self._robots.get_world_poses() self.initial_dof_pos = self._robots.get_joint_positions() # initialize some data used later on self.start_rotation = torch.tensor([1, 0, 0, 0], device=self._device, dtype=torch.float32) self.up_vec = torch.tensor([0, 0, 1], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.heading_vec = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.inv_start_rot = quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() self.targets = torch.tensor([1000, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.target_dirs = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.dt = 1.0 / 60.0 self.potentials = torch.tensor([-1000.0 / self.dt], dtype=torch.float32, device=self._device).repeat( self.num_envs ) self.prev_potentials = self.potentials.clone() self.actions = torch.zeros((self.num_envs, self.num_actions), device=self._device) # randomize all envs indices = torch.arange(self._robots.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = calculate_metrics( self.obs_buf, self.actions, self.up_weight, self.heading_weight, self.potentials, self.prev_potentials, self.actions_cost_scale, self.energy_cost_scale, self.termination_height, self.death_cost, self._robots.num_dof, self.get_dof_at_limit_cost(), self.alive_reward_scale, self.motor_effort_ratio, ) def is_done(self) -> None: self.reset_buf[:] = is_done( self.obs_buf, self.termination_height, self.reset_buf, self.progress_buf, self._max_episode_length ) ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def normalize_angle(x): return torch.atan2(torch.sin(x), torch.cos(x)) @torch.jit.script def get_observations( torso_position, torso_rotation, velocity, ang_velocity, dof_pos, dof_vel, targets, potentials, dt, inv_start_rot, basis_vec0, basis_vec1, dof_limits_lower, dof_limits_upper, dof_vel_scale, sensor_force_torques, num_envs, contact_force_scale, actions, angular_velocity_scale, ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, int, float, Tensor, float) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor] to_target = targets - torso_position to_target[:, 2] = 0.0 prev_potentials = potentials.clone() potentials = -torch.norm(to_target, p=2, dim=-1) / dt torso_quat, up_proj, heading_proj, up_vec, heading_vec = compute_heading_and_up( torso_rotation, inv_start_rot, to_target, basis_vec0, basis_vec1, 2 ) vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target = compute_rot( torso_quat, velocity, ang_velocity, targets, torso_position ) dof_pos_scaled = unscale(dof_pos, dof_limits_lower, dof_limits_upper) # obs_buf shapes: 1, 3, 3, 1, 1, 1, 1, 1, num_dofs, num_dofs, num_sensors * 6, num_dofs obs = torch.cat( ( torso_position[:, 2].view(-1, 1), vel_loc, angvel_loc * angular_velocity_scale, normalize_angle(yaw).unsqueeze(-1), normalize_angle(roll).unsqueeze(-1), normalize_angle(angle_to_target).unsqueeze(-1), up_proj.unsqueeze(-1), heading_proj.unsqueeze(-1), dof_pos_scaled, dof_vel * dof_vel_scale, sensor_force_torques.reshape(num_envs, -1) * contact_force_scale, actions, ), dim=-1, ) return obs, potentials, prev_potentials, up_vec, heading_vec @torch.jit.script def is_done(obs_buf, termination_height, reset_buf, progress_buf, max_episode_length): # type: (Tensor, float, Tensor, Tensor, float) -> Tensor reset = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(reset_buf), reset_buf) reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset) return reset @torch.jit.script def calculate_metrics( obs_buf, actions, up_weight, heading_weight, potentials, prev_potentials, actions_cost_scale, energy_cost_scale, termination_height, death_cost, num_dof, dof_at_limit_cost, alive_reward_scale, motor_effort_ratio, ): # type: (Tensor, Tensor, float, float, Tensor, Tensor, float, float, float, float, int, Tensor, float, Tensor) -> Tensor heading_weight_tensor = torch.ones_like(obs_buf[:, 11]) * heading_weight heading_reward = torch.where(obs_buf[:, 11] > 0.8, heading_weight_tensor, heading_weight * obs_buf[:, 11] / 0.8) # aligning up axis of robot and environment up_reward = torch.zeros_like(heading_reward) up_reward = torch.where(obs_buf[:, 10] > 0.93, up_reward + up_weight, up_reward) # energy penalty for movement actions_cost = torch.sum(actions**2, dim=-1) electricity_cost = torch.sum( torch.abs(actions * obs_buf[:, 12 + num_dof : 12 + num_dof * 2]) * motor_effort_ratio.unsqueeze(0), dim=-1 ) # reward for duration of staying alive alive_reward = torch.ones_like(potentials) * alive_reward_scale progress_reward = potentials - prev_potentials total_reward = ( progress_reward + alive_reward + up_reward + heading_reward - actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost ) # adjust reward for fallen agents total_reward = torch.where( obs_buf[:, 0] < termination_height, torch.ones_like(total_reward) * death_cost, total_reward ) return total_reward
13,249
Python
37.294798
214
0.628802
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/sim2real/dofbot.py
# Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import socket import struct import time import numpy as np class RealWorldDofbot(): # Defined in dofbot.usd sim_dof_angle_limits = [ (-90, 90, False), (-90, 90, False), (-90, 90, False), (-90, 90, False), (-90, 180, False), (-30, 60, True), # (-30, 60): /arm_01/link5/Finger_Left_01/Finger_Left_01_RevoluteJoint # (-60, 30): /arm_01/link5/Finger_Right_01/Finger_Right_01_RevoluteJoint ] # _sim_dof_limits[:,2] == True indicates inversed joint angle compared to real # Ref: Section `6.5 Control all servo` in http://www.yahboom.net/study/Dofbot-Jetson_nano servo_angle_limits = [ (0, 180), (0, 180), (0, 180), (0, 180), (0, 270), (0, 180), ] def __init__(self, IP, PORT, fail_quietely=False, verbose=False) -> None: print("Connecting to real-world Dofbot at IP:", IP, "and port:", PORT) self.fail_quietely = fail_quietely self.failed = False self.last_sync_time = 0 self.sync_hz = 10000 try: self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_address = (IP, PORT) self.sock.connect(server_address) print("Connected to real-world Dofbot!") except socket.error as e: self.failed = True print("Connection to real-world Dofbot failed!") if self.fail_quietely: print(e) else: raise e def send_joint_pos(self, joint_pos): if time.time() - self.last_sync_time < 1 / self.sync_hz: return self.last_sync_time = time.time() if len(joint_pos) != 6: raise Exception("The length of Dofbot joint_pos is {}, but should be 6!".format(len(joint_pos))) # Convert Sim angles to Real angles servo_angles = [90] * 6 for i, pos in enumerate(joint_pos): if i == 5: # Ignore the gripper joints for Reacher task continue # Map [L, U] to [A, B] L, U, inversed = self.sim_dof_angle_limits[i] A, B = self.servo_angle_limits[i] angle = np.rad2deg(float(pos)) if not L <= angle <= U: print("The {}-th simulation joint angle ({}) is out of range! Should be in [{}, {}]".format(i, angle, L, U)) angle = np.clip(angle, L, U) servo_angles[i] = (angle - L) * ((B-A)/(U-L)) + A # Map [L, U] to [A, B] if inversed: servo_angles[i] = (B-A) - (servo_angles[i] - A) + A # Map [A, B] to [B, A] if not A <= servo_angles[i] <= B: raise Exception("(Should Not Happen) The {}-th real world joint angle ({}) is out of range! hould be in [{}, {}]".format(i, servo_angles[i], A, B)) print("Sending real-world Dofbot joint angles:", servo_angles) if self.failed: print("Cannot send joint states. Not connected to real-world Dofbot!") return packer = struct.Struct("f f f f f f") packed_data = packer.pack(*servo_angles) try: self.sock.sendall(packed_data) except socket.error as e: self.failed = True print("Send to real-world Dofbot failed!") if self.fail_quietely: print(e) else: raise e if __name__ == "__main__": IP = input("Enter Dofbot's IP: ") PORT = input("Enter Dofbot's Port: ") dofbot = RealWorldDofbot(IP, int(PORT)) pos = [np.deg2rad(0)] * 6 dofbot.send_joint_pos(pos) print("Dofbot joint angles reset.")
5,238
Python
40.912
163
0.605766
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/scripts/rlgames_demo.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import datetime import os import hydra import torch from omegaconf import DictConfig from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.scripts.rlgames_train import RLGTrainer from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path from omniisaacgymenvs.utils.demo_util import initialize_demo from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict class RLGDemo(RLGTrainer): def __init__(self, cfg, cfg_dict): RLGTrainer.__init__(self, cfg, cfg_dict) self.cfg.test = True @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") headless = cfg.headless env = VecEnvRLGames(headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_demo(cfg_dict, env) if cfg.wandb_activate: # Make sure to install WandB if you actually use this. import wandb run_name = f"{cfg.wandb_name}_{time_str}" wandb.init( project=cfg.wandb_project, group=cfg.wandb_group, entity=cfg.wandb_entity, config=cfg_dict, sync_tensorboard=True, id=run_name, resume="allow", monitor_gym=True, ) rlg_trainer = RLGDemo(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run() env.close() if cfg.wandb_activate: wandb.finish() if __name__ == "__main__": parse_hydra_configs()
3,746
Python
35.735294
109
0.719434
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/scripts/rlgames_train.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import datetime import os import hydra import torch from omegaconf import DictConfig from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path, get_experience from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from omniisaacgymenvs.utils.task_util import initialize_task from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner class RLGTrainer: def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register("RLGPU", lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs)) env_configurations.register("rlgpu", {"vecenv_type": "RLGPU", "env_creator": lambda **kwargs: env}) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self): # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) runner.load(self.rlg_config_dict) runner.reset() # dump config dict experiment_dir = os.path.join("runs", self.cfg.train.params.config.name) os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, "config.yaml"), "w") as f: f.write(OmegaConf.to_yaml(self.cfg)) runner.run( {"train": not self.cfg.test, "play": self.cfg.test, "checkpoint": self.cfg.checkpoint, "sigma": None} ) @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") headless = cfg.headless # local rank (GPU id) in a current multi-gpu mode local_rank = int(os.getenv("LOCAL_RANK", "0")) # global rank (GPU id) in multi-gpu multi-node mode global_rank = int(os.getenv("RANK", "0")) if cfg.multi_gpu: cfg.device_id = local_rank cfg.rl_device = f'cuda:{local_rank}' enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras # select kit app file experience = get_experience(headless, cfg.enable_livestream, enable_viewport, cfg.kit_app) env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport, experience=experience ) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = cfg.seed + global_rank if cfg.seed != -1 else cfg.seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_task(cfg_dict, env) if cfg.wandb_activate and global_rank == 0: # Make sure to install WandB if you actually use this. import wandb run_name = f"{cfg.wandb_name}_{time_str}" wandb.init( project=cfg.wandb_project, group=cfg.wandb_group, entity=cfg.wandb_entity, config=cfg_dict, sync_tensorboard=True, name=run_name, resume="allow", ) torch.cuda.set_device(local_rank) rlg_trainer = RLGTrainer(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run() env.close() if cfg.wandb_activate and global_rank == 0: wandb.finish() if __name__ == "__main__": parse_hydra_configs()
5,846
Python
37.721854
119
0.695689
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/scripts/dummy_dofbot_policy.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Ref: /omniisaacgymenvs/scripts/random_policy.py import hydra import numpy as np import torch from omegaconf import DictConfig from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.utils.config_utils.path_utils import get_experience from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.task_util import initialize_task @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) headless = cfg.headless render = not headless enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras # select kit app file experience = get_experience(headless, cfg.enable_livestream, enable_viewport, cfg.kit_app) env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport, experience=experience ) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_task(cfg_dict, env) while env._simulation_app.is_running(): if env._world.is_playing(): if env._world.current_time_step_index == 0: env._world.reset(soft=True) actions = torch.tensor( np.array([env.action_space.sample() for _ in range(env.num_envs)]), device=task.rl_device ) actions[:, 0] = 1.0 actions[:, 1] = 1.0 actions[:, 2] = 1.0 actions[:, 3] = 1.0 actions[:, 4] = 1.0 actions[:, 5] = 0.0 env._task.pre_physics_step(actions) env._world.step(render=render) env.sim_frame_count += 1 env._task.post_physics_step() else: env._world.step(render=render) env._simulation_app.close() if __name__ == "__main__": parse_hydra_configs()
3,841
Python
39.020833
105
0.702421
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/demos/anymal_terrain.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.anymal_terrain import AnymalTerrainTask, wrap_to_pi from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.utils.torch.transformations import tf_combine import numpy as np import torch import math import omni import carb from omni.kit.viewport.utility.camera_state import ViewportCameraState from omni.kit.viewport.utility import get_viewport_from_window_name from pxr import Sdf class AnymalTerrainDemo(AnymalTerrainTask): def __init__( self, name, sim_config, env, offset=None ) -> None: max_num_envs = 128 if sim_config.task_config["env"]["numEnvs"] >= max_num_envs: print(f"num_envs reduced to {max_num_envs} for this demo.") sim_config.task_config["env"]["numEnvs"] = max_num_envs sim_config.task_config["env"]["learn"]["episodeLength_s"] = 120 AnymalTerrainTask.__init__(self, name, sim_config, env) self.add_noise = False self.knee_threshold = 0.05 self.create_camera() self._current_command = [0.0, 0.0, 0.0, 0.0] self.set_up_keyboard() self._prim_selection = omni.usd.get_context().get_selection() self._selected_id = None self._previous_selected_id = None return def create_camera(self): stage = omni.usd.get_context().get_stage() self.view_port = get_viewport_from_window_name("Viewport") # Create camera self.camera_path = "/World/Camera" self.perspective_path = "/OmniverseKit_Persp" camera_prim = stage.DefinePrim(self.camera_path, "Camera") camera_prim.GetAttribute("focalLength").Set(8.5) coi_prop = camera_prim.GetProperty("omni:kit:centerOfInterest") if not coi_prop or not coi_prop.IsValid(): camera_prim.CreateAttribute( "omni:kit:centerOfInterest", Sdf.ValueTypeNames.Vector3d, True, Sdf.VariabilityUniform ).Set(Gf.Vec3d(0, 0, -10)) self.view_port.set_active_camera(self.perspective_path) def set_up_keyboard(self): self._input = carb.input.acquire_input_interface() self._keyboard = omni.appwindow.get_default_app_window().get_keyboard() self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._on_keyboard_event) T = 1 R = 1 self._key_to_control = { "UP": [T, 0.0, 0.0, 0.0], "DOWN": [-T, 0.0, 0.0, 0.0], "LEFT": [0.0, T, 0.0, 0.0], "RIGHT": [0.0, -T, 0.0, 0.0], "Z": [0.0, 0.0, R, 0.0], "X": [0.0, 0.0, -R, 0.0], } def _on_keyboard_event(self, event, *args, **kwargs): if event.type == carb.input.KeyboardEventType.KEY_PRESS: if event.input.name in self._key_to_control: self._current_command = self._key_to_control[event.input.name] elif event.input.name == "ESCAPE": self._prim_selection.clear_selected_prim_paths() elif event.input.name == "C": if self._selected_id is not None: if self.view_port.get_active_camera() == self.camera_path: self.view_port.set_active_camera(self.perspective_path) else: self.view_port.set_active_camera(self.camera_path) elif event.type == carb.input.KeyboardEventType.KEY_RELEASE: self._current_command = [0.0, 0.0, 0.0, 0.0] def update_selected_object(self): self._previous_selected_id = self._selected_id selected_prim_paths = self._prim_selection.get_selected_prim_paths() if len(selected_prim_paths) == 0: self._selected_id = None self.view_port.set_active_camera(self.perspective_path) elif len(selected_prim_paths) > 1: print("Multiple prims are selected. Please only select one!") else: prim_splitted_path = selected_prim_paths[0].split("/") if len(prim_splitted_path) >= 4 and prim_splitted_path[3][0:4] == "env_": self._selected_id = int(prim_splitted_path[3][4:]) if self._previous_selected_id != self._selected_id: self.view_port.set_active_camera(self.camera_path) self._update_camera() else: print("The selected prim was not an Anymal") if self._previous_selected_id is not None and self._previous_selected_id != self._selected_id: self.commands[self._previous_selected_id, 0] = np.random.uniform(self.command_x_range[0], self.command_x_range[1]) self.commands[self._previous_selected_id, 1] = np.random.uniform(self.command_y_range[0], self.command_y_range[1]) self.commands[self._previous_selected_id, 2] = 0.0 def _update_camera(self): base_pos = self.base_pos[self._selected_id, :].clone() base_quat = self.base_quat[self._selected_id, :].clone() camera_local_transform = torch.tensor([-1.8, 0.0, 0.6], device=self.device) camera_pos = quat_apply(base_quat, camera_local_transform) + base_pos camera_state = ViewportCameraState(self.camera_path, self.view_port) eye = Gf.Vec3d(camera_pos[0].item(), camera_pos[1].item(), camera_pos[2].item()) target = Gf.Vec3d(base_pos[0].item(), base_pos[1].item(), base_pos[2].item()+0.6) camera_state.set_position_world(eye, True) camera_state.set_target_world(target, True) def post_physics_step(self): self.progress_buf[:] += 1 self.refresh_dof_state_tensors() self.refresh_body_state_tensors() self.update_selected_object() self.common_step_counter += 1 if self.common_step_counter % self.push_interval == 0: self.push_robots() # prepare quantities self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3]) self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6]) self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec) forward = quat_apply(self.base_quat, self.forward_vec) heading = torch.atan2(forward[:, 1], forward[:, 0]) self.commands[:, 2] = torch.clip(0.5*wrap_to_pi(self.commands[:, 3] - heading), -1., 1.) self.check_termination() if self._selected_id is not None: self.commands[self._selected_id, :] = torch.tensor(self._current_command, device=self.device) self.timeout_buf[self._selected_id] = 0 self.reset_buf[self._selected_id] = 0 self.get_states() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.get_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = self.dof_vel[:] return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
8,841
Python
44.577319
126
0.636127
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tests/runner.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio from datetime import date import sys import unittest import weakref import omni.kit.test from omni.kit.test import AsyncTestSuite from omni.kit.test.async_unittest import AsyncTextTestRunner import omni.ui as ui from omni.isaac.ui.menu import make_menu_item_description from omni.isaac.ui.ui_utils import btn_builder from omni.kit.menu.utils import MenuItemDescription, add_menu_items import omni.timeline import omni.usd from omniisaacgymenvs import RLExtension, get_instance class GymRLTests(omni.kit.test.AsyncTestCase): def __init__(self, *args, **kwargs): super(GymRLTests, self).__init__(*args, **kwargs) self.ext = get_instance() async def _train(self, task, load=True, experiment=None, max_iterations=None): task_idx = self.ext._task_list.index(task) self.ext._task_dropdown.get_item_value_model().set_value(task_idx) if load: self.ext._on_load_world() while True: _, files_loaded, total_files = omni.usd.get_context().get_stage_loading_status() if files_loaded or total_files: await omni.kit.app.get_app().next_update_async() else: break for _ in range(100): await omni.kit.app.get_app().next_update_async() self.ext._render_dropdown.get_item_value_model().set_value(2) overrides = None if experiment is not None: overrides = [f"experiment={experiment}"] if max_iterations is not None: if overrides is None: overrides = [f"max_iterations={max_iterations}"] else: overrides += [f"max_iterations={max_iterations}"] await self.ext._on_train_async(overrides=overrides) async def test_train(self): date_str = date.today() tasks = self.ext._task_list for task in tasks: await self._train(task, load=True, experiment=f"{task}_{date_str}") async def test_train_determinism(self): date_str = date.today() tasks = self.ext._task_list for task in tasks: for i in range(3): await self._train(task, load=(i==0), experiment=f"{task}_{date_str}_{i}", max_iterations=100) class TestRunner(): def __init__(self): self._build_ui() def _build_ui(self): menu_items = [make_menu_item_description("RL Examples Tests", "RL Examples Tests", lambda a=weakref.proxy(self): a._menu_callback())] add_menu_items(menu_items, "Isaac Examples") self._window = omni.ui.Window( "RL Examples Tests", width=250, height=0, visible=True, dockPreference=ui.DockPreference.LEFT_BOTTOM ) with self._window.frame: main_stack = ui.VStack(spacing=5, height=0) with main_stack: dict = { "label": "Run Tests", "type": "button", "text": "Run Tests", "tooltip": "Run all tests", "on_clicked_fn": self._run_tests, } btn_builder(**dict) def _menu_callback(self): self._window.visible = not self._window.visible def _run_tests(self): loader = unittest.TestLoader() loader.SuiteClass = AsyncTestSuite test_suite = AsyncTestSuite() test_suite.addTests(loader.loadTestsFromTestCase(GymRLTests)) test_runner = AsyncTextTestRunner(verbosity=2, stream=sys.stdout) async def single_run(): await test_runner.run(test_suite) print("=======================================") print(f"Running Tests") print("=======================================") asyncio.ensure_future(single_run()) TestRunner()
4,254
Python
35.059322
141
0.607428
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/task_util.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. def import_tasks(): from omniisaacgymenvs.tasks.allegro_hand import AllegroHandTask from omniisaacgymenvs.tasks.ant import AntLocomotionTask from omniisaacgymenvs.tasks.anymal import AnymalTask from omniisaacgymenvs.tasks.anymal_terrain import AnymalTerrainTask from omniisaacgymenvs.tasks.ball_balance import BallBalanceTask from omniisaacgymenvs.tasks.cartpole import CartpoleTask from omniisaacgymenvs.tasks.cartpole_camera import CartpoleCameraTask from omniisaacgymenvs.tasks.crazyflie import CrazyflieTask from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_pick import FactoryTaskNutBoltPick from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_place import FactoryTaskNutBoltPlace from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_screw import FactoryTaskNutBoltScrew from omniisaacgymenvs.tasks.franka_cabinet import FrankaCabinetTask from omniisaacgymenvs.tasks.franka_deformable import FrankaDeformableTask from omniisaacgymenvs.tasks.humanoid import HumanoidLocomotionTask from omniisaacgymenvs.tasks.ingenuity import IngenuityTask from omniisaacgymenvs.tasks.quadcopter import QuadcopterTask from omniisaacgymenvs.tasks.shadow_hand import ShadowHandTask from omniisaacgymenvs.tasks.dofbot_reacher import DofbotReacherTask from omniisaacgymenvs.tasks.warp.ant import AntLocomotionTask as AntLocomotionTaskWarp from omniisaacgymenvs.tasks.warp.cartpole import CartpoleTask as CartpoleTaskWarp from omniisaacgymenvs.tasks.warp.humanoid import HumanoidLocomotionTask as HumanoidLocomotionTaskWarp # Mappings from strings to environments task_map = { "AllegroHand": AllegroHandTask, "Ant": AntLocomotionTask, "Anymal": AnymalTask, "AnymalTerrain": AnymalTerrainTask, "BallBalance": BallBalanceTask, "Cartpole": CartpoleTask, "CartpoleCamera": CartpoleCameraTask, "FactoryTaskNutBoltPick": FactoryTaskNutBoltPick, "FactoryTaskNutBoltPlace": FactoryTaskNutBoltPlace, "FactoryTaskNutBoltScrew": FactoryTaskNutBoltScrew, "FrankaCabinet": FrankaCabinetTask, "FrankaDeformable": FrankaDeformableTask, "Humanoid": HumanoidLocomotionTask, "Ingenuity": IngenuityTask, "Quadcopter": QuadcopterTask, "Crazyflie": CrazyflieTask, "ShadowHand": ShadowHandTask, "ShadowHandOpenAI_FF": ShadowHandTask, "ShadowHandOpenAI_LSTM": ShadowHandTask, "DofbotReacher": DofbotReacherTask, } task_map_warp = { "Cartpole": CartpoleTaskWarp, "Ant":AntLocomotionTaskWarp, "Humanoid": HumanoidLocomotionTaskWarp } return task_map, task_map_warp def initialize_task(config, env, init_sim=True): from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig sim_config = SimConfig(config) task_map, task_map_warp = import_tasks() cfg = sim_config.config if cfg["warp"]: task_map = task_map_warp task = task_map[cfg["task_name"]]( name=cfg["task_name"], sim_config=sim_config, env=env ) backend = "warp" if cfg["warp"] else "torch" rendering_dt = sim_config.get_physics_params()["rendering_dt"] env.set_task( task=task, sim_params=sim_config.get_physics_params(), backend=backend, init_sim=init_sim, rendering_dt=rendering_dt, ) return task
5,049
Python
42.913043
105
0.75302
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/domain_randomization/randomize.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import numpy as np import torch from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.extensions import enable_extension class Randomizer: def __init__(self, main_config, task_config): self._cfg = task_config self._config = main_config self.randomize = False dr_config = self._cfg.get("domain_randomization", None) self.distributions = dict() self.active_domain_randomizations = dict() self._observations_dr_params = None self._actions_dr_params = None if dr_config is not None: randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize and randomization_params is not None: self.randomize = True self.min_frequency = dr_config.get("min_frequency", 1) # import DR extensions enable_extension("omni.replicator.isaac") import omni.replicator.core as rep import omni.replicator.isaac as dr self.rep = rep self.dr = dr def apply_on_startup_domain_randomization(self, task): if self.randomize: torch.manual_seed(self._config["seed"]) randomization_params = self._cfg["domain_randomization"]["randomization_params"] for opt in randomization_params.keys(): if opt == "rigid_prim_views": if randomization_params["rigid_prim_views"] is not None: for view_name in randomization_params["rigid_prim_views"].keys(): if randomization_params["rigid_prim_views"][view_name] is not None: for attribute, params in randomization_params["rigid_prim_views"][view_name].items(): params = randomization_params["rigid_prim_views"][view_name][attribute] if attribute in ["scale", "mass", "density"] and params is not None: if "on_startup" in params.keys(): if not set( ("operation", "distribution", "distribution_parameters") ).issubset(params["on_startup"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} " + "on_startup are provided: operation, distribution, distribution_parameters." ) view = task._env._world.scene._scene_registry.rigid_prim_views[view_name] if attribute == "scale": self.randomize_scale_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], sync_dim_noise=True, ) elif attribute == "mass": self.randomize_mass_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], ) elif attribute == "density": self.randomize_density_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], ) if opt == "articulation_views": if randomization_params["articulation_views"] is not None: for view_name in randomization_params["articulation_views"].keys(): if randomization_params["articulation_views"][view_name] is not None: for attribute, params in randomization_params["articulation_views"][view_name].items(): params = randomization_params["articulation_views"][view_name][attribute] if attribute in ["scale"] and params is not None: if "on_startup" in params.keys(): if not set( ("operation", "distribution", "distribution_parameters") ).issubset(params["on_startup"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} " + "on_startup are provided: operation, distribution, distribution_parameters." ) view = task._env._world.scene._scene_registry.articulated_views[view_name] if attribute == "scale": self.randomize_scale_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], sync_dim_noise=True, ) else: dr_config = self._cfg.get("domain_randomization", None) if dr_config is None: raise ValueError("No domain randomization parameters are specified in the task yaml config file") randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize == False or randomization_params is None: print("On Startup Domain randomization will not be applied.") def set_up_domain_randomization(self, task): if self.randomize: randomization_params = self._cfg["domain_randomization"]["randomization_params"] self.rep.set_global_seed(self._config["seed"]) with self.dr.trigger.on_rl_frame(num_envs=self._cfg["env"]["numEnvs"]): for opt in randomization_params.keys(): if opt == "observations": self._set_up_observations_randomization(task) elif opt == "actions": self._set_up_actions_randomization(task) elif opt == "simulation": if randomization_params["simulation"] is not None: self.distributions["simulation"] = dict() self.dr.physics_view.register_simulation_context(task._env._world) for attribute, params in randomization_params["simulation"].items(): self._set_up_simulation_randomization(attribute, params) elif opt == "rigid_prim_views": if randomization_params["rigid_prim_views"] is not None: self.distributions["rigid_prim_views"] = dict() for view_name in randomization_params["rigid_prim_views"].keys(): if randomization_params["rigid_prim_views"][view_name] is not None: self.distributions["rigid_prim_views"][view_name] = dict() self.dr.physics_view.register_rigid_prim_view( rigid_prim_view=task._env._world.scene._scene_registry.rigid_prim_views[ view_name ], ) for attribute, params in randomization_params["rigid_prim_views"][ view_name ].items(): if attribute not in ["scale", "density"]: self._set_up_rigid_prim_view_randomization(view_name, attribute, params) elif opt == "articulation_views": if randomization_params["articulation_views"] is not None: self.distributions["articulation_views"] = dict() for view_name in randomization_params["articulation_views"].keys(): if randomization_params["articulation_views"][view_name] is not None: self.distributions["articulation_views"][view_name] = dict() self.dr.physics_view.register_articulation_view( articulation_view=task._env._world.scene._scene_registry.articulated_views[ view_name ], ) for attribute, params in randomization_params["articulation_views"][ view_name ].items(): if attribute not in ["scale"]: self._set_up_articulation_view_randomization(view_name, attribute, params) self.rep.orchestrator.run() else: dr_config = self._cfg.get("domain_randomization", None) if dr_config is None: raise ValueError("No domain randomization parameters are specified in the task yaml config file") randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize == False or randomization_params is None: print("Domain randomization will not be applied.") def _set_up_observations_randomization(self, task): task.randomize_observations = True self._observations_dr_params = self._cfg["domain_randomization"]["randomization_params"]["observations"] if self._observations_dr_params is None: raise ValueError(f"Observations randomization parameters are not provided.") if "on_reset" in self._observations_dr_params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset( self._observations_dr_params["on_reset"].keys() ): raise ValueError( f"Please ensure the following observations on_reset randomization parameters are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("observations", "on_reset")] = np.array( self._observations_dr_params["on_reset"]["distribution_parameters"] ) if "on_interval" in self._observations_dr_params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( self._observations_dr_params["on_interval"].keys() ): raise ValueError( f"Please ensure the following observations on_interval randomization parameters are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("observations", "on_interval")] = np.array( self._observations_dr_params["on_interval"]["distribution_parameters"] ) self._observations_counter_buffer = torch.zeros( (self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["rl_device"] ) self._observations_correlated_noise = torch.zeros( (self._cfg["env"]["numEnvs"], task.num_observations), device=self._config["rl_device"] ) def _set_up_actions_randomization(self, task): task.randomize_actions = True self._actions_dr_params = self._cfg["domain_randomization"]["randomization_params"]["actions"] if self._actions_dr_params is None: raise ValueError(f"Actions randomization parameters are not provided.") if "on_reset" in self._actions_dr_params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset( self._actions_dr_params["on_reset"].keys() ): raise ValueError( f"Please ensure the following actions on_reset randomization parameters are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("actions", "on_reset")] = np.array( self._actions_dr_params["on_reset"]["distribution_parameters"] ) if "on_interval" in self._actions_dr_params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( self._actions_dr_params["on_interval"].keys() ): raise ValueError( f"Please ensure the following actions on_interval randomization parameters are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("actions", "on_interval")] = np.array( self._actions_dr_params["on_interval"]["distribution_parameters"] ) self._actions_counter_buffer = torch.zeros( (self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["rl_device"] ) self._actions_correlated_noise = torch.zeros( (self._cfg["env"]["numEnvs"], task.num_actions), device=self._config["rl_device"] ) def apply_observations_randomization(self, observations, reset_buf): env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1) self._observations_counter_buffer[env_ids] = 0 self._observations_counter_buffer += 1 if "on_reset" in self._observations_dr_params.keys(): observations[:] = self._apply_correlated_noise( buffer_type="observations", buffer=observations, reset_ids=env_ids, operation=self._observations_dr_params["on_reset"]["operation"], distribution=self._observations_dr_params["on_reset"]["distribution"], distribution_parameters=self._observations_dr_params["on_reset"]["distribution_parameters"], ) if "on_interval" in self._observations_dr_params.keys(): randomize_ids = ( (self._observations_counter_buffer >= self._observations_dr_params["on_interval"]["frequency_interval"]) .nonzero(as_tuple=False) .squeeze(-1) ) self._observations_counter_buffer[randomize_ids] = 0 observations[:] = self._apply_uncorrelated_noise( buffer=observations, randomize_ids=randomize_ids, operation=self._observations_dr_params["on_interval"]["operation"], distribution=self._observations_dr_params["on_interval"]["distribution"], distribution_parameters=self._observations_dr_params["on_interval"]["distribution_parameters"], ) return observations def apply_actions_randomization(self, actions, reset_buf): env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1) self._actions_counter_buffer[env_ids] = 0 self._actions_counter_buffer += 1 if "on_reset" in self._actions_dr_params.keys(): actions[:] = self._apply_correlated_noise( buffer_type="actions", buffer=actions, reset_ids=env_ids, operation=self._actions_dr_params["on_reset"]["operation"], distribution=self._actions_dr_params["on_reset"]["distribution"], distribution_parameters=self._actions_dr_params["on_reset"]["distribution_parameters"], ) if "on_interval" in self._actions_dr_params.keys(): randomize_ids = ( (self._actions_counter_buffer >= self._actions_dr_params["on_interval"]["frequency_interval"]) .nonzero(as_tuple=False) .squeeze(-1) ) self._actions_counter_buffer[randomize_ids] = 0 actions[:] = self._apply_uncorrelated_noise( buffer=actions, randomize_ids=randomize_ids, operation=self._actions_dr_params["on_interval"]["operation"], distribution=self._actions_dr_params["on_interval"]["distribution"], distribution_parameters=self._actions_dr_params["on_interval"]["distribution_parameters"], ) return actions def _apply_uncorrelated_noise(self, buffer, randomize_ids, operation, distribution, distribution_parameters): if distribution == "gaussian" or distribution == "normal": noise = torch.normal( mean=distribution_parameters[0], std=distribution_parameters[1], size=(len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"], ) elif distribution == "uniform": noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand( (len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"] ) + distribution_parameters[0] elif distribution == "loguniform" or distribution == "log_uniform": noise = torch.exp( (np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand((len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"]) + np.log(distribution_parameters[0]) ) else: print(f"The specified {distribution} distribution is not supported.") if operation == "additive": buffer[randomize_ids] += noise elif operation == "scaling": buffer[randomize_ids] *= noise else: print(f"The specified {operation} operation type is not supported.") return buffer def _apply_correlated_noise(self, buffer_type, buffer, reset_ids, operation, distribution, distribution_parameters): if buffer_type == "observations": correlated_noise_buffer = self._observations_correlated_noise elif buffer_type == "actions": correlated_noise_buffer = self._actions_correlated_noise if len(reset_ids) > 0: if distribution == "gaussian" or distribution == "normal": correlated_noise_buffer[reset_ids] = torch.normal( mean=distribution_parameters[0], std=distribution_parameters[1], size=(len(reset_ids), buffer.shape[1]), device=self._config["rl_device"], ) elif distribution == "uniform": correlated_noise_buffer[reset_ids] = ( distribution_parameters[1] - distribution_parameters[0] ) * torch.rand( (len(reset_ids), buffer.shape[1]), device=self._config["rl_device"] ) + distribution_parameters[ 0 ] elif distribution == "loguniform" or distribution == "log_uniform": correlated_noise_buffer[reset_ids] = torch.exp( (np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand((len(reset_ids), buffer.shape[1]), device=self._config["rl_device"]) + np.log(distribution_parameters[0]) ) else: print(f"The specified {distribution} distribution is not supported.") if operation == "additive": buffer += correlated_noise_buffer elif operation == "scaling": buffer *= correlated_noise_buffer else: print(f"The specified {operation} operation type is not supported.") return buffer def _set_up_simulation_randomization(self, attribute, params): if params is None: raise ValueError(f"Randomization parameters for simulation {attribute} is not provided.") if attribute in self.dr.SIMULATION_CONTEXT_ATTRIBUTES: self.distributions["simulation"][attribute] = dict() if "on_reset" in params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]): raise ValueError( f"Please ensure the following randomization parameters for simulation {attribute} on_reset are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("simulation", attribute, "on_reset")] = np.array( params["on_reset"]["distribution_parameters"] ) kwargs = {"operation": params["on_reset"]["operation"]} self.distributions["simulation"][attribute]["on_reset"] = self._generate_distribution( dimension=self.dr.physics_view._simulation_context_initial_values[attribute].shape[0], view_name="simulation", attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["simulation"][attribute]["on_reset"] with self.dr.gate.on_env_reset(): self.dr.physics_view.randomize_simulation_context(**kwargs) if "on_interval" in params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( params["on_interval"] ): raise ValueError( f"Please ensure the following randomization parameters for simulation {attribute} on_interval are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("simulation", attribute, "on_interval")] = np.array( params["on_interval"]["distribution_parameters"] ) kwargs = {"operation": params["on_interval"]["operation"]} self.distributions["simulation"][attribute]["on_interval"] = self._generate_distribution( dimension=self.dr.physics_view._simulation_context_initial_values[attribute].shape[0], view_name="simulation", attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["simulation"][attribute]["on_interval"] with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): self.dr.physics_view.randomize_simulation_context(**kwargs) def _set_up_rigid_prim_view_randomization(self, view_name, attribute, params): if params is None: raise ValueError(f"Randomization parameters for rigid prim view {view_name} {attribute} is not provided.") if attribute in self.dr.RIGID_PRIM_ATTRIBUTES: self.distributions["rigid_prim_views"][view_name][attribute] = dict() if "on_reset" in params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_reset")] = np.array( params["on_reset"]["distribution_parameters"] ) kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys(): kwargs["num_buckets"] = params["on_reset"]["num_buckets"] self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"] = self._generate_distribution( dimension=self.dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"] with self.dr.gate.on_env_reset(): self.dr.physics_view.randomize_rigid_prim_view(**kwargs) if "on_interval" in params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( params["on_interval"] ): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_interval")] = np.array( params["on_interval"]["distribution_parameters"] ) kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys(): kwargs["num_buckets"] = params["on_interval"]["num_buckets"] self.distributions["rigid_prim_views"][view_name][attribute][ "on_interval" ] = self._generate_distribution( dimension=self.dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_interval"] with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): self.dr.physics_view.randomize_rigid_prim_view(**kwargs) else: raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.") def _set_up_articulation_view_randomization(self, view_name, attribute, params): if params is None: raise ValueError(f"Randomization parameters for articulation view {view_name} {attribute} is not provided.") if attribute in self.dr.ARTICULATION_ATTRIBUTES: self.distributions["articulation_views"][view_name][attribute] = dict() if "on_reset" in params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("articulation_views", view_name, attribute, "on_reset")] = np.array( params["on_reset"]["distribution_parameters"] ) kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys(): kwargs["num_buckets"] = params["on_reset"]["num_buckets"] self.distributions["articulation_views"][view_name][attribute][ "on_reset" ] = self._generate_distribution( dimension=self.dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_reset"] with self.dr.gate.on_env_reset(): self.dr.physics_view.randomize_articulation_view(**kwargs) if "on_interval" in params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( params["on_interval"] ): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[ ("articulation_views", view_name, attribute, "on_interval") ] = np.array(params["on_interval"]["distribution_parameters"]) kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys(): kwargs["num_buckets"] = params["on_interval"]["num_buckets"] self.distributions["articulation_views"][view_name][attribute][ "on_interval" ] = self._generate_distribution( dimension=self.dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_interval"] with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): self.dr.physics_view.randomize_articulation_view(**kwargs) else: raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.") def _generate_distribution(self, view_name, attribute, dimension, params): dist_params = self._sanitize_distribution_parameters(attribute, dimension, params["distribution_parameters"]) if params["distribution"] == "uniform": return self.rep.distribution.uniform(tuple(dist_params[0]), tuple(dist_params[1])) elif params["distribution"] == "gaussian" or params["distribution"] == "normal": return self.rep.distribution.normal(tuple(dist_params[0]), tuple(dist_params[1])) elif params["distribution"] == "loguniform" or params["distribution"] == "log_uniform": return self.rep.distribution.log_uniform(tuple(dist_params[0]), tuple(dist_params[1])) else: raise ValueError( f"The provided distribution for {view_name} {attribute} is not supported. " + "Options: uniform, gaussian/normal, loguniform/log_uniform" ) def _sanitize_distribution_parameters(self, attribute, dimension, params): distribution_parameters = np.array(params) if distribution_parameters.shape == (2,): # if the user does not provide a set of parameters for each dimension dist_params = [[distribution_parameters[0]] * dimension, [distribution_parameters[1]] * dimension] elif distribution_parameters.shape == (2, dimension): # if the user provides a set of parameters for each dimension in the format [[...], [...]] dist_params = distribution_parameters.tolist() elif attribute in ["material_properties", "body_inertias"] and distribution_parameters.shape == (2, 3): # if the user only provides the parameters for one body in the articulation, assume the same parameters for all other links dist_params = [ [distribution_parameters[0]] * (dimension // 3), [distribution_parameters[1]] * (dimension // 3), ] else: raise ValueError( f"The provided distribution_parameters for {view_name} {attribute} is invalid due to incorrect dimensions." ) return dist_params def set_dr_distribution_parameters(self, distribution_parameters, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError( f"Cannot find a valid domain randomization distribution using the path {distribution_path}." ) if distribution_path[0] == "observations": if len(distribution_parameters) == 2: self._observations_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters else: raise ValueError( f"Please provide distribution_parameters for observations {distribution_path[1]} " + "in the form of [dist_param_1, dist_param_2]" ) elif distribution_path[0] == "actions": if len(distribution_parameters) == 2: self._actions_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters else: raise ValueError( f"Please provide distribution_parameters for actions {distribution_path[1]} " + "in the form of [dist_param_1, dist_param_2]" ) else: replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][ distribution_path[2] ] if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views": replicator_distribution = replicator_distribution[distribution_path[3]] if ( replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform" or replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleLogUniform" ): dimension = len(self.dr.utils.get_distribution_params(replicator_distribution, ["lower"])[0]) dist_params = self._sanitize_distribution_parameters( distribution_path[-2], dimension, distribution_parameters ) self.dr.utils.set_distribution_params( replicator_distribution, {"lower": dist_params[0], "upper": dist_params[1]} ) elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal": dimension = len(self.dr.utils.get_distribution_params(replicator_distribution, ["mean"])[0]) dist_params = self._sanitize_distribution_parameters( distribution_path[-2], dimension, distribution_parameters ) self.dr.utils.set_distribution_params( replicator_distribution, {"mean": dist_params[0], "std": dist_params[1]} ) def get_dr_distribution_parameters(self, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError( f"Cannot find a valid domain randomization distribution using the path {distribution_path}." ) if distribution_path[0] == "observations": return self._observations_dr_params[distribution_path[1]]["distribution_parameters"] elif distribution_path[0] == "actions": return self._actions_dr_params[distribution_path[1]]["distribution_parameters"] else: replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][ distribution_path[2] ] if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views": replicator_distribution = replicator_distribution[distribution_path[3]] if ( replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform" or replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleLogUniform" ): return self.dr.utils.get_distribution_params(replicator_distribution, ["lower", "upper"]) elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal": return self.dr.utils.get_distribution_params(replicator_distribution, ["mean", "std"]) def get_initial_dr_distribution_parameters(self, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError( f"Cannot find a valid domain randomization distribution using the path {distribution_path}." ) return self.active_domain_randomizations[distribution_path].copy() def _generate_noise(self, distribution, distribution_parameters, size, device): if distribution == "gaussian" or distribution == "normal": noise = torch.normal( mean=distribution_parameters[0], std=distribution_parameters[1], size=size, device=device ) elif distribution == "uniform": noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand( size, device=device ) + distribution_parameters[0] elif distribution == "loguniform" or distribution == "log_uniform": noise = torch.exp( (np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand(size, device=device) + np.log(distribution_parameters[0]) ) else: print(f"The specified {distribution} distribution is not supported.") return noise def randomize_scale_on_startup(self, view, distribution, distribution_parameters, operation, sync_dim_noise=True): scales = view.get_local_scales() if sync_dim_noise: dist_params = np.asarray( self._sanitize_distribution_parameters(attribute="scale", dimension=1, params=distribution_parameters) ) noise = ( self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device).repeat(3, 1).T ) else: dist_params = np.asarray( self._sanitize_distribution_parameters(attribute="scale", dimension=3, params=distribution_parameters) ) noise = torch.zeros((view.count, 3), device=view._device) for i in range(3): noise[:, i] = self._generate_noise(distribution, dist_params[:, i], (view.count,), view._device) if operation == "additive": scales += noise elif operation == "scaling": scales *= noise elif operation == "direct": scales = noise else: print(f"The specified {operation} operation type is not supported.") view.set_local_scales(scales=scales) def randomize_mass_on_startup(self, view, distribution, distribution_parameters, operation): if isinstance(view, omni.isaac.core.prims.RigidPrimView) or isinstance(view, RigidPrimView): masses = view.get_masses() dist_params = np.asarray( self._sanitize_distribution_parameters( attribute=f"{view.name} mass", dimension=1, params=distribution_parameters ) ) noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device) set_masses = view.set_masses if operation == "additive": masses += noise elif operation == "scaling": masses *= noise elif operation == "direct": masses = noise else: print(f"The specified {operation} operation type is not supported.") set_masses(masses) def randomize_density_on_startup(self, view, distribution, distribution_parameters, operation): if isinstance(view, omni.isaac.core.prims.RigidPrimView) or isinstance(view, RigidPrimView): densities = view.get_densities() dist_params = np.asarray( self._sanitize_distribution_parameters( attribute=f"{view.name} density", dimension=1, params=distribution_parameters ) ) noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device) set_densities = view.set_densities if operation == "additive": densities += noise elif operation == "scaling": densities *= noise elif operation == "direct": densities = noise else: print(f"The specified {operation} operation type is not supported.") set_densities(densities)
45,603
Python
58.691099
136
0.555051
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/rlgames/rlgames_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Callable import numpy as np import torch from rl_games.algos_torch import torch_ext from rl_games.common import env_configurations, vecenv from rl_games.common.algo_observer import AlgoObserver class RLGPUAlgoObserver(AlgoObserver): """Allows us to log stats from the env along with the algorithm running stats.""" def __init__(self): pass def after_init(self, algo): self.algo = algo self.mean_scores = torch_ext.AverageMeter(1, self.algo.games_to_track).to(self.algo.ppo_device) self.ep_infos = [] self.direct_info = {} self.writer = self.algo.writer def process_infos(self, infos, done_indices): assert isinstance(infos, dict), "RLGPUAlgoObserver expects dict info" if isinstance(infos, dict): if "episode" in infos: self.ep_infos.append(infos["episode"]) if len(infos) > 0 and isinstance(infos, dict): # allow direct logging from env self.direct_info = {} for k, v in infos.items(): # only log scalars if ( isinstance(v, float) or isinstance(v, int) or (isinstance(v, torch.Tensor) and len(v.shape) == 0) ): self.direct_info[k] = v def after_clear_stats(self): self.mean_scores.clear() def after_print_stats(self, frame, epoch_num, total_time): if self.ep_infos: for key in self.ep_infos[0]: infotensor = torch.tensor([], device=self.algo.device) for ep_info in self.ep_infos: # handle scalar and zero dimensional tensor infos if not isinstance(ep_info[key], torch.Tensor): ep_info[key] = torch.Tensor([ep_info[key]]) if len(ep_info[key].shape) == 0: ep_info[key] = ep_info[key].unsqueeze(0) infotensor = torch.cat((infotensor, ep_info[key].to(self.algo.device))) value = torch.mean(infotensor) self.writer.add_scalar("Episode/" + key, value, epoch_num) self.ep_infos.clear() for k, v in self.direct_info.items(): self.writer.add_scalar(f"{k}/frame", v, frame) self.writer.add_scalar(f"{k}/iter", v, epoch_num) self.writer.add_scalar(f"{k}/time", v, total_time) if self.mean_scores.current_size > 0: mean_scores = self.mean_scores.get_mean() self.writer.add_scalar("scores/mean", mean_scores, frame) self.writer.add_scalar("scores/iter", mean_scores, epoch_num) self.writer.add_scalar("scores/time", mean_scores, total_time) class RLGPUEnv(vecenv.IVecEnv): def __init__(self, config_name, num_actors, **kwargs): self.env = env_configurations.configurations[config_name]["env_creator"](**kwargs) def step(self, action): return self.env.step(action) def reset(self): return self.env.reset() def get_number_of_agents(self): return self.env.get_number_of_agents() def get_env_info(self): info = {} info["action_space"] = self.env.action_space info["observation_space"] = self.env.observation_space if self.env.num_states > 0: info["state_space"] = self.env.state_space print(info["action_space"], info["observation_space"], info["state_space"]) else: print(info["action_space"], info["observation_space"]) return info
5,201
Python
40.951613
103
0.636801
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/rlgames/rlgames_train_mt.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import datetime import os import queue import threading import traceback import hydra from omegaconf import DictConfig from omni.isaac.gym.vec_env.vec_env_mt import TrainerMT from omniisaacgymenvs.envs.vec_env_rlgames_mt import VecEnvRLGamesMT from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from omniisaacgymenvs.utils.task_util import initialize_task from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner class RLGTrainer: def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict # ensure checkpoints can be specified as relative paths self._bad_checkpoint = False if self.cfg.checkpoint: self.cfg.checkpoint = retrieve_checkpoint_path(self.cfg.checkpoint) if not self.cfg.checkpoint: self._bad_checkpoint = True def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register("RLGPU", lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs)) env_configurations.register("rlgpu", {"vecenv_type": "RLGPU", "env_creator": lambda **kwargs: env}) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self): # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) # add evaluation parameters if self.cfg.evaluation: player_config = self.rlg_config_dict["params"]["config"].get("player", {}) player_config["evaluation"] = True player_config["update_checkpoint_freq"] = 100 player_config["dir_to_monitor"] = os.path.dirname(self.cfg.checkpoint) self.rlg_config_dict["params"]["config"]["player"] = player_config # load config runner.load(copy.deepcopy(self.rlg_config_dict)) runner.reset() # dump config dict experiment_dir = os.path.join("runs", self.cfg.train.params.config.name) os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, "config.yaml"), "w") as f: f.write(OmegaConf.to_yaml(self.cfg)) time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") if self.cfg.wandb_activate: # Make sure to install WandB if you actually use this. import wandb run_name = f"{self.cfg.wandb_name}_{time_str}" wandb.init( project=self.cfg.wandb_project, group=self.cfg.wandb_group, entity=self.cfg.wandb_entity, config=self.cfg_dict, sync_tensorboard=True, id=run_name, resume="allow", monitor_gym=True, ) runner.run( {"train": not self.cfg.test, "play": self.cfg.test, "checkpoint": self.cfg.checkpoint, "sigma": None} ) if self.cfg.wandb_activate: wandb.finish() class Trainer(TrainerMT): def __init__(self, trainer, env): self.ppo_thread = None self.action_queue = None self.data_queue = None self.trainer = trainer self.is_running = False self.env = env self.create_task() self.run() def create_task(self): self.trainer.launch_rlg_hydra(self.env) # task = initialize_task(self.trainer.cfg_dict, self.env, init_sim=False) self.task = self.env._task def run(self): self.is_running = True self.action_queue = queue.Queue(1) self.data_queue = queue.Queue(1) if "mt_timeout" in self.trainer.cfg_dict: self.env.initialize(self.action_queue, self.data_queue, self.trainer.cfg_dict["mt_timeout"]) else: self.env.initialize(self.action_queue, self.data_queue) self.ppo_thread = PPOTrainer(self.env, self.task, self.trainer) self.ppo_thread.daemon = True self.ppo_thread.start() def stop(self): self.env.stop = True self.env.clear_queues() if self.action_queue: self.action_queue.join() if self.data_queue: self.data_queue.join() if self.ppo_thread: self.ppo_thread.join() self.action_queue = None self.data_queue = None self.ppo_thread = None self.is_running = False class PPOTrainer(threading.Thread): def __init__(self, env, task, trainer): super().__init__() self.env = env self.task = task self.trainer = trainer def run(self): from omni.isaac.gym.vec_env import TaskStopException print("starting ppo...") try: self.trainer.run() # trainer finished - send stop signal to main thread self.env.should_run = False self.env.send_actions(None, block=False) except TaskStopException: print("Task Stopped!") self.env.should_run = False self.env.send_actions(None, block=False) except Exception as e: # an error occurred on the RL side - signal stop to main thread print(traceback.format_exc()) self.env.should_run = False self.env.send_actions(None, block=False)
7,402
Python
36.770408
119
0.653337
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/config_utils/sim_config.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import carb import numpy as np import omni.usd import torch from omni.isaac.core.utils.extensions import enable_extension from omniisaacgymenvs.utils.config_utils.default_scene_params import * class SimConfig: def __init__(self, config: dict = None): if config is None: config = dict() self._config = config self._cfg = config.get("task", dict()) self._parse_config() if self._config["test"] == True: self._sim_params["enable_scene_query_support"] = True if ( self._config["headless"] == True and not self._sim_params["enable_cameras"] and not self._config["enable_livestream"] ): self._sim_params["use_fabric"] = False self._sim_params["enable_viewport"] = False else: self._sim_params["enable_viewport"] = True enable_extension("omni.kit.viewport.bundle") if self._sim_params["enable_cameras"]: enable_extension("omni.replicator.isaac") self._sim_params["warp"] = self._config["warp"] self._sim_params["sim_device"] = self._config["sim_device"] self._adjust_dt() if self._sim_params["disable_contact_processing"]: carb.settings.get_settings().set_bool("/physics/disableContactProcessing", True) carb.settings.get_settings().set_bool("/physics/physxDispatcher", True) # Force the background grid off all the time for RL tasks, to avoid the grid showing up in any RL camera task carb.settings.get_settings().set("/app/viewport/grid/enabled", False) # Disable framerate limiting which might cause rendering slowdowns carb.settings.get_settings().set("/app/runLoops/main/rateLimitEnabled", False) import omni.ui # Dock floating UIs this might not be needed anymore as extensions dock themselves # Method for docking a particular window to a location def dock_window(space, name, location, ratio=0.5): window = omni.ui.Workspace.get_window(name) if window and space: window.dock_in(space, location, ratio=ratio) return window # Acquire the main docking station main_dockspace = omni.ui.Workspace.get_window("DockSpace") dock_window(main_dockspace, "Content", omni.ui.DockPosition.BOTTOM, 0.3) window = omni.ui.Workspace.get_window("Content") if window: window.visible = False def _parse_config(self): # general sim parameter self._sim_params = copy.deepcopy(default_sim_params) self._default_physics_material = copy.deepcopy(default_physics_material) sim_cfg = self._cfg.get("sim", None) if sim_cfg is not None: for opt in sim_cfg.keys(): if opt in self._sim_params: if opt == "default_physics_material": for material_opt in sim_cfg[opt]: self._default_physics_material[material_opt] = sim_cfg[opt][material_opt] else: self._sim_params[opt] = sim_cfg[opt] else: print("Sim params does not have attribute: ", opt) self._sim_params["default_physics_material"] = self._default_physics_material # physx parameters self._physx_params = copy.deepcopy(default_physx_params) if sim_cfg is not None and "physx" in sim_cfg: for opt in sim_cfg["physx"].keys(): if opt in self._physx_params: self._physx_params[opt] = sim_cfg["physx"][opt] else: print("Physx sim params does not have attribute: ", opt) self._sanitize_device() def _sanitize_device(self): if self._sim_params["use_gpu_pipeline"]: self._physx_params["use_gpu"] = True # device should be in sync with pipeline if self._sim_params["use_gpu_pipeline"]: self._config["sim_device"] = f"cuda:{self._config['device_id']}" else: self._config["sim_device"] = "cpu" # also write to physics params for setting sim device self._physx_params["sim_device"] = self._config["sim_device"] print("Pipeline: ", "GPU" if self._sim_params["use_gpu_pipeline"] else "CPU") print("Pipeline Device: ", self._config["sim_device"]) print("Sim Device: ", "GPU" if self._physx_params["use_gpu"] else "CPU") def parse_actor_config(self, actor_name): actor_params = copy.deepcopy(default_actor_options) if "sim" in self._cfg and actor_name in self._cfg["sim"]: actor_cfg = self._cfg["sim"][actor_name] for opt in actor_cfg.keys(): if actor_cfg[opt] != -1 and opt in actor_params: actor_params[opt] = actor_cfg[opt] elif opt not in actor_params: print("Actor params does not have attribute: ", opt) return actor_params def _get_actor_config_value(self, actor_name, attribute_name, attribute=None): actor_params = self.parse_actor_config(actor_name) if attribute is not None: if attribute_name not in actor_params: return attribute.Get() if actor_params[attribute_name] != -1: return actor_params[attribute_name] elif actor_params["override_usd_defaults"] and not attribute.IsAuthored(): return self._physx_params[attribute_name] else: if actor_params[attribute_name] != -1: return actor_params[attribute_name] def _adjust_dt(self): # re-evaluate rendering dt to simulate physics substeps physics_dt = self.sim_params["dt"] rendering_dt = self.sim_params["rendering_dt"] # by default, rendering dt = physics dt if rendering_dt <= 0: rendering_dt = physics_dt self.task_config["renderingInterval"] = max(round((1/physics_dt) / (1/rendering_dt)), 1) # we always set rendering dt to be the same as physics dt, stepping is taken care of in VecEnvRLGames self.sim_params["rendering_dt"] = physics_dt @property def sim_params(self): return self._sim_params @property def config(self): return self._config @property def task_config(self): return self._cfg @property def physx_params(self): return self._physx_params def get_physics_params(self): return {**self.sim_params, **self.physx_params} def _get_physx_collision_api(self, prim): from pxr import PhysxSchema, UsdPhysics physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim) if not physx_collision_api: physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim) return physx_collision_api def _get_physx_rigid_body_api(self, prim): from pxr import PhysxSchema, UsdPhysics physx_rb_api = PhysxSchema.PhysxRigidBodyAPI(prim) if not physx_rb_api: physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim) return physx_rb_api def _get_physx_articulation_api(self, prim): from pxr import PhysxSchema, UsdPhysics arti_api = PhysxSchema.PhysxArticulationAPI(prim) if not arti_api: arti_api = PhysxSchema.PhysxArticulationAPI.Apply(prim) return arti_api def set_contact_offset(self, name, prim, value=None): physx_collision_api = self._get_physx_collision_api(prim) contact_offset = physx_collision_api.GetContactOffsetAttr() # if not contact_offset: # contact_offset = physx_collision_api.CreateContactOffsetAttr() if value is None: value = self._get_actor_config_value(name, "contact_offset", contact_offset) if value != -1: contact_offset.Set(value) def set_rest_offset(self, name, prim, value=None): physx_collision_api = self._get_physx_collision_api(prim) rest_offset = physx_collision_api.GetRestOffsetAttr() # if not rest_offset: # rest_offset = physx_collision_api.CreateRestOffsetAttr() if value is None: value = self._get_actor_config_value(name, "rest_offset", rest_offset) if value != -1: rest_offset.Set(value) def set_position_iteration(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) solver_position_iteration_count = physx_rb_api.GetSolverPositionIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_position_iteration_count", solver_position_iteration_count ) if value != -1: solver_position_iteration_count.Set(value) def set_velocity_iteration(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) solver_velocity_iteration_count = physx_rb_api.GetSolverVelocityIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_velocity_iteration_count", solver_velocity_iteration_count ) if value != -1: solver_velocity_iteration_count.Set(value) def set_max_depenetration_velocity(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) max_depenetration_velocity = physx_rb_api.GetMaxDepenetrationVelocityAttr() if value is None: value = self._get_actor_config_value(name, "max_depenetration_velocity", max_depenetration_velocity) if value != -1: max_depenetration_velocity.Set(value) def set_sleep_threshold(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) sleep_threshold = physx_rb_api.GetSleepThresholdAttr() if value is None: value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold) if value != -1: sleep_threshold.Set(value) def set_stabilization_threshold(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) stabilization_threshold = physx_rb_api.GetStabilizationThresholdAttr() if value is None: value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold) if value != -1: stabilization_threshold.Set(value) def set_gyroscopic_forces(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) enable_gyroscopic_forces = physx_rb_api.GetEnableGyroscopicForcesAttr() if value is None: value = self._get_actor_config_value(name, "enable_gyroscopic_forces", enable_gyroscopic_forces) if value != -1: enable_gyroscopic_forces.Set(value) def set_density(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) density = physx_rb_api.GetDensityAttr() if value is None: value = self._get_actor_config_value(name, "density", density) if value != -1: density.Set(value) # auto-compute mass self.set_mass(prim, 0.0) def set_mass(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) mass = physx_rb_api.GetMassAttr() if value is None: value = self._get_actor_config_value(name, "mass", mass) if value != -1: mass.Set(value) def retain_acceleration(self, prim): # retain accelerations if running with more than one substep physx_rb_api = self._get_physx_rigid_body_api(prim) if self._sim_params["substeps"] > 1: physx_rb_api.GetRetainAccelerationsAttr().Set(True) def make_kinematic(self, name, prim, cfg, value=None): # make rigid body kinematic (fixed base and no collision) from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() if value is None: value = self._get_actor_config_value(name, "make_kinematic") if value == True: # parse through all children prims prims = [prim] while len(prims) > 0: cur_prim = prims.pop(0) rb = UsdPhysics.RigidBodyAPI.Get(stage, cur_prim.GetPath()) if rb: rb.CreateKinematicEnabledAttr().Set(True) children_prims = cur_prim.GetPrim().GetChildren() prims = prims + children_prims def set_articulation_position_iteration(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) solver_position_iteration_count = arti_api.GetSolverPositionIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_position_iteration_count", solver_position_iteration_count ) if value != -1: solver_position_iteration_count.Set(value) def set_articulation_velocity_iteration(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) solver_velocity_iteration_count = arti_api.GetSolverVelocityIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_velocity_iteration_count", solver_position_iteration_count ) if value != -1: solver_velocity_iteration_count.Set(value) def set_articulation_sleep_threshold(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) sleep_threshold = arti_api.GetSleepThresholdAttr() if value is None: value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold) if value != -1: sleep_threshold.Set(value) def set_articulation_stabilization_threshold(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) stabilization_threshold = arti_api.GetStabilizationThresholdAttr() if value is None: value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold) if value != -1: stabilization_threshold.Set(value) def apply_rigid_body_settings(self, name, prim, cfg, is_articulation): from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() rb_api = UsdPhysics.RigidBodyAPI.Get(stage, prim.GetPath()) physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Get(stage, prim.GetPath()) if not physx_rb_api: physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim) # if it's a body in an articulation, it's handled at articulation root if not is_articulation: self.make_kinematic(name, prim, cfg, cfg["make_kinematic"]) self.set_position_iteration(name, prim, cfg["solver_position_iteration_count"]) self.set_velocity_iteration(name, prim, cfg["solver_velocity_iteration_count"]) self.set_max_depenetration_velocity(name, prim, cfg["max_depenetration_velocity"]) self.set_sleep_threshold(name, prim, cfg["sleep_threshold"]) self.set_stabilization_threshold(name, prim, cfg["stabilization_threshold"]) self.set_gyroscopic_forces(name, prim, cfg["enable_gyroscopic_forces"]) # density and mass mass_api = UsdPhysics.MassAPI.Get(stage, prim.GetPath()) if mass_api is None: mass_api = UsdPhysics.MassAPI.Apply(prim) mass_attr = mass_api.GetMassAttr() density_attr = mass_api.GetDensityAttr() if not mass_attr: mass_attr = mass_api.CreateMassAttr() if not density_attr: density_attr = mass_api.CreateDensityAttr() if cfg["density"] != -1: density_attr.Set(cfg["density"]) mass_attr.Set(0.0) # mass is to be computed elif cfg["override_usd_defaults"] and not density_attr.IsAuthored() and not mass_attr.IsAuthored(): density_attr.Set(self._physx_params["density"]) self.retain_acceleration(prim) def apply_rigid_shape_settings(self, name, prim, cfg): from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() # collision APIs collision_api = UsdPhysics.CollisionAPI(prim) if not collision_api: collision_api = UsdPhysics.CollisionAPI.Apply(prim) physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim) if not physx_collision_api: physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim) self.set_contact_offset(name, prim, cfg["contact_offset"]) self.set_rest_offset(name, prim, cfg["rest_offset"]) def apply_articulation_settings(self, name, prim, cfg): from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() is_articulation = False # check if is articulation prims = [prim] while len(prims) > 0: prim_tmp = prims.pop(0) articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, prim_tmp.GetPath()) physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, prim_tmp.GetPath()) if articulation_api or physx_articulation_api: is_articulation = True children_prims = prim_tmp.GetPrim().GetChildren() prims = prims + children_prims # parse through all children prims prims = [prim] while len(prims) > 0: cur_prim = prims.pop(0) rb = UsdPhysics.RigidBodyAPI.Get(stage, cur_prim.GetPath()) collision_body = UsdPhysics.CollisionAPI.Get(stage, cur_prim.GetPath()) articulation = UsdPhysics.ArticulationRootAPI.Get(stage, cur_prim.GetPath()) if rb: self.apply_rigid_body_settings(name, cur_prim, cfg, is_articulation) if collision_body: self.apply_rigid_shape_settings(name, cur_prim, cfg) if articulation: articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, cur_prim.GetPath()) physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, cur_prim.GetPath()) # enable self collisions enable_self_collisions = physx_articulation_api.GetEnabledSelfCollisionsAttr() if cfg["enable_self_collisions"] != -1: enable_self_collisions.Set(cfg["enable_self_collisions"]) self.set_articulation_position_iteration(name, cur_prim, cfg["solver_position_iteration_count"]) self.set_articulation_velocity_iteration(name, cur_prim, cfg["solver_velocity_iteration_count"]) self.set_articulation_sleep_threshold(name, cur_prim, cfg["sleep_threshold"]) self.set_articulation_stabilization_threshold(name, cur_prim, cfg["stabilization_threshold"]) children_prims = cur_prim.GetPrim().GetChildren() prims = prims + children_prims
20,932
Python
42.792887
117
0.632429
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/config_utils/default_scene_params.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. default_physx_params = { ### Per-scene settings "use_gpu": False, "worker_thread_count": 4, "solver_type": 1, # 0: PGS, 1:TGS "bounce_threshold_velocity": 0.2, "friction_offset_threshold": 0.04, # A threshold of contact separation distance used to decide if a contact # point will experience friction forces. "friction_correlation_distance": 0.025, # Contact points can be merged into a single friction anchor if the # distance between the contacts is smaller than correlation distance. # disabling these can be useful for debugging "enable_sleeping": True, "enable_stabilization": True, # GPU buffers "gpu_max_rigid_contact_count": 512 * 1024, "gpu_max_rigid_patch_count": 80 * 1024, "gpu_found_lost_pairs_capacity": 1024, "gpu_found_lost_aggregate_pairs_capacity": 1024, "gpu_total_aggregate_pairs_capacity": 1024, "gpu_max_soft_body_contacts": 1024 * 1024, "gpu_max_particle_contacts": 1024 * 1024, "gpu_heap_capacity": 64 * 1024 * 1024, "gpu_temp_buffer_capacity": 16 * 1024 * 1024, "gpu_max_num_partitions": 8, "gpu_collision_stack_size": 64 * 1024 * 1024, ### Per-actor settings ( can override in actor_options ) "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "sleep_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may go to sleep. # Allowed range [0, max_float). "stabilization_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may # participate in stabilization. Allowed range [0, max_float). ### Per-body settings ( can override in actor_options ) "enable_gyroscopic_forces": False, "density": 1000.0, # density to be used for bodies that do not specify mass or density "max_depenetration_velocity": 100.0, ### Per-shape settings ( can override in actor_options ) "contact_offset": 0.02, "rest_offset": 0.001, } default_physics_material = {"static_friction": 1.0, "dynamic_friction": 1.0, "restitution": 0.0} default_sim_params = { "gravity": [0.0, 0.0, -9.81], "dt": 1.0 / 60.0, "rendering_dt": -1.0, # we don't want to override this if it's set from cfg "substeps": 1, "use_gpu_pipeline": True, "add_ground_plane": True, "add_distant_light": True, "use_fabric": True, "enable_scene_query_support": False, "enable_cameras": False, "disable_contact_processing": False, "default_physics_material": default_physics_material, } default_actor_options = { # -1 means use authored value from USD or default values from default_sim_params if not explicitly authored in USD. # If an attribute value is not explicitly authored in USD, add one with the value given here, # which overrides the USD default. "override_usd_defaults": False, "make_kinematic": -1, "enable_self_collisions": -1, "enable_gyroscopic_forces": -1, "solver_position_iteration_count": -1, "solver_velocity_iteration_count": -1, "sleep_threshold": -1, "stabilization_threshold": -1, "max_depenetration_velocity": -1, "density": -1, "mass": -1, "contact_offset": -1, "rest_offset": -1, }
4,783
Python
44.132075
119
0.703951
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/config_utils/path_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import carb from hydra.utils import to_absolute_path def is_valid_local_file(path): return os.path.isfile(path) def is_valid_ov_file(path): import omni.client result, entry = omni.client.stat(path) return result == omni.client.Result.OK def download_ov_file(source_path, target_path): import omni.client result = omni.client.copy(source_path, target_path) if result == omni.client.Result.OK: return True return False def break_ov_path(path): import omni.client return omni.client.break_url(path) def retrieve_checkpoint_path(path): # check if it's a local path if is_valid_local_file(path): return to_absolute_path(path) # check if it's an OV path elif is_valid_ov_file(path): ov_path = break_ov_path(path) file_name = os.path.basename(ov_path.path) target_path = f"checkpoints/{file_name}" copy_to_local = download_ov_file(path, target_path) return to_absolute_path(target_path) else: carb.log_error(f"Invalid checkpoint path: {path}. Does the file exist?") return None def get_experience(headless, enable_livestream, enable_viewport, kit_app): if kit_app == '': if enable_viewport: experience = os.path.abspath(os.path.join('../apps', 'omni.isaac.sim.python.gym.camera.kit')) else: experience = f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.gym.kit' if headless and not enable_livestream: experience = f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.gym.headless.kit' else: experience = kit_app return experience
3,226
Python
34.855555
105
0.713887
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/hydra_cfg/hydra_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import hydra from omegaconf import DictConfig, OmegaConf ## OmegaConf & Hydra Config # Resolvers used in hydra configs (see https://omegaconf.readthedocs.io/en/2.1_branch/usage.html#resolvers) if not OmegaConf.has_resolver("eq"): OmegaConf.register_new_resolver("eq", lambda x, y: x.lower() == y.lower()) if not OmegaConf.has_resolver("contains"): OmegaConf.register_new_resolver("contains", lambda x, y: x.lower() in y.lower()) if not OmegaConf.has_resolver("if"): OmegaConf.register_new_resolver("if", lambda pred, a, b: a if pred else b) # allows us to resolve default arguments which are copied in multiple places in the config. used primarily for # num_ensv if not OmegaConf.has_resolver("resolve_default"): OmegaConf.register_new_resolver("resolve_default", lambda default, arg: default if arg == "" else arg)
2,394
Python
51.065216
110
0.767753
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/terrain_utils/terrain_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from math import sqrt import numpy as np from numpy.random import choice from omni.isaac.core.prims import XFormPrim from pxr import Gf, PhysxSchema, Sdf, UsdPhysics from scipy import interpolate def random_uniform_terrain( terrain, min_height, max_height, step=1, downsampled_scale=None, ): """ Generate a uniform noise terrain Parameters terrain (SubTerrain): the terrain min_height (float): the minimum height of the terrain [meters] max_height (float): the maximum height of the terrain [meters] step (float): minimum height change between two points [meters] downsampled_scale (float): distance between two randomly sampled points ( musty be larger or equal to terrain.horizontal_scale) """ if downsampled_scale is None: downsampled_scale = terrain.horizontal_scale # switch parameters to discrete units min_height = int(min_height / terrain.vertical_scale) max_height = int(max_height / terrain.vertical_scale) step = int(step / terrain.vertical_scale) heights_range = np.arange(min_height, max_height + step, step) height_field_downsampled = np.random.choice( heights_range, ( int(terrain.width * terrain.horizontal_scale / downsampled_scale), int(terrain.length * terrain.horizontal_scale / downsampled_scale), ), ) x = np.linspace(0, terrain.width * terrain.horizontal_scale, height_field_downsampled.shape[0]) y = np.linspace(0, terrain.length * terrain.horizontal_scale, height_field_downsampled.shape[1]) f = interpolate.RectBivariateSpline(y, x, height_field_downsampled) x_upsampled = np.linspace(0, terrain.width * terrain.horizontal_scale, terrain.width) y_upsampled = np.linspace(0, terrain.length * terrain.horizontal_scale, terrain.length) z_upsampled = np.rint(f(y_upsampled, x_upsampled)) terrain.height_field_raw += z_upsampled.astype(np.int16) return terrain def sloped_terrain(terrain, slope=1): """ Generate a sloped terrain Parameters: terrain (SubTerrain): the terrain slope (int): positive or negative slope Returns: terrain (SubTerrain): update terrain """ x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(terrain.width, 1) max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * terrain.width) terrain.height_field_raw[:, np.arange(terrain.length)] += (max_height * xx / terrain.width).astype( terrain.height_field_raw.dtype ) return terrain def pyramid_sloped_terrain(terrain, slope=1, platform_size=1.0): """ Generate a sloped terrain Parameters: terrain (terrain): the terrain slope (int): positive or negative slope platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) center_x = int(terrain.width / 2) center_y = int(terrain.length / 2) xx, yy = np.meshgrid(x, y, sparse=True) xx = (center_x - np.abs(center_x - xx)) / center_x yy = (center_y - np.abs(center_y - yy)) / center_y xx = xx.reshape(terrain.width, 1) yy = yy.reshape(1, terrain.length) max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * (terrain.width / 2)) terrain.height_field_raw += (max_height * xx * yy).astype(terrain.height_field_raw.dtype) platform_size = int(platform_size / terrain.horizontal_scale / 2) x1 = terrain.width // 2 - platform_size x2 = terrain.width // 2 + platform_size y1 = terrain.length // 2 - platform_size y2 = terrain.length // 2 + platform_size min_h = min(terrain.height_field_raw[x1, y1], 0) max_h = max(terrain.height_field_raw[x1, y1], 0) terrain.height_field_raw = np.clip(terrain.height_field_raw, min_h, max_h) return terrain def discrete_obstacles_terrain(terrain, max_height, min_size, max_size, num_rects, platform_size=1.0): """ Generate a terrain with gaps Parameters: terrain (terrain): the terrain max_height (float): maximum height of the obstacles (range=[-max, -max/2, max/2, max]) [meters] min_size (float): minimum size of a rectangle obstacle [meters] max_size (float): maximum size of a rectangle obstacle [meters] num_rects (int): number of randomly generated obstacles platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units max_height = int(max_height / terrain.vertical_scale) min_size = int(min_size / terrain.horizontal_scale) max_size = int(max_size / terrain.horizontal_scale) platform_size = int(platform_size / terrain.horizontal_scale) (i, j) = terrain.height_field_raw.shape height_range = [-max_height, -max_height // 2, max_height // 2, max_height] width_range = range(min_size, max_size, 4) length_range = range(min_size, max_size, 4) for _ in range(num_rects): width = np.random.choice(width_range) length = np.random.choice(length_range) start_i = np.random.choice(range(0, i - width, 4)) start_j = np.random.choice(range(0, j - length, 4)) terrain.height_field_raw[start_i : start_i + width, start_j : start_j + length] = np.random.choice(height_range) x1 = (terrain.width - platform_size) // 2 x2 = (terrain.width + platform_size) // 2 y1 = (terrain.length - platform_size) // 2 y2 = (terrain.length + platform_size) // 2 terrain.height_field_raw[x1:x2, y1:y2] = 0 return terrain def wave_terrain(terrain, num_waves=1, amplitude=1.0): """ Generate a wavy terrain Parameters: terrain (terrain): the terrain num_waves (int): number of sine waves across the terrain length Returns: terrain (SubTerrain): update terrain """ amplitude = int(0.5 * amplitude / terrain.vertical_scale) if num_waves > 0: div = terrain.length / (num_waves * np.pi * 2) x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(terrain.width, 1) yy = yy.reshape(1, terrain.length) terrain.height_field_raw += (amplitude * np.cos(yy / div) + amplitude * np.sin(xx / div)).astype( terrain.height_field_raw.dtype ) return terrain def stairs_terrain(terrain, step_width, step_height): """ Generate a stairs Parameters: terrain (terrain): the terrain step_width (float): the width of the step [meters] step_height (float): the height of the step [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units step_width = int(step_width / terrain.horizontal_scale) step_height = int(step_height / terrain.vertical_scale) num_steps = terrain.width // step_width height = step_height for i in range(num_steps): terrain.height_field_raw[i * step_width : (i + 1) * step_width, :] += height height += step_height return terrain def pyramid_stairs_terrain(terrain, step_width, step_height, platform_size=1.0): """ Generate stairs Parameters: terrain (terrain): the terrain step_width (float): the width of the step [meters] step_height (float): the step_height [meters] platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units step_width = int(step_width / terrain.horizontal_scale) step_height = int(step_height / terrain.vertical_scale) platform_size = int(platform_size / terrain.horizontal_scale) height = 0 start_x = 0 stop_x = terrain.width start_y = 0 stop_y = terrain.length while (stop_x - start_x) > platform_size and (stop_y - start_y) > platform_size: start_x += step_width stop_x -= step_width start_y += step_width stop_y -= step_width height += step_height terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = height return terrain def stepping_stones_terrain(terrain, stone_size, stone_distance, max_height, platform_size=1.0, depth=-10): """ Generate a stepping stones terrain Parameters: terrain (terrain): the terrain stone_size (float): horizontal size of the stepping stones [meters] stone_distance (float): distance between stones (i.e size of the holes) [meters] max_height (float): maximum height of the stones (positive and negative) [meters] platform_size (float): size of the flat platform at the center of the terrain [meters] depth (float): depth of the holes (default=-10.) [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units stone_size = int(stone_size / terrain.horizontal_scale) stone_distance = int(stone_distance / terrain.horizontal_scale) max_height = int(max_height / terrain.vertical_scale) platform_size = int(platform_size / terrain.horizontal_scale) height_range = np.arange(-max_height - 1, max_height, step=1) start_x = 0 start_y = 0 terrain.height_field_raw[:, :] = int(depth / terrain.vertical_scale) if terrain.length >= terrain.width: while start_y < terrain.length: stop_y = min(terrain.length, start_y + stone_size) start_x = np.random.randint(0, stone_size) # fill first hole stop_x = max(0, start_x - stone_distance) terrain.height_field_raw[0:stop_x, start_y:stop_y] = np.random.choice(height_range) # fill row while start_x < terrain.width: stop_x = min(terrain.width, start_x + stone_size) terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(height_range) start_x += stone_size + stone_distance start_y += stone_size + stone_distance elif terrain.width > terrain.length: while start_x < terrain.width: stop_x = min(terrain.width, start_x + stone_size) start_y = np.random.randint(0, stone_size) # fill first hole stop_y = max(0, start_y - stone_distance) terrain.height_field_raw[start_x:stop_x, 0:stop_y] = np.random.choice(height_range) # fill column while start_y < terrain.length: stop_y = min(terrain.length, start_y + stone_size) terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(height_range) start_y += stone_size + stone_distance start_x += stone_size + stone_distance x1 = (terrain.width - platform_size) // 2 x2 = (terrain.width + platform_size) // 2 y1 = (terrain.length - platform_size) // 2 y2 = (terrain.length + platform_size) // 2 terrain.height_field_raw[x1:x2, y1:y2] = 0 return terrain def convert_heightfield_to_trimesh(height_field_raw, horizontal_scale, vertical_scale, slope_threshold=None): """ Convert a heightfield array to a triangle mesh represented by vertices and triangles. Optionally, corrects vertical surfaces above the provide slope threshold: If (y2-y1)/(x2-x1) > slope_threshold -> Move A to A' (set x1 = x2). Do this for all directions. B(x2,y2) /| / | / | (x1,y1)A---A'(x2',y1) Parameters: height_field_raw (np.array): input heightfield horizontal_scale (float): horizontal scale of the heightfield [meters] vertical_scale (float): vertical scale of the heightfield [meters] slope_threshold (float): the slope threshold above which surfaces are made vertical. If None no correction is applied (default: None) Returns: vertices (np.array(float)): array of shape (num_vertices, 3). Each row represents the location of each vertex [meters] triangles (np.array(int)): array of shape (num_triangles, 3). Each row represents the indices of the 3 vertices connected by this triangle. """ hf = height_field_raw num_rows = hf.shape[0] num_cols = hf.shape[1] y = np.linspace(0, (num_cols - 1) * horizontal_scale, num_cols) x = np.linspace(0, (num_rows - 1) * horizontal_scale, num_rows) yy, xx = np.meshgrid(y, x) if slope_threshold is not None: slope_threshold *= horizontal_scale / vertical_scale move_x = np.zeros((num_rows, num_cols)) move_y = np.zeros((num_rows, num_cols)) move_corners = np.zeros((num_rows, num_cols)) move_x[: num_rows - 1, :] += hf[1:num_rows, :] - hf[: num_rows - 1, :] > slope_threshold move_x[1:num_rows, :] -= hf[: num_rows - 1, :] - hf[1:num_rows, :] > slope_threshold move_y[:, : num_cols - 1] += hf[:, 1:num_cols] - hf[:, : num_cols - 1] > slope_threshold move_y[:, 1:num_cols] -= hf[:, : num_cols - 1] - hf[:, 1:num_cols] > slope_threshold move_corners[: num_rows - 1, : num_cols - 1] += ( hf[1:num_rows, 1:num_cols] - hf[: num_rows - 1, : num_cols - 1] > slope_threshold ) move_corners[1:num_rows, 1:num_cols] -= ( hf[: num_rows - 1, : num_cols - 1] - hf[1:num_rows, 1:num_cols] > slope_threshold ) xx += (move_x + move_corners * (move_x == 0)) * horizontal_scale yy += (move_y + move_corners * (move_y == 0)) * horizontal_scale # create triangle mesh vertices and triangles from the heightfield grid vertices = np.zeros((num_rows * num_cols, 3), dtype=np.float32) vertices[:, 0] = xx.flatten() vertices[:, 1] = yy.flatten() vertices[:, 2] = hf.flatten() * vertical_scale triangles = -np.ones((2 * (num_rows - 1) * (num_cols - 1), 3), dtype=np.uint32) for i in range(num_rows - 1): ind0 = np.arange(0, num_cols - 1) + i * num_cols ind1 = ind0 + 1 ind2 = ind0 + num_cols ind3 = ind2 + 1 start = 2 * i * (num_cols - 1) stop = start + 2 * (num_cols - 1) triangles[start:stop:2, 0] = ind0 triangles[start:stop:2, 1] = ind3 triangles[start:stop:2, 2] = ind1 triangles[start + 1 : stop : 2, 0] = ind0 triangles[start + 1 : stop : 2, 1] = ind2 triangles[start + 1 : stop : 2, 2] = ind3 return vertices, triangles def add_terrain_to_stage(stage, vertices, triangles, position=None, orientation=None): num_faces = triangles.shape[0] terrain_mesh = stage.DefinePrim("/World/terrain", "Mesh") terrain_mesh.GetAttribute("points").Set(vertices) terrain_mesh.GetAttribute("faceVertexIndices").Set(triangles.flatten()) terrain_mesh.GetAttribute("faceVertexCounts").Set(np.asarray([3] * num_faces)) terrain = XFormPrim(prim_path="/World/terrain", name="terrain", position=position, orientation=orientation) UsdPhysics.CollisionAPI.Apply(terrain.prim) # collision_api = UsdPhysics.MeshCollisionAPI.Apply(terrain.prim) # collision_api.CreateApproximationAttr().Set("meshSimplification") physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(terrain.prim) physx_collision_api.GetContactOffsetAttr().Set(0.02) physx_collision_api.GetRestOffsetAttr().Set(0.00) class SubTerrain: def __init__(self, terrain_name="terrain", width=256, length=256, vertical_scale=1.0, horizontal_scale=1.0): self.terrain_name = terrain_name self.vertical_scale = vertical_scale self.horizontal_scale = horizontal_scale self.width = width self.length = length self.height_field_raw = np.zeros((self.width, self.length), dtype=np.int16)
17,645
Python
41.215311
147
0.649306
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/terrain_utils/create_terrain_demo.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os, sys SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(SCRIPT_DIR) import omni from omni.isaac.kit import SimulationApp import numpy as np import torch simulation_app = SimulationApp({"headless": False}) from abc import abstractmethod from omni.isaac.core.tasks import BaseTask from omni.isaac.core.prims import RigidPrimView, RigidPrim, XFormPrim from omni.isaac.core import World from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.core.utils.nucleus import find_nucleus_server from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage from omni.isaac.core.materials import PreviewSurface from omni.isaac.cloner import GridCloner from pxr import UsdPhysics, UsdLux, UsdShade, Sdf, Gf, UsdGeom, PhysxSchema from terrain_utils import * class TerrainCreation(BaseTask): def __init__(self, name, num_envs, num_per_row, env_spacing, config=None, offset=None,) -> None: BaseTask.__init__(self, name=name, offset=offset) self._num_envs = num_envs self._num_per_row = num_per_row self._env_spacing = env_spacing self._device = "cpu" self._cloner = GridCloner(self._env_spacing, self._num_per_row) self._cloner.define_base_env(self.default_base_env_path) define_prim(self.default_zero_env_path) @property def default_base_env_path(self): return "/World/envs" @property def default_zero_env_path(self): return f"{self.default_base_env_path}/env_0" def set_up_scene(self, scene) -> None: self._stage = get_current_stage() distantLight = UsdLux.DistantLight.Define(self._stage, Sdf.Path("/World/DistantLight")) distantLight.CreateIntensityAttr(2000) self.get_terrain() self.get_ball() super().set_up_scene(scene) prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs) print(f"cloning {self._num_envs} environments...") self._env_pos = self._cloner.clone( source_prim_path="/World/envs/env_0", prim_paths=prim_paths ) return def get_terrain(self): # create all available terrain types num_terains = 8 terrain_width = 12. terrain_length = 12. horizontal_scale = 0.25 # [m] vertical_scale = 0.005 # [m] num_rows = int(terrain_width/horizontal_scale) num_cols = int(terrain_length/horizontal_scale) heightfield = np.zeros((num_terains*num_rows, num_cols), dtype=np.int16) def new_sub_terrain(): return SubTerrain(width=num_rows, length=num_cols, vertical_scale=vertical_scale, horizontal_scale=horizontal_scale) heightfield[0:num_rows, :] = random_uniform_terrain(new_sub_terrain(), min_height=-0.2, max_height=0.2, step=0.2, downsampled_scale=0.5).height_field_raw heightfield[num_rows:2*num_rows, :] = sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw heightfield[2*num_rows:3*num_rows, :] = pyramid_sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw heightfield[3*num_rows:4*num_rows, :] = discrete_obstacles_terrain(new_sub_terrain(), max_height=0.5, min_size=1., max_size=5., num_rects=20).height_field_raw heightfield[4*num_rows:5*num_rows, :] = wave_terrain(new_sub_terrain(), num_waves=2., amplitude=1.).height_field_raw heightfield[5*num_rows:6*num_rows, :] = stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw heightfield[6*num_rows:7*num_rows, :] = pyramid_stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw heightfield[7*num_rows:8*num_rows, :] = stepping_stones_terrain(new_sub_terrain(), stone_size=1., stone_distance=1., max_height=0.5, platform_size=0.).height_field_raw vertices, triangles = convert_heightfield_to_trimesh(heightfield, horizontal_scale=horizontal_scale, vertical_scale=vertical_scale, slope_threshold=1.5) position = np.array([-6.0, 48.0, 0]) orientation = np.array([0.70711, 0.0, 0.0, -0.70711]) add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position, orientation=orientation) def get_ball(self): ball = DynamicSphere(prim_path=self.default_zero_env_path + "/ball", name="ball", translation=np.array([0.0, 0.0, 1.0]), mass=0.5, radius=0.2,) def post_reset(self): for i in range(self._num_envs): ball_prim = self._stage.GetPrimAtPath(f"{self.default_base_env_path}/env_{i}/ball") color = 0.5 + 0.5 * np.random.random(3) visual_material = PreviewSurface(prim_path=f"{self.default_base_env_path}/env_{i}/ball/Looks/visual_material", color=color) binding_api = UsdShade.MaterialBindingAPI(ball_prim) binding_api.Bind(visual_material.material, bindingStrength=UsdShade.Tokens.strongerThanDescendants) def get_observations(self): pass def calculate_metrics(self) -> None: pass def is_done(self) -> None: pass if __name__ == "__main__": world = World( stage_units_in_meters=1.0, rendering_dt=1.0/60.0, backend="torch", device="cpu", ) num_envs = 800 num_per_row = 80 env_spacing = 0.56*2 terrain_creation_task = TerrainCreation(name="TerrainCreation", num_envs=num_envs, num_per_row=num_per_row, env_spacing=env_spacing, ) world.add_task(terrain_creation_task) world.reset() while simulation_app.is_running(): if world.is_playing(): if world.current_time_step_index == 0: world.reset(soft=True) world.step(render=True) else: world.step(render=True) simulation_app.close()
7,869
Python
43.213483
166
0.650654
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import omni.client import omni.usd from pxr import Sdf, UsdGeom def update_reference(source_prim_path, source_reference_path, target_reference_path): stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] while len(prims) > 0: prim = prims.pop(0) prim_spec = stage.GetRootLayer().GetPrimAtPath(prim.GetPath()) reference_list = prim_spec.referenceList refs = reference_list.GetAddedOrExplicitItems() if len(refs) > 0: for ref in refs: if ref.assetPath == source_reference_path: prim.GetReferences().RemoveReference(ref) prim.GetReferences().AddReference(assetPath=target_reference_path, primPath=prim.GetPath()) prims = prims + prim.GetChildren() def create_parent_xforms(asset_usd_path, source_prim_path, save_as_path=None): """Adds a new UsdGeom.Xform prim for each Mesh/Geometry prim under source_prim_path. Moves material assignment to new parent prim if any exists on the Mesh/Geometry prim. Args: asset_usd_path (str): USD file path for asset source_prim_path (str): USD path of root prim save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file. """ omni.usd.get_context().open_stage(asset_usd_path) stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] edits = Sdf.BatchNamespaceEdit() while len(prims) > 0: prim = prims.pop(0) print(prim) if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]: new_xform = UsdGeom.Xform.Define(stage, str(prim.GetPath()) + "_xform") print(prim, new_xform) edits.Add(Sdf.NamespaceEdit.Reparent(prim.GetPath(), new_xform.GetPath(), 0)) continue children_prims = prim.GetChildren() prims = prims + children_prims stage.GetRootLayer().Apply(edits) if save_as_path is None: omni.usd.get_context().save_stage() else: omni.usd.get_context().save_as_stage(save_as_path) def convert_asset_instanceable(asset_usd_path, source_prim_path, save_as_path=None, create_xforms=True): """Makes all mesh/geometry prims instanceable. Can optionally add UsdGeom.Xform prim as parent for all mesh/geometry prims. Makes a copy of the asset USD file, which will be used for referencing. Updates asset file to convert all parent prims of mesh/geometry prims to reference cloned USD file. Args: asset_usd_path (str): USD file path for asset source_prim_path (str): USD path of root prim save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file. create_xforms (bool): Whether to add new UsdGeom.Xform prims to mesh/geometry prims. """ if create_xforms: create_parent_xforms(asset_usd_path, source_prim_path, save_as_path) asset_usd_path = save_as_path instance_usd_path = ".".join(asset_usd_path.split(".")[:-1]) + "_meshes.usd" omni.client.copy(asset_usd_path, instance_usd_path) omni.usd.get_context().open_stage(asset_usd_path) stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] while len(prims) > 0: prim = prims.pop(0) if prim: if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]: parent_prim = prim.GetParent() if parent_prim and not parent_prim.IsInstance(): parent_prim.GetReferences().AddReference( assetPath=instance_usd_path, primPath=str(parent_prim.GetPath()) ) parent_prim.SetInstanceable(True) continue children_prims = prim.GetChildren() prims = prims + children_prims if save_as_path is None: omni.usd.get_context().save_stage() else: omni.usd.get_context().save_as_stage(save_as_path)
5,627
Python
42.627907
111
0.67727
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/usd_utils/create_instanceable_dofbot.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import omni.usd import omni.client from pxr import UsdGeom, Sdf, UsdPhysics, UsdShade # Note: this script should be executed in Isaac Sim `Script Editor` window def create_dofbot(asset_usd_path, dofbot_usd_path): # Duplicate dofbot.usd file omni.client.copy(asset_usd_path, dofbot_usd_path) def create_dofbot_mesh(asset_usd_path, dofbot_mesh_usd_path): # Create dofbot_mesh.usd file omni.client.copy(asset_usd_path, dofbot_mesh_usd_path) omni.usd.get_context().open_stage(dofbot_mesh_usd_path) stage = omni.usd.get_context().get_stage() edits = Sdf.BatchNamespaceEdit() # Reparent joints in link5 for d in ['Left', 'Right']: # Reparent finger 03 joint new_parent_path = f'/arm/link5/Finger_{d}_03' old_parent_path = f'{new_parent_path}/Finger_{d}_03' joint_path = f'{old_parent_path}/Finger_{d}_03_RevoluteJoint' edits.Add(Sdf.NamespaceEdit.Reparent(joint_path, new_parent_path, 0)) # Reparent finger 02 joint new_parent_path = f'/arm/link5/Finger_{d}_02' old_parent_path = f'{new_parent_path}/Finger_{d}_02' joint_path = f'{old_parent_path}/Finger_{d}_02_RevoluteJoint' edits.Add(Sdf.NamespaceEdit.Reparent(joint_path, new_parent_path, 0)) # Create parent Xforms # Joint 1 & 2 & 3 reparent_tasks = [ # base_link ['/arm/base_link/visuals', 'visuals_xform'], ['/arm/base_link/PCB_01', 'visuals_xform'], ['/arm/base_link/Base01_01', 'visuals_xform'], ['/arm/base_link/Antennas_01', 'visuals_xform'], ['/arm/base_link/collisions', 'collisions_xform'], # link1 ['/arm/link1/visuals', 'visuals_xform'], ['/arm/link1/collisions', 'collisions_xform'], # link2 ['/arm/link2/visuals', 'visuals_xform'], ['/arm/link2/collisions', 'collisions_xform'], # link3 ['/arm/link3/visuals', 'visuals_xform'], ['/arm/link3/collisions', 'collisions_xform'], # link4 ['/arm/link4/Wrist_Lift', 'geoms_xform'], ['/arm/link4/Camera', 'geoms_xform'], # link5 ['/arm/link5/Wrist_Twist/Wrist_Twist', 'geoms_xform'], ['/arm/link5/Finger_Left_01/Finger_Left_01', 'geoms_xform'], ['/arm/link5/Finger_Right_01/Finger_Right_01', 'geoms_xform'], ['/arm/link5/Finger_Left_03/Finger_Left_03', 'geoms_xform'], ['/arm/link5/Finger_Right_03/Finger_Right_03', 'geoms_xform'], ['/arm/link5/Finger_Left_02/Finger_Left_02', 'geoms_xform'], ['/arm/link5/Finger_Right_02/Finger_Right_02', 'geoms_xform'], ] # [prim_path, parent_xform_name] for task in reparent_tasks: prim_path, parent_xform_name = task old_parent_path = '/'.join(prim_path.split('/')[:-1]) new_parent_path = f'{old_parent_path}/{parent_xform_name}' UsdGeom.Xform.Define(stage, new_parent_path) edits.Add(Sdf.NamespaceEdit.Reparent(prim_path, new_parent_path, -1)) # Delete redundant materials edits.Add(Sdf.NamespaceEdit.Remove('/arm/link5/Looks')) stage.GetRootLayer().Apply(edits) # Fix link5 joints for d in ['Left', 'Right']: # finger 01 revolute joints joint_path = f'/arm/link5/Finger_{d}_01/Finger_{d}_01_RevoluteJoint' joint = UsdPhysics.Joint.Get(stage, joint_path) joint.GetBody1Rel().SetTargets(['/arm/link5/Wrist_Twist/geoms_xform/Wrist_Twist']) # finger 03 revolute joints joint_path = f'/arm/link5/Finger_{d}_03/Finger_{d}_03_RevoluteJoint' joint = UsdPhysics.Joint.Get(stage, joint_path) joint.GetBody0Rel().SetTargets([f'/arm/link5/Finger_{d}_03']) joint.GetBody1Rel().SetTargets([f'/arm/link5/Finger_{d}_01/geoms_xform/Finger_{d}_01']) # finger 02 spherical joints joint_path = f'/arm/link5/Finger_{d}_02/Finger_{d}_02_SphericalJoint' joint = UsdPhysics.Joint.Get(stage, joint_path) joint.GetBody0Rel().SetTargets([f'/arm/link5/Finger_{d}_03/geoms_xform/Finger_{d}_03']) joint.GetBody1Rel().SetTargets([f'/arm/link5/Finger_{d}_02/geoms_xform/Finger_{d}_02']) # finger 02 revolute joints joint_path = f'/arm/link5/Finger_{d}_02/Finger_{d}_02_RevoluteJoint' joint = UsdPhysics.Joint.Get(stage, joint_path) joint.GetBody0Rel().SetTargets([f'/arm/link5/Finger_{d}_02/geoms_xform/Finger_{d}_02']) joint.GetBody1Rel().SetTargets(['/arm/link5/Wrist_Twist/geoms_xform/Wrist_Twist']) for prim in stage.Traverse(): if prim.GetTypeName() == 'Xform': # Copy Looks folder into visuals_xform and geoms_xform path = str(prim.GetPath()) if path.endswith('visuals_xform') or path.endswith('geoms_xform'): omni.usd.duplicate_prim(stage, '/arm/Looks', f'{path}/Looks') ref = stage.GetPrimAtPath(f'{path}/Looks').GetReferences() ref.ClearReferences() ref.AddReference('./dofbot_materials.usd') pass elif prim.GetTypeName() == 'GeomSubset': # Bind GeomSubset to local materials path = str(prim.GetPath()) parent_xform_path = path.split('/') while parent_xform_path[-1] != 'visuals_xform' and parent_xform_path[-1] != 'geoms_xform': parent_xform_path.pop() parent_xform_path = '/'.join(parent_xform_path) name = path.split('/')[-1] material = UsdShade.Material.Get(stage, f'{parent_xform_path}/Looks/{name}') UsdShade.MaterialBindingAPI(prim).Bind(material) # , UsdShade.Tokens.strongerThanDescendants) edits = Sdf.BatchNamespaceEdit() edits.Add(Sdf.NamespaceEdit.Remove('/arm/Looks')) stage.GetRootLayer().Apply(edits) # Save to file omni.usd.get_context().save_stage() def create_dofbot_materials(asset_usd_path, dofbot_materials_usd_path): # Create dofbot_materials.usd file omni.client.copy(asset_usd_path, dofbot_materials_usd_path) omni.usd.get_context().open_stage(dofbot_materials_usd_path) stage = omni.usd.get_context().get_stage() edits = Sdf.BatchNamespaceEdit() # Extract Looks folder edits.Add(Sdf.NamespaceEdit.Reparent('/arm/Looks', '/', 0)) # Remove everything else edits.Add(Sdf.NamespaceEdit.Remove('/World')) edits.Add(Sdf.NamespaceEdit.Remove('/arm')) # Apply & save to file stage.GetRootLayer().Apply(edits) prim = stage.GetPrimAtPath('/Looks') stage.SetDefaultPrim(prim) omni.usd.get_context().save_stage() def create_dofbot_instanceable(dofbot_mesh_usd_path, dofbot_instanceable_usd_path): omni.client.copy(dofbot_mesh_usd_path, dofbot_instanceable_usd_path) omni.usd.get_context().open_stage(dofbot_instanceable_usd_path) stage = omni.usd.get_context().get_stage() # Set up references and instanceables for prim in stage.Traverse(): if prim.GetTypeName() != 'Xform': continue # Add reference to visuals_xform, collisions_xform, geoms_xform, and make them instanceable path = str(prim.GetPath()) if path.endswith('visuals_xform') or path.endswith('collisions_xform') or path.endswith('geoms_xform'): ref = prim.GetReferences() ref.ClearReferences() ref.AddReference('./dofbot_mesh.usd', path) prim.SetInstanceable(True) # Save to file omni.usd.get_context().save_stage() def create_block_indicator(): for suffix in ['', '_instanceable']: asset_usd_path = f'omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Props/Blocks/block{suffix}.usd' block_usd_path = f'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Props/Blocks/block{suffix}.usd' omni.client.copy(asset_usd_path, block_usd_path) omni.usd.get_context().open_stage(block_usd_path) stage = omni.usd.get_context().get_stage() edits = Sdf.BatchNamespaceEdit() edits.Add(Sdf.NamespaceEdit.Remove('/object/object/collisions')) stage.GetRootLayer().Apply(edits) omni.usd.get_context().save_stage() if __name__ == '__main__': asset_usd_path = 'omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot.usd' dofbot_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot.usd' dofbot_materials_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_materials.usd' dofbot_mesh_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_mesh.usd' dofbot_instanceable_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_instanceable.usd' create_dofbot(asset_usd_path, dofbot_usd_path) create_dofbot_materials(asset_usd_path, dofbot_materials_usd_path) create_dofbot_mesh(asset_usd_path, dofbot_mesh_usd_path) create_dofbot_instanceable(dofbot_mesh_usd_path, dofbot_instanceable_usd_path) create_block_indicator() print("Done!")
10,636
Python
49.174528
133
0.668578
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/usd_utils/create_instanceable_dofbot_from_urdf.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Ref: https://docs.omniverse.nvidia.com/isaacsim/latest/advanced_tutorials/tutorial_advanced_import_urdf.html#importing-urdf-using-python import os import omni.kit.commands import omni.usd from omni.importer.urdf import _urdf from omni.isaac.core.utils.extensions import get_extension_path_from_name from pxr import Sdf, UsdGeom def create_dofbot_from_urdf(urdf_path, usd_path, mesh_usd_path, instanceable_usd_path): # Set the settings in the import config import_config = _urdf.ImportConfig() import_config.merge_fixed_joints = False import_config.convex_decomp = False import_config.import_inertia_tensor = False import_config.fix_base = True import_config.make_default_prim = True import_config.self_collision = False import_config.create_physics_scene = True # The two values below follows the Dofbot USD file provided by NVIDIA # Joint 5 should be damping = 10, stiffness = 1000, but we ignore it for now import_config.default_drive_strength = 1048.0 import_config.default_position_drive_damping = 53.0 import_config.default_drive_type = _urdf.UrdfJointTargetType.JOINT_DRIVE_POSITION import_config.distance_scale = 1 import_config.density = 0.0 # Finally import the robot & save it as USD result, prim_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config, dest_path=usd_path, ) import_config.make_instanceable=True import_config.instanceable_usd_path=mesh_usd_path # Finally import the robot & save it as instanceable USD result, prim_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config, dest_path=instanceable_usd_path, ) def create_block_indicator(): for suffix in ['', '_instanceable']: asset_usd_path = f'omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Props/Blocks/block{suffix}.usd' block_usd_path = f'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Props/Blocks/block{suffix}.usd' omni.client.copy(asset_usd_path, block_usd_path) omni.usd.get_context().open_stage(block_usd_path) stage = omni.usd.get_context().get_stage() edits = Sdf.BatchNamespaceEdit() edits.Add(Sdf.NamespaceEdit.Remove('/object/object/collisions')) stage.GetRootLayer().Apply(edits) omni.usd.get_context().save_stage() if __name__ == '__main__': dofbot_urdf_path = f'{os.path.expanduser("~")}/OmniIsaacGymEnvs-DofbotReacher/thirdparty/dofbot_info/urdf/dofbot.urdf' dofbot_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_urdf.usd' dofbot_mesh_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_urdf_instanceable_meshes.usd' dofbot_instanceable_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_urdf_instanceable.usd' create_dofbot_from_urdf(dofbot_urdf_path, dofbot_usd_path, dofbot_mesh_usd_path, dofbot_instanceable_usd_path) create_block_indicator() print("Done!")
4,749
Python
51.197802
138
0.744999
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/shadow_hand.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omniisaacgymenvs.tasks.utils.usd_utils import set_drive from pxr import Gf, PhysxSchema, Sdf, Usd, UsdGeom, UsdPhysics class ShadowHand(Robot): def __init__( self, prim_path: str, name: Optional[str] = "shadow_hand", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/ShadowHand/shadow_hand_instanceable.usd" self._position = torch.tensor([0.0, 0.0, 0.5]) if translation is None else translation self._orientation = torch.tensor([1.0, 0.0, 0.0, 0.0]) if orientation is None else orientation add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, ) def set_shadow_hand_properties(self, stage, shadow_hand_prim): for link_prim in shadow_hand_prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.GetDisableGravityAttr().Set(True) rb.GetRetainAccelerationsAttr().Set(True) def set_motor_control_mode(self, stage, shadow_hand_path): joints_config = { "robot0_WRJ1": {"stiffness": 5, "damping": 0.5, "max_force": 4.785}, "robot0_WRJ0": {"stiffness": 5, "damping": 0.5, "max_force": 2.175}, "robot0_FFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_FFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_FFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245}, "robot0_MFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_MFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_MFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245}, "robot0_RFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_RFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_RFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245}, "robot0_LFJ4": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_LFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_LFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_LFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245}, "robot0_THJ4": {"stiffness": 1, "damping": 0.1, "max_force": 2.3722}, "robot0_THJ3": {"stiffness": 1, "damping": 0.1, "max_force": 1.45}, "robot0_THJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.99}, "robot0_THJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.99}, "robot0_THJ0": {"stiffness": 1, "damping": 0.1, "max_force": 0.81}, } for joint_name, config in joints_config.items(): set_drive( f"{self.prim_path}/joints/{joint_name}", "angular", "position", 0.0, config["stiffness"] * np.pi / 180, config["damping"] * np.pi / 180, config["max_force"], )
5,517
Python
46.982608
103
0.623527
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/cabinet.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Cabinet(Robot): def __init__( self, prim_path: str, name: Optional[str] = "cabinet", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Props/Sektion_Cabinet/sektion_cabinet_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) self._position = torch.tensor([0.0, 0.0, 0.4]) if translation is None else translation self._orientation = torch.tensor([0.1, 0.0, 0.0, 0.0]) if orientation is None else orientation super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, )
1,819
Python
35.399999
111
0.660803
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/franka.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import math from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage from omniisaacgymenvs.tasks.utils.usd_utils import set_drive from pxr import PhysxSchema class Franka(Robot): def __init__( self, prim_path: str, name: Optional[str] = "franka", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name self._position = torch.tensor([1.0, 0.0, 0.0]) if translation is None else translation self._orientation = torch.tensor([0.0, 0.0, 0.0, 1.0]) if orientation is None else orientation if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Franka/franka_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, ) dof_paths = [ "panda_link0/panda_joint1", "panda_link1/panda_joint2", "panda_link2/panda_joint3", "panda_link3/panda_joint4", "panda_link4/panda_joint5", "panda_link5/panda_joint6", "panda_link6/panda_joint7", "panda_hand/panda_finger_joint1", "panda_hand/panda_finger_joint2", ] drive_type = ["angular"] * 7 + ["linear"] * 2 default_dof_pos = [math.degrees(x) for x in [0.0, -1.0, 0.0, -2.2, 0.0, 2.4, 0.8]] + [0.02, 0.02] stiffness = [400 * np.pi / 180] * 7 + [10000] * 2 damping = [80 * np.pi / 180] * 7 + [100] * 2 max_force = [87, 87, 87, 87, 12, 12, 12, 200, 200] max_velocity = [math.degrees(x) for x in [2.175, 2.175, 2.175, 2.175, 2.61, 2.61, 2.61]] + [0.2, 0.2] for i, dof in enumerate(dof_paths): set_drive( prim_path=f"{self.prim_path}/{dof}", drive_type=drive_type[i], target_type="position", target_value=default_dof_pos[i], stiffness=stiffness[i], damping=damping[i], max_force=max_force[i], ) PhysxSchema.PhysxJointAPI(get_prim_at_path(f"{self.prim_path}/{dof}")).CreateMaxJointVelocityAttr().Set( max_velocity[i] ) def set_franka_properties(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.GetDisableGravityAttr().Set(True)
3,653
Python
37.0625
116
0.599781
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/anymal.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from pxr import PhysxSchema class Anymal(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Anymal", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find nucleus server with /Isaac folder") self._usd_path = assets_root_path + "/Isaac/Robots/ANYbotics/anymal_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, ) self._dof_names = [ "LF_HAA", "LH_HAA", "RF_HAA", "RH_HAA", "LF_HFE", "LH_HFE", "RF_HFE", "RH_HFE", "LF_KFE", "LH_KFE", "RF_KFE", "RH_KFE", ] @property def dof_names(self): return self._dof_names def set_anymal_properties(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.GetDisableGravityAttr().Set(False) rb.GetRetainAccelerationsAttr().Set(False) rb.GetLinearDampingAttr().Set(0.0) rb.GetMaxLinearVelocityAttr().Set(1000.0) rb.GetAngularDampingAttr().Set(0.0) rb.GetMaxAngularVelocityAttr().Set(64 / np.pi * 180) def prepare_contacts(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): if "_HIP" not in str(link_prim.GetPrimPath()): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.CreateSleepThresholdAttr().Set(0) cr_api = PhysxSchema.PhysxContactReportAPI.Apply(link_prim) cr_api.CreateThresholdAttr().Set(0)
4,273
Python
38.943925
97
0.648022
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/cabinet_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class CabinetView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "CabinetView", ) -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._drawers = RigidPrimView( prim_paths_expr="/World/envs/.*/cabinet/drawer_top", name="drawers_view", reset_xform_properties=False )
586
Python
28.349999
114
0.653584
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/shadow_hand_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class ShadowHandView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "ShadowHandView", ) -> None: super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._fingers = RigidPrimView( prim_paths_expr="/World/envs/.*/shadow_hand/robot0.*distal", name="finger_view", reset_xform_properties=False, ) @property def actuated_dof_indices(self): return self._actuated_dof_indices def initialize(self, physics_sim_view): super().initialize(physics_sim_view) self.actuated_joint_names = [ "robot0_WRJ1", "robot0_WRJ0", "robot0_FFJ3", "robot0_FFJ2", "robot0_FFJ1", "robot0_MFJ3", "robot0_MFJ2", "robot0_MFJ1", "robot0_RFJ3", "robot0_RFJ2", "robot0_RFJ1", "robot0_LFJ4", "robot0_LFJ3", "robot0_LFJ2", "robot0_LFJ1", "robot0_THJ4", "robot0_THJ3", "robot0_THJ2", "robot0_THJ1", "robot0_THJ0", ] self._actuated_dof_indices = list() for joint_name in self.actuated_joint_names: self._actuated_dof_indices.append(self.get_dof_index(joint_name)) self._actuated_dof_indices.sort() limit_stiffness = torch.tensor([30.0] * self.num_fixed_tendons, device=self._device) damping = torch.tensor([0.1] * self.num_fixed_tendons, device=self._device) self.set_fixed_tendon_properties(dampings=damping, limit_stiffnesses=limit_stiffness) fingertips = ["robot0_ffdistal", "robot0_mfdistal", "robot0_rfdistal", "robot0_lfdistal", "robot0_thdistal"] self._sensor_indices = torch.tensor([self._body_indices[j] for j in fingertips], device=self._device, dtype=torch.long)
3,681
Python
38.591397
127
0.669383
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/franka_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class FrankaView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "FrankaView", ) -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._hands = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_link7", name="hands_view", reset_xform_properties=False ) self._lfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_leftfinger", name="lfingers_view", reset_xform_properties=False ) self._rfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_rightfinger", name="rfingers_view", reset_xform_properties=False, ) def initialize(self, physics_sim_view): super().initialize(physics_sim_view) self._gripper_indices = [self.get_dof_index("panda_finger_joint1"), self.get_dof_index("panda_finger_joint2")] @property def gripper_indices(self): return self._gripper_indices
1,241
Python
32.567567
120
0.637389
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/factory_franka_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class FactoryFrankaView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "FactoryFrankaView", ) -> None: """Initialize articulation view.""" super().__init__( prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False ) self._hands = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_hand", name="hands_view", reset_xform_properties=False, ) self._lfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_leftfinger", name="lfingers_view", reset_xform_properties=False, track_contact_forces=True, ) self._rfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_rightfinger", name="rfingers_view", reset_xform_properties=False, track_contact_forces=True, ) self._fingertip_centered = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_fingertip_centered", name="fingertips_view", reset_xform_properties=False, ) def initialize(self, physics_sim_view): """Initialize physics simulation view.""" super().initialize(physics_sim_view)
1,488
Python
31.369565
84
0.598118
j3soon/OmniIsaacGymEnvs-UR10Reacher/setup.py
"""Installation script for the 'isaacgymenvs' python package.""" from __future__ import absolute_import from __future__ import print_function from __future__ import division from setuptools import setup, find_packages import os # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ "protobuf==3.20.1", "omegaconf==2.1.1", "hydra-core==1.1.1", "redis==3.5.3", # needed by Ray on Windows "rl-games==1.5.2" ] # Installation operation setup( name="omniisaacgymenvs", author="NVIDIA", version="1.1.0", description="RL environments for robot learning in NVIDIA Isaac Sim.", keywords=["robotics", "rl"], include_package_data=True, install_requires=INSTALL_REQUIRES, packages=find_packages("."), classifiers=["Natural Language :: English", "Programming Language :: Python :: 3.7, 3.8"], zip_safe=False, ) # EOF
890
Python
24.457142
94
0.678652
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/ur10_reacher.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.sim2real.ur10 import RealWorldUR10 from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig from omniisaacgymenvs.tasks.shared.reacher import ReacherTask from omniisaacgymenvs.robots.articulations.views.ur10_view import UR10View from omniisaacgymenvs.robots.articulations.ur10 import UR10 from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch import * from omni.isaac.gym.vec_env import VecEnvBase import numpy as np import torch import math class UR10ReacherTask(ReacherTask): def __init__( self, name: str, sim_config: SimConfig, env: VecEnvBase, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.obs_type = self._task_cfg["env"]["observationType"] if not (self.obs_type in ["full"]): raise Exception( "Unknown type of observations!\nobservationType should be one of: [full]") print("Obs type:", self.obs_type) self.num_obs_dict = { "full": 29, # 6: UR10 joints position (action space) # 6: UR10 joints velocity # 3: goal position # 4: goal rotation # 4: goal relative rotation # 6: previous action } self.object_scale = torch.tensor([1.0] * 3) self.goal_scale = torch.tensor([2.0] * 3) self._num_observations = self.num_obs_dict[self.obs_type] self._num_actions = 6 self._num_states = 0 pi = math.pi if self._task_cfg['safety']['enabled']: # Depends on your real robot setup self._dof_limits = torch.tensor([[ [np.deg2rad(-135), np.deg2rad(135)], [np.deg2rad(-180), np.deg2rad(-60)], [np.deg2rad(0), np.deg2rad(180)], [np.deg2rad(-180), np.deg2rad(0)], [np.deg2rad(-180), np.deg2rad(0)], [np.deg2rad(-180), np.deg2rad(180)], ]], dtype=torch.float32, device=self._cfg["sim_device"]) else: # For actions self._dof_limits = torch.tensor([[ [-2*pi, 2*pi], # [-2*pi, 2*pi], [-pi + pi/8, 0 - pi/8], # [-2*pi, 2*pi], [-pi + pi/8, pi - pi/8], # [-2*pi, 2*pi], [-pi, 0], # [-2*pi, 2*pi], [-pi, pi], # [-2*pi, 2*pi], [-2*pi, 2*pi], # [-2*pi, 2*pi], ]], dtype=torch.float32, device=self._cfg["sim_device"]) # The last action space cannot be [0, 0] # It will introduce the following error: # ValueError: Expected parameter loc (Tensor of shape (2048, 6)) of distribution Normal(loc: torch.Size([2048, 6]), scale: torch.Size([2048, 6])) to satisfy the constraint Real(), but found invalid values ReacherTask.__init__(self, name=name, env=env) # Setup Sim2Real sim2real_config = self._task_cfg['sim2real'] if sim2real_config['enabled'] and self.test and self.num_envs == 1: self.act_moving_average /= 5 # Reduce moving speed self.real_world_ur10 = RealWorldUR10( sim2real_config['fail_quietely'], sim2real_config['verbose'] ) return def get_num_dof(self): return self._arms.num_dof def get_arm(self): ur10 = UR10(prim_path=self.default_zero_env_path + "/ur10", name="UR10") self._sim_config.apply_articulation_settings( "ur10", get_prim_at_path(ur10.prim_path), self._sim_config.parse_actor_config("ur10"), ) def get_arm_view(self, scene): arm_view = UR10View(prim_paths_expr="/World/envs/.*/ur10", name="ur10_view") scene.add(arm_view._end_effectors) return arm_view def get_object_displacement_tensor(self): return torch.tensor([0.0, 0.05, 0.0], device=self.device).repeat((self.num_envs, 1)) def get_observations(self): self.arm_dof_pos = self._arms.get_joint_positions() self.arm_dof_vel = self._arms.get_joint_velocities() if self.obs_type == "full_no_vel": self.compute_full_observations(True) elif self.obs_type == "full": self.compute_full_observations() else: print("Unkown observations type!") observations = { self._arms.name: { "obs_buf": self.obs_buf } } return observations def get_reset_target_new_pos(self, n_reset_envs): # Randomly generate goal positions, although the resulting goal may still not be reachable. new_pos = torch_rand_float(-1, 1, (n_reset_envs, 3), device=self.device) if self._task_cfg['sim2real']['enabled'] and self.test and self.num_envs == 1: # Depends on your real robot setup new_pos[:, 0] = torch.abs(new_pos[:, 0] * 0.1) + 0.35 new_pos[:, 1] = torch.abs(new_pos[:, 1] * 0.1) + 0.35 new_pos[:, 2] = torch.abs(new_pos[:, 2] * 0.5) + 0.3 else: new_pos[:, 0] = new_pos[:, 0] * 0.4 + 0.5 * torch.sign(new_pos[:, 0]) new_pos[:, 1] = new_pos[:, 1] * 0.4 + 0.5 * torch.sign(new_pos[:, 1]) new_pos[:, 2] = torch.abs(new_pos[:, 2] * 0.8) + 0.1 if self._task_cfg['safety']['enabled']: new_pos[:, 0] = torch.abs(new_pos[:, 0]) / 1.25 new_pos[:, 1] = torch.abs(new_pos[:, 1]) / 1.25 return new_pos def compute_full_observations(self, no_vel=False): if no_vel: raise NotImplementedError() else: # There are many redundant information for the simple Reacher task, but we'll keep them for now. self.obs_buf[:, 0:self.num_arm_dofs] = unscale(self.arm_dof_pos[:, :self.num_arm_dofs], self.arm_dof_lower_limits, self.arm_dof_upper_limits) self.obs_buf[:, self.num_arm_dofs:2*self.num_arm_dofs] = self.vel_obs_scale * self.arm_dof_vel[:, :self.num_arm_dofs] base = 2 * self.num_arm_dofs self.obs_buf[:, base+0:base+3] = self.goal_pos self.obs_buf[:, base+3:base+7] = self.goal_rot self.obs_buf[:, base+7:base+11] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, base+11:base+17] = self.actions def send_joint_pos(self, joint_pos): self.real_world_ur10.send_joint_pos(joint_pos)
8,205
Python
42.882353
216
0.599878
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/base/rl_task.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod import numpy as np import torch from gym import spaces from omni.isaac.core.tasks import BaseTask from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.utils.prims import define_prim from omni.isaac.cloner import GridCloner from omniisaacgymenvs.tasks.utils.usd_utils import create_distant_light from omniisaacgymenvs.utils.domain_randomization.randomize import Randomizer import omni.kit class RLTask(BaseTask): """ This class provides a PyTorch RL-specific interface for setting up RL tasks. It includes utilities for setting up RL task related parameters, cloning environments, and data collection for RL algorithms. """ def __init__(self, name, env, offset=None) -> None: """ Initializes RL parameters, cloner object, and buffers. Args: name (str): name of the task. env (VecEnvBase): an instance of the environment wrapper class to register task. offset (Optional[np.ndarray], optional): offset applied to all assets of the task. Defaults to None. """ super().__init__(name=name, offset=offset) self.test = self._cfg["test"] self._device = self._cfg["sim_device"] self._dr_randomizer = Randomizer(self._sim_config) print("Task Device:", self._device) self.randomize_actions = False self.randomize_observations = False self.clip_obs = self._cfg["task"]["env"].get("clipObservations", np.Inf) self.clip_actions = self._cfg["task"]["env"].get("clipActions", np.Inf) self.rl_device = self._cfg.get("rl_device", "cuda:0") self.control_frequency_inv = self._cfg["task"]["env"].get("controlFrequencyInv", 1) print("RL device: ", self.rl_device) self._env = env if not hasattr(self, "_num_agents"): self._num_agents = 1 # used for multi-agent environments if not hasattr(self, "_num_states"): self._num_states = 0 # initialize data spaces (defaults to gym.Box) if not hasattr(self, "action_space"): self.action_space = spaces.Box(np.ones(self.num_actions) * -1.0, np.ones(self.num_actions) * 1.0) if not hasattr(self, "observation_space"): self.observation_space = spaces.Box(np.ones(self.num_observations) * -np.Inf, np.ones(self.num_observations) * np.Inf) if not hasattr(self, "state_space"): self.state_space = spaces.Box(np.ones(self.num_states) * -np.Inf, np.ones(self.num_states) * np.Inf) self._cloner = GridCloner(spacing=self._env_spacing) self._cloner.define_base_env(self.default_base_env_path) define_prim(self.default_zero_env_path) self.cleanup() def cleanup(self) -> None: """ Prepares torch buffers for RL data collection.""" # prepare tensors self.obs_buf = torch.zeros((self._num_envs, self.num_observations), device=self._device, dtype=torch.float) self.states_buf = torch.zeros((self._num_envs, self.num_states), device=self._device, dtype=torch.float) self.rew_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.float) self.reset_buf = torch.ones(self._num_envs, device=self._device, dtype=torch.long) self.progress_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.extras = {} def set_up_scene(self, scene) -> None: """ Clones environments based on value provided in task config and applies collision filters to mask collisions across environments. Args: scene (Scene): Scene to add objects to. """ super().set_up_scene(scene) collision_filter_global_paths = list() if self._sim_config.task_config["sim"].get("add_ground_plane", True): self._ground_plane_path = "/World/defaultGroundPlane" collision_filter_global_paths.append(self._ground_plane_path) scene.add_default_ground_plane(prim_path=self._ground_plane_path) prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs) self._env_pos = self._cloner.clone(source_prim_path="/World/envs/env_0", prim_paths=prim_paths) self._env_pos = torch.tensor(np.array(self._env_pos), device=self._device, dtype=torch.float) self._cloner.filter_collisions( self._env._world.get_physics_context().prim_path, "/World/collisions", prim_paths, collision_filter_global_paths) self.set_initial_camera_params(camera_position=[10, 10, 3], camera_target=[0, 0, 0]) if self._sim_config.task_config["sim"].get("add_distant_light", True): create_distant_light() def set_initial_camera_params(self, camera_position=[10, 10, 3], camera_target=[0, 0, 0]): if self._env._render: viewport = omni.kit.viewport_legacy.get_default_viewport_window() viewport.set_camera_position("/OmniverseKit_Persp", camera_position[0], camera_position[1], camera_position[2], True) viewport.set_camera_target("/OmniverseKit_Persp", camera_target[0], camera_target[1], camera_target[2], True) @property def default_base_env_path(self): """ Retrieves default path to the parent of all env prims. Returns: default_base_env_path(str): Defaults to "/World/envs". """ return "/World/envs" @property def default_zero_env_path(self): """ Retrieves default path to the first env prim (index 0). Returns: default_zero_env_path(str): Defaults to "/World/envs/env_0". """ return f"{self.default_base_env_path}/env_0" @property def num_envs(self): """ Retrieves number of environments for task. Returns: num_envs(int): Number of environments. """ return self._num_envs @property def num_actions(self): """ Retrieves dimension of actions. Returns: num_actions(int): Dimension of actions. """ return self._num_actions @property def num_observations(self): """ Retrieves dimension of observations. Returns: num_observations(int): Dimension of observations. """ return self._num_observations @property def num_states(self): """ Retrieves dimesion of states. Returns: num_states(int): Dimension of states. """ return self._num_states @property def num_agents(self): """ Retrieves number of agents for multi-agent environments. Returns: num_agents(int): Dimension of states. """ return self._num_agents def get_states(self): """ API for retrieving states buffer, used for asymmetric AC training. Returns: states_buf(torch.Tensor): States buffer. """ return self.states_buf def get_extras(self): """ API for retrieving extras data for RL. Returns: extras(dict): Dictionary containing extras data. """ return self.extras def reset(self): """ Flags all environments for reset. """ self.reset_buf = torch.ones_like(self.reset_buf) def pre_physics_step(self, actions): """ Optionally implemented by individual task classes to process actions. Args: actions (torch.Tensor): Actions generated by RL policy. """ pass def post_physics_step(self): """ Processes RL required computations for observations, states, rewards, resets, and extras. Also maintains progress buffer for tracking step count per environment. Returns: obs_buf(torch.Tensor): Tensor of observation data. rew_buf(torch.Tensor): Tensor of rewards data. reset_buf(torch.Tensor): Tensor of resets/dones data. extras(dict): Dictionary of extras data. """ self.progress_buf[:] += 1 if self._env._world.is_playing(): self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
9,915
Python
38.349206
130
0.649723
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/sim2real/ur10.py
# Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import asyncio import math import numpy as np try: import rospy # Ref: https://github.com/ros-controls/ros_controllers/blob/melodic-devel/rqt_joint_trajectory_controller/src/rqt_joint_trajectory_controller/joint_trajectory_controller.py from control_msgs.msg import JointTrajectoryControllerState from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint except ImportError: rospy = None class RealWorldUR10(): # Defined in ur10.usd sim_dof_angle_limits = [ (-360, 360, False), (-360, 360, False), (-360, 360, False), (-360, 360, False), (-360, 360, False), (-360, 360, False), ] # _sim_dof_limits[:,2] == True indicates inversed joint angle compared to real # Ref: https://github.com/ros-industrial/universal_robot/issues/112 pi = math.pi servo_angle_limits = [ (-2*pi, 2*pi), (-2*pi, 2*pi), (-2*pi, 2*pi), (-2*pi, 2*pi), (-2*pi, 2*pi), (-2*pi, 2*pi), ] # ROS-related strings state_topic = '/scaled_pos_joint_traj_controller/state' cmd_topic = '/scaled_pos_joint_traj_controller/command' joint_names = [ 'elbow_joint', 'shoulder_lift_joint', 'shoulder_pan_joint', 'wrist_1_joint', 'wrist_2_joint', 'wrist_3_joint' ] # Joint name mapping to simulation action index joint_name_to_idx = { 'elbow_joint': 2, 'shoulder_lift_joint': 1, 'shoulder_pan_joint': 0, 'wrist_1_joint': 3, 'wrist_2_joint': 4, 'wrist_3_joint': 5 } def __init__(self, fail_quietely=False, verbose=False) -> None: print("Connecting to real-world UR10") self.fail_quietely = fail_quietely self.verbose = verbose self.pub_freq = 10 # Hz # Not really sure if current_pos and target_pos require mutex here. self.current_pos = None self.target_pos = None if rospy is None: if not self.fail_quietely: raise ValueError("ROS is not installed!") print("ROS is not installed!") return try: rospy.init_node("custom_controller", anonymous=True, disable_signals=True, log_level=rospy.ERROR) except rospy.exceptions.ROSException as e: print("Node has already been initialized, do nothing") if self.verbose: print("Receiving real-world UR10 joint angles...") print("If you didn't see any outputs, you may have set up UR5 or ROS incorrectly.") self.sub = rospy.Subscriber( self.state_topic, JointTrajectoryControllerState, self.sub_callback, queue_size=1 ) self.pub = rospy.Publisher( self.cmd_topic, JointTrajectory, queue_size=1 ) # self.min_traj_dur = 5.0 / self.pub_freq # Minimum trajectory duration self.min_traj_dur = 0 # Minimum trajectory duration # For catching exceptions in asyncio def custom_exception_handler(loop, context): print(context) # Ref: https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.set_exception_handler asyncio.get_event_loop().set_exception_handler(custom_exception_handler) # Ref: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_ros_custom_message.html asyncio.ensure_future(self.pub_task()) def sub_callback(self, msg): # msg has type: JointTrajectoryControllerState actual_pos = {} for i in range(len(msg.joint_names)): joint_name = msg.joint_names[i] joint_pos = msg.actual.positions[i] actual_pos[joint_name] = joint_pos self.current_pos = actual_pos if self.verbose: print(f'(sub) {actual_pos}') async def pub_task(self): while not rospy.is_shutdown(): await asyncio.sleep(1.0 / self.pub_freq) if self.current_pos is None: # Not ready (recieved UR state) yet continue if self.target_pos is None: # No command yet continue # Construct message dur = [] # move duration of each joints traj = JointTrajectory() traj.joint_names = self.joint_names point = JointTrajectoryPoint() moving_average = 1 for name in traj.joint_names: pos = self.current_pos[name] cmd = pos * (1-moving_average) + self.target_pos[self.joint_name_to_idx[name]] * moving_average max_vel = 3.15 # from ur5.urdf (or ur5.urdf.xacro) duration = abs(cmd - pos) / max_vel # time = distance / velocity dur.append(max(duration, self.min_traj_dur)) point.positions.append(cmd) point.time_from_start = rospy.Duration(max(dur)) traj.points.append(point) self.pub.publish(traj) print(f'(pub) {point.positions}') def send_joint_pos(self, joint_pos): if len(joint_pos) != 6: raise Exception("The length of UR10 joint_pos is {}, but should be 6!".format(len(joint_pos))) # Convert Sim angles to Real angles target_pos = [0] * 6 for i, pos in enumerate(joint_pos): if i == 5: # Ignore the gripper joints for Reacher task continue # Map [L, U] to [A, B] L, U, inversed = self.sim_dof_angle_limits[i] A, B = self.servo_angle_limits[i] angle = np.rad2deg(float(pos)) if not L <= angle <= U: print("The {}-th simulation joint angle ({}) is out of range! Should be in [{}, {}]".format(i, angle, L, U)) angle = np.clip(angle, L, U) target_pos[i] = (angle - L) * ((B-A)/(U-L)) + A # Map [L, U] to [A, B] if inversed: target_pos[i] = (B-A) - (target_pos[i] - A) + A # Map [A, B] to [B, A] if not A <= target_pos[i] <= B: raise Exception("(Should Not Happen) The {}-th real world joint angle ({}) is out of range! hould be in [{}, {}]".format(i, target_pos[i], A, B)) self.target_pos = target_pos if __name__ == "__main__": print("Make sure you are running `roslaunch ur_robot_driver`.") print("If the machine running Isaac is not the ROS master node, " + \ "make sure you have set the environment variables: " + \ "`ROS_MASTER_URI` and `ROS_HOSTNAME`/`ROS_IP` correctly.") ur10 = RealWorldUR10(verbose=True) rospy.spin()
8,268
Python
41.405128
176
0.608128
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/usd_utils/create_instanceable_ur10.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import omni.usd import omni.client from pxr import UsdGeom, Sdf, UsdPhysics, UsdShade # Note: this script should be executed in Isaac Sim `Script Editor` window def create_ur10(asset_dir_usd_path, ur10_dir_usd_path): # Duplicate UR10 folder omni.client.copy(asset_dir_usd_path, ur10_dir_usd_path) def create_ur10_mesh(asset_usd_path, ur10_mesh_usd_path): # Create ur10_mesh.usd file omni.client.copy(asset_usd_path, ur10_mesh_usd_path) omni.usd.get_context().open_stage(ur10_mesh_usd_path) stage = omni.usd.get_context().get_stage() edits = Sdf.BatchNamespaceEdit() # Create parent Xforms reparent_tasks = [ # base_link ['/ur10/base_link/cylinder', 'geoms_xform'], ['/ur10/base_link/ur10_base', 'geoms_xform'], # shoulder_link ['/ur10/shoulder_link/cylinder', 'geoms_xform'], ['/ur10/shoulder_link/cylinder_0', 'geoms_xform'], ['/ur10/shoulder_link/ur10_shoulder', 'geoms_xform'], # upper_arm_link ['/ur10/upper_arm_link/cylinder', 'geoms_xform'], ['/ur10/upper_arm_link/cylinder_0', 'geoms_xform'], ['/ur10/upper_arm_link/cylinder_1', 'geoms_xform'], ['/ur10/upper_arm_link/ur10_upper_arm', 'geoms_xform'], # forearm_link ['/ur10/forearm_link/cylinder', 'geoms_xform'], ['/ur10/forearm_link/cylinder_0', 'geoms_xform'], ['/ur10/forearm_link/cylinder_1', 'geoms_xform'], ['/ur10/forearm_link/ur10_forearm', 'geoms_xform'], # wrist_1_link ['/ur10/wrist_1_link/cylinder', 'geoms_xform'], ['/ur10/wrist_1_link/cylinder_0', 'geoms_xform'], ['/ur10/wrist_1_link/ur10_wrist_1', 'geoms_xform'], # wrist_2_link ['/ur10/wrist_2_link/cylinder', 'geoms_xform'], ['/ur10/wrist_2_link/cylinder_0', 'geoms_xform'], ['/ur10/wrist_2_link/ur10_wrist_2', 'geoms_xform'], # wrist_3_link ['/ur10/wrist_3_link/cylinder', 'geoms_xform'], ['/ur10/wrist_3_link/ur10_wrist_3', 'geoms_xform'], ] # [prim_path, parent_xform_name] for task in reparent_tasks: prim_path, parent_xform_name = task old_parent_path = '/'.join(prim_path.split('/')[:-1]) new_parent_path = f'{old_parent_path}/{parent_xform_name}' UsdGeom.Xform.Define(stage, new_parent_path) edits.Add(Sdf.NamespaceEdit.Reparent(prim_path, new_parent_path, -1)) stage.GetRootLayer().Apply(edits) # Save to file omni.usd.get_context().save_stage() def create_ur10_instanceable(ur10_mesh_usd_path, ur10_instanceable_usd_path): omni.client.copy(ur10_mesh_usd_path, ur10_instanceable_usd_path) omni.usd.get_context().open_stage(ur10_instanceable_usd_path) stage = omni.usd.get_context().get_stage() # Set up references and instanceables for prim in stage.Traverse(): if prim.GetTypeName() != 'Xform': continue # Add reference to visuals_xform, collisions_xform, geoms_xform, and make them instanceable path = str(prim.GetPath()) if path.endswith('visuals_xform') or path.endswith('collisions_xform') or path.endswith('geoms_xform'): ref = prim.GetReferences() ref.ClearReferences() ref.AddReference('./ur10_mesh.usd', path) prim.SetInstanceable(True) # Save to file omni.usd.get_context().save_stage() def create_block_indicator(): asset_usd_path = 'omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Props/Blocks/block.usd' block_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2022.1/Isaac/Props/Blocks/block.usd' omni.client.copy(asset_usd_path, block_usd_path) omni.usd.get_context().open_stage(block_usd_path) stage = omni.usd.get_context().get_stage() edits = Sdf.BatchNamespaceEdit() edits.Add(Sdf.NamespaceEdit.Remove('/object/object/collisions')) stage.GetRootLayer().Apply(edits) omni.usd.get_context().save_stage() asset_usd_path = 'omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Props/Blocks/block_instanceable.usd' block_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2022.1/Isaac/Props/Blocks/block_instanceable.usd' omni.client.copy(asset_usd_path, block_usd_path) omni.usd.get_context().open_stage(block_usd_path) stage = omni.usd.get_context().get_stage() edits = Sdf.BatchNamespaceEdit() edits.Add(Sdf.NamespaceEdit.Remove('/object/object/collisions')) stage.GetRootLayer().Apply(edits) omni.usd.get_context().save_stage() if __name__ == '__main__': asset_dir_usd_path = 'omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Robots/UR10' ur10_dir_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2022.1/Isaac/Robots/UR10' ur10_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2022.1/Isaac/Robots/UR10/ur10.usd' ur10_mesh_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2022.1/Isaac/Robots/UR10/ur10_mesh.usd' ur10_instanceable_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2022.1/Isaac/Robots/UR10/ur10_instanceable.usd' create_ur10(asset_dir_usd_path, ur10_dir_usd_path) create_ur10_mesh(ur10_usd_path, ur10_mesh_usd_path) create_ur10_instanceable(ur10_mesh_usd_path, ur10_instanceable_usd_path) create_block_indicator() print("Done!")
6,907
Python
48.342857
125
0.691617
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/views/cabinet_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class CabinetView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "CabinetView", ) -> None: """[summary] """ super().__init__( prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False ) self._drawers = RigidPrimView(prim_paths_expr="/World/envs/.*/cabinet/drawer_top", name="drawers_view", reset_xform_properties=False)
619
Python
25.956521
141
0.61874
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/views/franka_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class FrankaView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "FrankaView", ) -> None: """[summary] """ super().__init__( prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False ) self._hands = RigidPrimView(prim_paths_expr="/World/envs/.*/franka/panda_link7", name="hands_view", reset_xform_properties=False) self._lfingers = RigidPrimView(prim_paths_expr="/World/envs/.*/franka/panda_leftfinger", name="lfingers_view", reset_xform_properties=False) self._rfingers = RigidPrimView(prim_paths_expr="/World/envs/.*/franka/panda_rightfinger", name="rfingers_view", reset_xform_properties=False) def initialize(self, physics_sim_view): super().initialize(physics_sim_view) self._gripper_indices = [self.get_dof_index("panda_finger_joint1"), self.get_dof_index("panda_finger_joint2")] @property def gripper_indices(self): return self._gripper_indices
1,220
Python
32.916666
150
0.648361
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/instance.py
from .settings import BoolSetting, CategoricalSetting, SettingItem class InstanceManagerBase: def __init__(self): self._settings = SettingItem("ace") self._setting = CategoricalSetting("ace") self.boolSetting = BoolSetting("ace") def shutdown(self): self._settings = None self._setting = None self.boolSetting = None
375
Python
27.923075
66
0.653333
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/utils_io.py
import os import omni.client A2F_SERVER_TYPE = "omniverse:" def is_ov_path(path): return A2F_SERVER_TYPE in path def path_join(root, fname): if A2F_SERVER_TYPE in root: return f"{root}/{fname}" else: return os.path.normpath(os.path.join(root, fname)) def is_folder(path): result, entry = omni.client.stat(path) # bitewise operation, folder flags is 4 return entry.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN def is_valid_path(path): result, entry = omni.client.stat(path) return result == omni.client.Result.OK def list_folder(path): items = [] path = path.rstrip("/") result, entries = omni.client.list(path) if result != omni.client.Result.OK: return items for en in entries: # Skip if it is a folder if en.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN: continue name = en.relative_path items.append(name) return items def read_file(fpath): result, _str, bytes_data = omni.client.read_file(fpath) if result != omni.client.Result.OK: raise RuntimeError("Unable to read file: {}".format(fpath)) return bytes_data def write_file(fpath, bytes_data): result = omni.client.write_file(fpath, bytes_data) if result != omni.client.Result.OK: raise RuntimeError("Unable to write file: {}".format(fpath))
1,378
Python
23.625
68
0.650218
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/styles.py
import os import omni.ui as ui from omni.ui import color as cl ELEM_MARGIN = 4 BORDER_RADIUS = 4 VSPACING = ELEM_MARGIN * 2 RECORDER_BTN_WIDTH = 75 LABEL_WIDTH = 100 BTN_WIDTH = 40 BTN_HEIGHT = 16 WAVEFORM_HEIGHT = 22 * 2 + VSPACING + 10 ERROR_CLR = 0xCC7777FF WARN_CLR = 0xCC77FFFF KEYFRAME_CLR = 0xAAAA77FF IMAGE_SIZE = 25 A2F_SERVER_TYPE = "omniverse:" EXT_ROOT = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../../")) DATA_PATH = os.path.join(EXT_ROOT, "icons") PlayBtnStyle = {"image_url": DATA_PATH + "/timeline_play.svg"} PauseBtnStyle = {"image_url": DATA_PATH + "/timeline_pause.svg"} ComposeBtnStyle = {"image_url": DATA_PATH + "/timeline_loop.svg"} LoadingBtnStyle = {"image_url": DATA_PATH + "/loading.gif"} LocationBtnStyle = {"image_url": DATA_PATH + "/folder.svg"} AUDIO_FILE_TYPES = [".ufdata"] StringFieldStyle = {"margin_height": 0, "margin_width": ELEM_MARGIN, "border_radius": BORDER_RADIUS} ComboBoxStyle = {"border_radius": BORDER_RADIUS + 2} HandlePlaybackStyle = {"border_radius": 0, "background_color": 0xFFEEEE33} HandleRecordingStyle = {"border_radius": 0, "background_color": 0xFF3333EE} HandleStreamingStyle = {"border_radius": 0, "background_color": 0xFF33EE33} TrackWaveformStyle = {"margin_height": 0, "margin_width": 0, "border_radius": 0} RangeStartSpacerStyle = {"border_width": 0, "padding": 0, "border_radius": 0, "margin_width": 0} BigLableStyle = {"font_size": 16, "color": 0xFFFFFFFF} SmallLableStyle = {"font_size": 14, "color": 0xFF4B4B4B} ScrollingFrameStyle = {"background_color": 0xFF323232} MainWindowStyle = { "Image::header_frame": {"image_url": DATA_PATH + "/head.png"}, "Line::group_line": {"color": cl("#4B4B4B"), "margin_height": 0, "padding": 0}, "Slider::float_slider": { "background_color": cl("#FF3300"), "secondary_color": cl("#24211F"), "border_radius": 3, "corner_flag": ui.CornerFlag.ALL, "draw_mode": ui.SliderDrawMode.FILLED, }, } PlaybackSliderBackgroundStyle = { "background_color": 0xFF24211F, "margin_height": 0, "margin_width": 0, "border_radius": 0, } LargeBtnStyle = { "border_radius": BORDER_RADIUS, "border_width": 0, "font_size": 14, "padding": ELEM_MARGIN * 2, "margin_width": ELEM_MARGIN, "margin_height": ELEM_MARGIN, } FileBrowseBtnStyle = { "image_url": DATA_PATH + "/folder.svg", "background_color": 0xFF333333, ":hovered": {"background_color": 0xFF9E9E9E}, } ModalBtnStyle = { "border_radius": BORDER_RADIUS, "border_width": 0, "font_size": 14, "padding": ELEM_MARGIN * 2, "margin_width": ELEM_MARGIN, "margin_height": ELEM_MARGIN, } TrashBtnStyle = { "image_url": "${glyphs}/trash.svg", "background_color": 0xFF333333, ":hovered": {"background_color": 0xFF9E9E9E}, ":disabled": {"color": 0x60FFFFFF}, } TrashDarkBtnStyle = { "image_url": "${glyphs}/trash.svg", ":hovered": {"background_color": 0xFF9E9E9E}, ":disabled": {"color": 0x60FFFFFF}, } PlusBtnStyle = { "image_url": "${glyphs}/plus.svg", "background_color": 0xFF333333, ":hovered": {"background_color": 0xFF9E9E9E}, ":disabled": {"color": 0x60FFFFFF}, } PlusDarkBtnStyle = { "image_url": "${glyphs}/plus.svg", ":hovered": {"background_color": 0xFF9E9E9E}, ":disabled": {"color": 0x60FFFFFF}, } PlusDarkExcitedBtnStyle = { "image_url": "${glyphs}/plus.svg", "color": WARN_CLR, ":hovered": {"background_color": 0xFF9E9E9E}, ":disabled": {"color": 0x60FFFFFF}, } MinusDarkBtnStyle = { "image_url": "${omni_audio2face_common_resources}/minus.png", ":hovered": {"background_color": 0xFF9E9E9E}, ":disabled": {"color": 0x60FFFFFF}, } AngleLeftDarkBtnStyle = { "image_url": "${glyphs}/angle_left.svg", ":hovered": {"background_color": 0xFF9E9E9E}, ":disabled": {"color": 0x60FFFFFF}, } AngleRightDarkBtnStyle = { "image_url": "${glyphs}/angle_right.svg", ":hovered": {"background_color": 0xFF9E9E9E}, ":disabled": {"color": 0x60FFFFFF}, } FileBrowseBtnStyle = { "image_url": "resources/glyphs/folder.svg", "background_color": 0xFF333333, ":hovered": {"background_color": 0xFF9E9E9E}, } RangeRectStyle = { "background_color": 0x30BBAB58, "padding": 0, "margin_width": 0, "margin_height": 0, "border_radius": 0, "border_color": 0x70BBAB58, "border_width": 1, } RangeRectRecordingStyle = { "background_color": 0x305858BB, "padding": 0, "margin_width": 0, "margin_height": 0, "border_radius": 0, "border_color": 0x705858BB, "border_width": 1, } RangeRectStreamingStyle = { "background_color": 0x3058BB58, "padding": 0, "margin_width": 0, "margin_height": 0, "border_radius": 0, "border_color": 0x7058BB58, "border_width": 1, }
4,854
Python
26.275281
100
0.639885
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/extension.py
from .styles import VSPACING, BigLableStyle, MainWindowStyle from .ui import ( WAVEFORM_HEIGHT, ButtonComposing, ButtonLocation, ButtonPlayPause, CategoricalSettingWidgetWithReset, PathWidgetWithReset, FemaleEntertainerWidger, TimecodeWidget, TimelineWidget, ) import omni.ext import omni.ui as ui import omni.client class MyExtension(omni.ext.IExt): def on_startup(self, ext_id): print("[timedomain.ai.singer] MyExtension startup") self._window = ui.Window("TIMEDOMAIN AI SINGER", width=840, height=650) self._window.frame.set_build_fn(self.show_window) self._window.frame.style = MainWindowStyle def on_shutdown(self): print("[timedomain.ai.singer] MyExtension shutdown") self._root_path_widget = None self._track_widget = None self._range_widget = None self.frame = None self._btn_loop = None self._timecode_widget.shutdown() self._timecode_widget = None self._btn_play.shutdown() self._btn_play = None self._timeline_widget.shutdown() self._timeline_widget = None self._btn_recorder = None if self._window: self._window.destroy() self._window = None def show_window(self): with self._window.frame: with ui.VStack(spacing=10): self._root_path_widget = PathWidgetWithReset() self._root_path_widget._build_content() self._track_widget = CategoricalSettingWidgetWithReset() self._track_widget._build_content() with ui.VStack(height=5): ui.Line(name="group_line", alignment=ui.Alignment.CENTER) self.frame = FemaleEntertainerWidger() self.frame._build_glyph() with ui.HStack(height=0): ui.Line(name="group_line", alignment=ui.Alignment.CENTER) with ui.VStack(height=20): ui.Label("Mix Your Voice Style", style=BigLableStyle) self.frame._build_content() self._btn_loop = ButtonComposing() self._btn_loop._build_widget() with ui.HStack(height=WAVEFORM_HEIGHT): self._timeline_widget = TimelineWidget() self._timeline_widget._build_content() ui.Spacer(width=4) with ui.VStack(spacing=VSPACING, width=0): self._timecode_widget = TimecodeWidget() self._timecode_widget._build_content() with ui.HStack(): self._btn_play = ButtonPlayPause() self._btn_play._build_content() self._btn_recorder = ButtonLocation() self._btn_recorder._build_widget()
2,911
Python
38.351351
79
0.567846
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/settings.py
from typing import TypeVar from pxr import Sdf SettingType = TypeVar("SettingType", bound="SettingItem") class SettingItem: _val = None _filename = None _state = None _mix_info = { "duration": [], "pitch": [], "air": [], "falsetto": [], "tension": [], "energy": [], "mel": [], } def __init__(self, name): self._name = name self._init_fn = None self._changed_fn = None self._prim = None self._default_val = None self._org_default_val = None self._initialized = False def shutdown(self): self._prim = None def init(self, default_val=None, init_fn=None, changed_fn=None, prim=None): self._init_fn = init_fn self._changed_fn = changed_fn self._prim = prim self._default_val = self._check(default_val) self._org_default_val = self._default_val SettingItem._val = self._default_val # Required if set_val(val) will fail if self._prim is not None and self._prim.HasAttribute(self.get_usd_attr_name()): val = self._prim.GetAttribute(self.get_usd_attr_name()).Get() else: val = self._default_val self.set_val(val, use_callback=True, use_init_fn=True) self._initialized = True def initialized(self): return self._initialized def get_name(self): return self._name def get_ui_name(self): return self._name.replace("_", " ").title() def get_usd_attr_name(self): return f"state:setting_{self._name}" def get_val(self): if SettingItem._filename is not None: SettingItem._state = False return SettingItem._val def get_default(self): return self._default_val def is_default(self): return SettingItem._val == self._default_val def set_val(self, val, use_callback=True, use_init_fn=False): # val_checked = self._check(val) # callback_fn = self._init_fn if use_init_fn else self._changed_fn # val_prev = SettingItem._val SettingItem._val = val # if use_callback and callback_fn is not None: # try: # callback_fn(val_checked) # except Exception as e: # SettingItem._val = val_prev # print(e) # raise # self._update_usd_prim_attr() def set_default(self, default_val): self._default_val = self._check(default_val) def reset_default(self): self._default_val = self._get_safe_default() def reset(self): self.set_val(self._default_val, use_callback=True, use_init_fn=False) def get_usd_type(self): raise NotImplementedError def get_arr_usd_type(self): raise NotImplementedError # Should be implemented in derived class def to_arr_usd_data(self, arr): raise NotImplementedError # Should be implemented in derived class def from_arr_usd_data(self, arr, arr_len): raise NotImplementedError # Should be implemented in derived class def interpolate(self, val1, val2, alpha): raise NotImplementedError # Should be implemented in derived class def _update_usd_prim_attr(self): if self._prim is not None and self._prim.IsValid(): if SettingItem._val is not None: self._prim.CreateAttribute(self.get_usd_attr_name(), self.get_usd_type()).Set(SettingItem._val) def _check(self, val): return val class CategoricalSetting(SettingItem): def __init__(self, name, options=[], value=None): self.options = options self._value = value super().__init__(name) def init(self, default_val, init_fn, changed_fn, prim): super().init(default_val, init_fn, changed_fn, prim) def get_options(self): if len(self._options) > 0: SettingItem._filename = self._options[0] return self._options def set_options_and_keep(self, options): self._options = options # if SettingItem._val not in self._options: # # log_warn( # # f"Setting [{self.get_name()}]: Old value [{self._val}] # # is not in the new list [{self._options}], resetting to default" # # ) # self.reset_default() # self.reset() def set_options_and_reset(self, options): self._options = options self.reset_default() self.reset() def set_value(self, val): self._value = val SettingItem._filename = val SettingItem._state = False def get_value(self): return self._value def set_options_and_val(self, options, val): self._options = options self.reset_default() self.set_value(val, use_callback=True, use_init_fn=False) def get_index(self): if self._value is not None: BoolSetting._filename = self._value return self._options.index(self._value) else: return None def set_index(self, val_index): val = self._options[val_index] self.set_value(val) def get_usd_type(self): return Sdf.ValueTypeNames.String def get_arr_usd_type(self): return Sdf.ValueTypeNames.StringArray def to_arr_usd_data(self, arr): return list(arr) def from_arr_usd_data(self, arr, arr_len): return list(arr) def interpolate(self, val1, val2, alpha): return val1 def _get_safe_default(self): if len(self._options) > 0: return self._options[0] else: return None def _check(self, val): if val is None: return self._get_safe_default() if val not in self._options: raise AttributeError( f"Setting [{self.get_name()}]: value '{val}' is not in the list of options {self._options}" ) return val class BoolSetting(SettingItem): def __init__(self, name): super().__init__(name) def init(self, default_val, init_fn, changed_fn, prim): super().init(default_val, init_fn, changed_fn, prim) def get_usd_type(self): return Sdf.ValueTypeNames.Bool def get_arr_usd_type(self): return Sdf.ValueTypeNames.BoolArray def to_arr_usd_data(self, arr): return list(arr) def from_arr_usd_data(self, arr, arr_len): return list(arr) def interpolate(self, val1, val2, alpha): return val1 def toggle(self, use_callback=True): pass def get_state(self): return SettingItem._state def _get_safe_default(self): return False def _check(self, val): if val is None: return self._get_safe_default() return bool(val)
6,831
Python
27.827004
111
0.580003
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/ui.py
import os import pathlib import json import omni.kit.pipapi from .scripts.ui import BoolSettingWidgetBase, SimpleWidget from threading import Thread from .styles import ( A2F_SERVER_TYPE, AUDIO_FILE_TYPES, BTN_HEIGHT, BTN_WIDTH, DATA_PATH, EXT_ROOT, LABEL_WIDTH, WAVEFORM_HEIGHT, ComboBoxStyle, FileBrowseBtnStyle, HandlePlaybackStyle, HandleRecordingStyle, HandleStreamingStyle, BigLableStyle, LargeBtnStyle, LocationBtnStyle, PauseBtnStyle, PlayBtnStyle, PlaybackSliderBackgroundStyle, RangeRectRecordingStyle, RangeRectStreamingStyle, RangeRectStyle, RangeStartSpacerStyle, ScrollingFrameStyle, SmallLableStyle, StringFieldStyle, TrackWaveformStyle, ) from .instance import InstanceManagerBase import omni.client import omni.ui as ui import numpy as np import scipy.ndimage os.environ["PATH"] += os.pathsep + os.path.join(EXT_ROOT, "dep/ffmpeg") omni.kit.pipapi.install("pydub") omni.kit.pipapi.install("requests") from pydub import AudioSegment import requests from .requestData import GetData class PathWidgetWithReset(InstanceManagerBase): def __init__(self): super().__init__() self._lbl = None self._field_model = None self._field = None self._browse_btn = None self._browse_dialog = None def _on_browse_selected(self, filename, dirname): if self._field is not None: self._settings.set_val(dirname, use_callback=True) if self._browse_dialog is not None: self._browse_dialog.hide() self._field_model.set_value(self._settings.get_val()) def _on_browse_canceled(self, filename, dirname): if self._browse_dialog is not None: self._browse_dialog.hide() def _on_browse(self): if self._browse_dialog is None: self._browse_dialog = omni.kit.window.filepicker.FilePickerDialog( "Select Audio Directory", allow_multi_selection=False, apply_button_label="Select", click_apply_handler=self._on_browse_selected, click_cancel_handler=self._on_browse_canceled, current_directory=str(pathlib.Path.home()), enable_filename_input=False, ) else: self._browse_dialog.show() self._browse_dialog.refresh_current_directory() def _on_changed(self, val): self._settings.set_val(val, use_callback=True) self._field_model.set_value(self._settings.get_val()) def _on_begin_edit(self, *_): pass def _build_content(self): with ui.VStack(height=28): ui.Label("Import Your Score", style=BigLableStyle) ui.Label("Support format: ufdata", style=SmallLableStyle) with ui.HStack(height=20): ui.Label("Score Root Path", width=LABEL_WIDTH) value = self._settings.get_val() self._field_model = StringFieldModel(value, self._on_changed) self._field_model.add_begin_edit_fn(self._on_begin_edit) self._field_model.set_value(self._settings.get_val()) self._field = ui.StringField(self._field_model, style=StringFieldStyle) self._browse_btn = ui.Button( width=BTN_WIDTH, image_height=BTN_HEIGHT, style=FileBrowseBtnStyle, clicked_fn=self._on_browse ) class CategoricalSettingWidgetWithReset(InstanceManagerBase): def __init__(self): super().__init__() self._lbl = None self._combo_model = None self._combo = None self._update_sub = omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_update) self._frame = None def shutdown(self): self._update_sub = None self._lbl = None if self._combo_model is not None: self._combo_model.shutdown() self._combo_model = None self._combo = None super().shutdown() def _build_content(self): self._frame = ui.HStack(height=20) with self._frame: self._lbl = ui.Label("Score Name", width=LABEL_WIDTH) # # options: 列表数组 tracks = self._load_track_list(self.get_abs_track_root_path()) self._setting.set_options_and_keep(tracks) options = self._setting.get_options() cur_option = self._setting.get_index() self._combo_model = ComboBoxMinimalModel(options, cur_option, self._on_changed) if len(self._setting.get_options()) == 0 or self._setting.get_val() is None: self._combo = None ui.Label("No options") else: self._combo = ui.ComboBox(self._combo_model, style=ComboBoxStyle) def _on_changed(self, val_index): self._setting.set_index(val_index) def _on_update(self, *_): if self.get_abs_track_root_path(): tracks = self._load_track_list(self.get_abs_track_root_path()) if tracks != self._setting.get_options(): self._setting.set_options_and_keep(tracks) if self._combo_model is not None: if self._setting.get_val() is not None: self._combo_model.set_index(self._setting.get_index()) if self._combo_model.get_options() != self._setting.get_options(): self._refresh() def _load_track_list(self, path: str): # path = path.replace("\\", "/") if not self.is_folder(path): print(f"Unable to load list of tracks from {path}") return [] dir_files = self.list_folder(path) return [x for x in dir_files if (os.path.splitext(x)[1] in AUDIO_FILE_TYPES)] def is_folder(self, path): result, entry = omni.client.stat(path) # bitewise operation, folder flags is 4 return entry.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN def list_folder(self, path): items = [] # rstrip() 删除 string 字符串末尾的指定字符,默认为空白符,包括空格、换行符、回车符、制表符。 # path = path.rstrip("/") result, entries = omni.client.list(path) if result != omni.client.Result.OK: return items for en in entries: # Skip if it is a folder if en.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN: continue name = en.relative_path items.append(name) return items def is_ov_path(path): return A2F_SERVER_TYPE in path def get_abs_track_root_path(self): """normpath if it is local path for ov path not apply normpath """ path = self._setting.get_val() # path = self._setting._val # if not self.is_ov_path(path): # if not os.path.isabs(path): # path = os.path.abspath(os.path.join(PLAYER_DEPS_ROOT, path)) # return os.path.normpath(path).replace("\\", "/") return path def _changed_fn(self, model): index = model.as_int self._item_changed(None) if not self._from_set_index: if self._changed_callback_fn is not None: self._changed_callback_fn(index) def _build_content_wrapper(self): # Required for extra UI wrapers in intermediate dervied classes self._build_content() def _refresh(self): if self._frame is not None: self._frame.clear() with self._frame: self._build_content_wrapper() class StringFieldModel(ui.AbstractValueModel): def __init__(self, initial_value, changed_callback_fn=None): super().__init__() self._value = initial_value self._changed_callback_fn = changed_callback_fn self.add_end_edit_fn(self._end_edit_fn) def shutdown(self): self._changed_callback_fn = None def get_value(self): return self._value def get_value_as_string(self): return str(self._value) def set_value(self, value): self._value = value self._value_changed() def _end_edit_fn(self, model): value = model.get_value() if self._changed_callback_fn is not None: self._changed_callback_fn(value) class ComboBoxMinimalItem(ui.AbstractItem): def __init__(self, text): super().__init__() self.model = ui.SimpleStringModel(text) class ComboBoxMinimalModel(ui.AbstractItemModel): def __init__(self, options, initial_index, changed_callback_fn=None): super().__init__() self._options = options self._changed_callback_fn = changed_callback_fn self._items = [ComboBoxMinimalItem(text) for text in self._options] self._current_index = ui.SimpleIntModel() if initial_index is not None: self._current_index.as_int = initial_index self._from_set_index = False self._current_index.add_value_changed_fn(self._changed_fn) def shutdown(self): self._changed_callback_fn = None self._current_index = None self._items = None def get_options(self): return self._options def get_item_children(self, item): return self._items def get_item_value_model(self, item, column_id): if item is None: return self._current_index return item.model def get_index(self): return self._current_index.as_int def set_index(self, index): if index is not None: if index >= 0 and index < len(self._items): self._from_set_index = True self._current_index.as_int = index self._from_set_index = False def _changed_fn(self, model): index = model.as_int self._item_changed(None) if not self._from_set_index: if self._changed_callback_fn is not None: self._changed_callback_fn(index) class FemaleEntertainerWidger(InstanceManagerBase): list_array_name = [] list_array_id = [] list_array_float = [] list_array_avatar = [] def __init__(self): self._btn_create_timedomain_pipeline = None self._btn_create_audio_palyer = None self._btn_create_a2f_core = None self._btn_create_head_template = None self._frame = None self._female_entertainer_data = None self._id = None def shutdown(self): self._btn_create_timedomain_pipeline = None self._btn_create_audio_palyer = None self._btn_create_a2f_core = None self._btn_create_head_template = None self._frame = None self._female_entertainer_data = None self._id = None def _add_menu_item(self, *args, **kwargs): editor_menu = omni.kit.ui.get_editor_menu() self._menu_items.append(editor_menu.add_item(*args, **kwargs)) def _build_content(self): if self._frame is None: self._frame = ui.ScrollingFrame(height=ui.Percent(35), style=ScrollingFrameStyle) self._frame.set_build_fn(self._build_fn) self._frame.rebuild() def _build_fn(self): with self._frame: with ui.VStack(spacing=5): sliders = [self.create_ui_float_slider(i) for i in range(len(FemaleEntertainerWidger.list_array_name))] if len(FemaleEntertainerWidger.list_array_name) > 0: for i in range(len(FemaleEntertainerWidger.list_array_name)): with ui.HStack(height=25): IMAGE = FemaleEntertainerWidger.list_array_avatar[i] ui.Image(IMAGE, width=25, height=25) ui.Label( f"{FemaleEntertainerWidger.list_array_name[i]}", width=ui.Percent(8), name="text", ) sliders[i]() else: ui.Label("No Voiceseed Selected", alignment=ui.Alignment.CENTER) def _build_glyph(self): self._request_female_entertainer_data() with ui.VStack(height=28): ui.Label("Choose Your Voice Style (up to 10)", style=BigLableStyle) ui.Label("Choose one or more voiceseeds to mix a voice", style=SmallLableStyle) with ui.ScrollingFrame(height=ui.Percent(15)): with ui.VGrid(column_width=200): glyph_plus = ui.get_custom_glyph_code("${glyphs}/plus.svg") if isinstance(self._female_entertainer_data["data"], list): functions = [ self.create_female_entertainer_clicked(i) for i in range(len(self._female_entertainer_data["data"])) ] for index in range(len(self._female_entertainer_data["data"])): _name = self._female_entertainer_data["data"][index]["name_chn"] _tooltip = self._female_entertainer_data["data"][index]["characteristic"] with ui.HStack(): ui.Button( f"{_name} {glyph_plus}", style=LargeBtnStyle, clicked_fn=functions[index], tooltip=_tooltip ) def _refresh(self): if self._frame is not None: self._frame.rebuild() def _build_content_wrapper(self): # Required for extra UI wrapers in intermediate dervied classes self._build_content() def create_ui_float_slider(self, index): def set_value(value, index): value = round(value, 2) FemaleEntertainerWidger.list_array_float[index] = value def _delete_avatar(): del FemaleEntertainerWidger.list_array_name[index] del FemaleEntertainerWidger.list_array_id[index] del FemaleEntertainerWidger.list_array_avatar[index] del FemaleEntertainerWidger.list_array_float[index] self._refresh() def _click_get_model_value(): IMAGE_DELETE = DATA_PATH + "/delete.svg" slider = ui.FloatSlider(name="float_slider", min=0, max=1).model slider.set_value(0.5) FemaleEntertainerWidger.list_array_float[index] = 0.5 slider.add_value_changed_fn(lambda m: set_value(m.get_value_as_float(), index)) ui.Button(width=25, height=25, image_url=IMAGE_DELETE, clicked_fn=_delete_avatar) return _click_get_model_value def create_female_entertainer_clicked(self, index): name = self._female_entertainer_data["data"][index]["name_chn"] id = self._female_entertainer_data["data"][index]["id"] avatar = self._female_entertainer_data["data"][index]["avatar"] def _on_btn_create_female_entertainer_clicked(): if name not in FemaleEntertainerWidger.list_array_name: FemaleEntertainerWidger.list_array_name.append(name) FemaleEntertainerWidger.list_array_id.append(id) FemaleEntertainerWidger.list_array_avatar.append(avatar) FemaleEntertainerWidger.list_array_float.append([]) self._refresh() return _on_btn_create_female_entertainer_clicked def _request_female_entertainer_data(self): self._female_entertainer_data = GetData._get_female_entertainer_data() def _get_female_data(): _array = [] for i in range(len(FemaleEntertainerWidger.list_array_name)): _array.append([]) _array[i] = [FemaleEntertainerWidger.list_array_id[i], FemaleEntertainerWidger.list_array_float[i]] return _array class ScalarSliderModel(ui.AbstractValueModel): def __init__(self, initial_value, min_val, max_val, changed_callback_fn=None, fast_change=True): super().__init__() self._value = initial_value self._min_val = min_val self._max_val = max_val self._changed_callback_fn = changed_callback_fn self._fast_change = fast_change if not self._fast_change: self.add_end_edit_fn(self._end_edit_fn) def shutdown(self): self._changed_callback_fn = None def get_value(self): return self._value def get_min(self): return self._min_val def get_max(self): return self._max_val def get_value_as_int(self): return int(self._value) def get_value_as_float(self): return float(self._value) def set_value(self, value): self._value = value self._value_changed() if self._fast_change and self._changed_callback_fn is not None: self._changed_callback_fn(self._value) def set_field(self, value): if value is not None: self._value = value self._value_changed() def _end_edit_fn(self, model): value = model.get_value() if self._changed_callback_fn is not None: self._changed_callback_fn(value) class WaveformWidget(SimpleWidget): def __init__(self, height): super().__init__() self._height = height self._waveform_image_provider = None self._waveform_image = None self._canvas = None self._canvas_width = 1024 self._canvas_height = WAVEFORM_HEIGHT def shutdown(self): self._waveform_image_provider = None self._waveform_image = None self._canvas = None super().shutdown() def update_track_waveform(self, track): num_samples = track.get_num_samples() width, height = self._canvas_width, self._canvas_height ex_factor = 1 width_ex = width * ex_factor shrink_factor = max(num_samples // width_ex, 1) if 0: volume = np.abs(track.data[::shrink_factor][:width_ex]) else: if num_samples >= shrink_factor * width_ex: volume = track.data[: shrink_factor * width_ex].reshape(width_ex, shrink_factor) else: tmp = np.zeros((shrink_factor * width_ex), np.float32) tmp[:num_samples] = track.data volume = tmp.reshape(width_ex, shrink_factor) volume = np.abs(np.max(volume, axis=1)) # volume /= max(np.max(volume), 1e-8) # dB logarithmic scale if 0: volume = np.maximum(volume, 1e-6) volume = 20.0 * np.log10(volume / 1.0) # [-50, 0] dB volume = np.maximum((volume / 50.0) + 1.0, 0.0) volume *= 0.7 canvas = np.zeros((height, width_ex, 4), dtype=np.uint8) print("canvas.shape[1]======>", canvas.shape[1]) for x in range(canvas.shape[1]): start = int(round((1.0 - volume[x]) * float(height) / 2)) end = int(round((1.0 + volume[x]) * float(height) / 2)) canvas[start:end, x, :] = [255, 255, 255, 130] if start == end: canvas[start: end + 1, x, :] = [255, 255, 255, 60] if ex_factor > 1: canvas = scipy.ndimage.zoom(canvas.astype(np.float32), (1, 1.0 / ex_factor, 1), order=1).astype(np.uint8) self._canvas = canvas.flatten().tolist() if self._waveform_image_provider is not None: self._waveform_image_provider.set_bytes_data(self._canvas, [self._canvas_width, self._canvas_height]) def _build_content(self): self._waveform_image_provider = ui.ByteImageProvider() if self._canvas is not None: self._waveform_image_provider.set_bytes_data(self._canvas, [self._canvas_width, self._canvas_height]) with ui.HStack(): self._waveform_image = ui.ImageWithProvider( self._waveform_image_provider, height=self._height, style=TrackWaveformStyle, fill_policy=ui.IwpFillPolicy.IWP_STRETCH, ) class TimelineRangeWidget(InstanceManagerBase): def __init__(self, height): super().__init__() self._height = height self._rect_range_start = None self._rect_range = None def shutdown(self): self._rect_range_start = None self._rect_range = None super().shutdown() def set_rect_style(self, style): if self._rect_range is not None: self._rect_range.set_style(style) def update_range_rect(self, range_start, range_end, track_len): if self._rect_range_start is not None and self._rect_range is not None: if track_len == 0: start_perc = 0 rect_perc = 0 else: start_perc = range_start / track_len * 100.0 rect_perc = (range_end - range_start) / track_len * 100.0 self._rect_range_start.width = ui.Percent(start_perc) self._rect_range.width = ui.Percent(rect_perc) def _build_content(self): with ui.HStack(height=self._height): self._rect_range_start = ui.Spacer(width=omni.ui.Percent(0), style=RangeStartSpacerStyle) self._rect_range = ui.Rectangle(width=omni.ui.Percent(100), height=self._height, style=RangeRectStyle) class PlaybackSliderWidget(SimpleWidget): def __init__(self, height, on_changed_fn=None, on_changed_from_mouse_fn=None): super().__init__() self._height = height self._on_changed_fn = on_changed_fn self._on_changed_from_mouse_fn = on_changed_from_mouse_fn self._max_value = 0.001 self._value = 0.0 self._handle_width = 1 self._pressed = False self._mouse_catcher = None self._slider_placer = None self._handle = None self._update_sub = omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_update) def shutdown(self): self._update_sub = None self._on_changed_fn = None self._on_changed_from_mouse_fn = None self._max_value = 0.001 self._value = 0.0 self._pressed = False self._mouse_catcher = None self._slider_placer = None self._handle = None super().shutdown() def set_value(self, value): if self._pressed: return # pressed mouse overrides external change of the value self._value = value if self._value < 0.0: self._value = 0.0 elif self._value > self._max_value: self._value = self._max_value if self._on_changed_fn is not None: self._on_changed_fn(self._value) if self._max_value > 0: rel_x_perc = self._value / self._max_value self._set_slider_position(rel_x_perc) elif self._max_value == 0: self._set_slider_position(0) def get_value(self): return self._value def set_max(self, max_value): if max_value < 0: raise ValueError("Playback Slider max value can't be less than zero") self._max_value = max_value if max_value > 0 else 0.001 def set_handle_style(self, style): if self._handle is not None: self._handle.set_style(style) def _set_slider_position(self, rel_x_perc): if self._slider_placer is not None: self._slider_placer.offset_x = ui.Percent(rel_x_perc * 100.0) def _on_mouse_moved(self, x, y, _, btn): if btn is True: self._update_from_mouse(x) def _on_mouse_pressed(self, x, y, btn, *args): if btn == 0: self._pressed = True self._update_from_mouse(x) def _on_mouse_released(self, x, y, btn, *args): if btn == 0: self._pressed = False def _update_from_mouse(self, x): if self._mouse_catcher is not None and self._slider_placer is not None: rel_x = x - self._mouse_catcher.screen_position_x if rel_x < 0: rel_x = 0 elif rel_x >= self._mouse_catcher.computed_width: rel_x = self._mouse_catcher.computed_width rel_x_perc = rel_x / self._mouse_catcher.computed_width self._set_slider_position(rel_x_perc) self._value = self._max_value * rel_x_perc if self._on_changed_fn is not None: self._on_changed_fn(self._value) def _build_content(self): with ui.ZStack(): self._mouse_catcher = ui.Rectangle( height=self._height, style={ "background_color": 0x0, "padding": 0, "margin_width": 0, "margin_height": 0, "border_radius": 0, "border_color": 0x0, "border_width": 0, }, mouse_moved_fn=self._on_mouse_moved, mouse_pressed_fn=self._on_mouse_pressed, mouse_released_fn=self._on_mouse_released, ) with ui.HStack(): self._slider_placer = ui.Placer(draggable=False, stable_size=True) with self._slider_placer: with ui.HStack(): self._handle = ui.Rectangle( width=self._handle_width, height=self._height, style=HandlePlaybackStyle ) ui.Spacer() def _on_update(self, *_): if self._pressed: if self._on_changed_from_mouse_fn is not None: self._on_changed_from_mouse_fn(self._value) class TimelineWidget(BoolSettingWidgetBase): _frame = None def __init__(self): super().__init__() self._waveform_widget = WaveformWidget(height=WAVEFORM_HEIGHT) self._timeline_range_widget = TimelineRangeWidget(height=WAVEFORM_HEIGHT) self._playback_slider_widget = PlaybackSliderWidget( height=WAVEFORM_HEIGHT, on_changed_fn=None, on_changed_from_mouse_fn=self._on_changed ) self._update_sub = omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_update) def shutdown(self): self._update_sub = None self._waveform_widget.shutdown() self._waveform_widget = None self._timeline_range_widget.shutdown() self._timeline_range_widget = None self._playback_slider_widget.shutdown() self._playback_slider_widget = None # super().shutdown() def set_style(self, style): if style == "regular": self._playback_slider_widget.set_handle_style(HandlePlaybackStyle) self._timeline_range_widget.set_rect_style(RangeRectStyle) elif style == "streaming": self._playback_slider_widget.set_handle_style(HandleStreamingStyle) self._timeline_range_widget.set_rect_style(RangeRectStreamingStyle) elif style == "recording": self._playback_slider_widget.set_handle_style(HandleRecordingStyle) self._timeline_range_widget.set_rect_style(RangeRectRecordingStyle) def update_track_waveform(self): track = self._audio_player.get_track_ref() self._waveform_widget.update_track_waveform(track) def _build_content(self): TimelineWidget._frame = ui.ZStack() with TimelineWidget._frame: ui.Rectangle(style=PlaybackSliderBackgroundStyle) self._waveform_widget._build_content() self._timeline_range_widget._build_content() self._playback_slider_widget._build_content() def _refresh(self): if TimelineWidget._frame is not None: TimelineWidget._frame.clear() with TimelineWidget._frame: self._build_content_wrapper() def _build_content_wrapper(self): # Required for extra UI wrapers in intermediate dervied classes self._build_content() def _on_changed(self, t): if self._track is not None: track_len = self._track.get_length() self._playback_slider_widget.set_max(track_len) self._playback_slider_widget.set_value(t) seek_sample = self._track.sec_to_sample(t) self._audio_player.seek(seek_sample) def _on_update(self, *_): if self._track is not None and self._audio_player is not None: self._pressed = False track_len = self._track.get_length() self._playback_slider_widget.set_max(track_len) t = self._audio_player.get_current_time() self._playback_slider_widget.set_value(t) # if t == track_len and not self.boolSetting._state: # self.boolSetting._state = True # self._on_toggled() class TimecodeWidget(BoolSettingWidgetBase): def __init__(self): super().__init__() self.ts = None self._timecode_lbl = None self._timecode_tms_lbl = None self._timecode_max_lbl = None self._timecode_max_tms_lbl = None self._button_play_pause = ButtonPlayPause() self._update_sub = omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_update) def shutdown(self): self.ts = None self._update_sub = None self._timecode_lbl = None self._timecode_tms_lbl = None self._timecode_max_lbl = None self._timecode_max_tms_lbl = None # super().shutdown() def _build_content(self): with ui.HStack(height=22, style={"margin_width": 0}): ui.Spacer() self._timecode_lbl = ui.Label("0:00", width=0) self._timecode_tms_lbl = ui.Label(".00", width=0, style={"color": 0x50FFFFFF}) ui.Label(" | ", style={"color": 0x70FFFFFF}) self._timecode_max_lbl = ui.Label("0:00", width=0) self._timecode_max_tms_lbl = ui.Label(".00", width=0, style={"color": 0x50FFFFFF}) ui.Spacer() def _set_timecode(self, t, m_sec_lbl, tms_lbl): tmss = int(round(t * 100)) secs = tmss // 100 mins = secs // 60 secs_sub = secs % 60 tmss_sub = tmss % 100 m_sec_lbl.text = "{}:{:02d}".format(mins, secs_sub) tms_lbl.text = ".{:02d}".format(tmss_sub) if self.ts is not None and t == self.ts: self._button_play_pause._update_from_state(is_playing=False) else: self.ts = t def _on_update(self, *_): if self._timecode_lbl is not None and self._timecode_tms_lbl is not None: t = self._audio_player.get_current_time() self._set_timecode(t, self._timecode_lbl, self._timecode_tms_lbl) if self._timecode_max_lbl is not None and self._timecode_max_tms_lbl is not None and self._track is not None: track_len = self._track.get_length() self._set_timecode(track_len, self._timecode_max_lbl, self._timecode_max_tms_lbl) class ButtonPlayPause(BoolSettingWidgetBase): _btn = None def __init__(self): super().__init__() def shutdown(self): ButtonPlayPause._btn = None super().shutdown() def _build_widget(self): with ui.HStack(width=BTN_WIDTH, height=30): ButtonPlayPause._btn = ui.Button(width=BTN_WIDTH, style=PlayBtnStyle, tooltip="Play/Pause (P)") ButtonPlayPause._btn.set_clicked_fn(self._on_toggled) def _update_from_state(self, is_playing): if ButtonPlayPause._btn is not None: if is_playing is True: ButtonPlayPause._btn.set_style(PauseBtnStyle) else: ButtonPlayPause._btn.set_style(PlayBtnStyle) class ButtonComposing(BoolSettingWidgetBase): def __init__(self): super().__init__() self._btn = None self._compose_data = None self._timeline_widget = TimelineWidget() def shutdown(self): self._btn = None super().shutdown() def _build_widget(self): with ui.VStack(): self._btn = ui.Button('Synthesis your song', height=BTN_HEIGHT*2.5, tooltip="Synthesized Voice") self._btn.set_clicked_fn(self._on_compound) def _on_compound(self): thread = Thread(target=self._request_compose_data) thread.start() def _update_from_state(self, is_looping): if self._btn is not None: self._btn.selected = is_looping def _request_compose_data(self): _array = FemaleEntertainerWidger._get_female_data() path = os.path.join(self.boolSetting._val, self.boolSetting._filename) files = {"file": open(path, "rb")} mix_str = json.dumps( { "duration": _array, "pitch": _array, "air": _array, "falsetto": _array, "tension": _array, "energy": _array, "mel": _array, }, ) data_dict = {"flag": 135, "is_male": 1, "mix_info": mix_str} try: self._btn.text = 'processing...' res = GetData._get_compose_data(files, data_dict) if res["code"] == 200: r = requests.get(res["data"][-1]["audio"], stream=True) if not os.path.exists(os.path.join(EXT_ROOT, "voice")): os.makedirs(os.path.join(EXT_ROOT, "voice")) memory_address_ogg = os.path.join(EXT_ROOT, "voice\\voice.ogg") memory_address_wav = os.path.join(EXT_ROOT, "voice\\voice.wav") with open(memory_address_ogg, "wb") as ace_music: for chunk in r.iter_content(chunk_size=1024): # 1024 bytes if chunk: ace_music.write(chunk) song = AudioSegment.from_ogg(memory_address_ogg) song.export(memory_address_wav, format="wav") self._load_track(memory_address_wav) self._timeline_widget.update_track_waveform() self._timeline_widget._refresh() else: print(res) except BaseException as e: print(e) self._btn.text = 'Synthesis your song' self._btn.set_style({}) class ButtonLocation(BoolSettingWidgetBase): def __init__(self): self._btn = None def shutdown(self): self._btn = None super().shutdown() def _build_widget(self): with ui.HStack(width=BTN_WIDTH, height=30): self._btn = ui.Button(width=BTN_WIDTH, style=LocationBtnStyle, tooltip="Locate the composite file") self._btn.set_clicked_fn(self.get_location) def get_location(self): # memory_address为需要打开文件夹的路径 if not os.path.exists(os.path.join(EXT_ROOT, "voice")): os.makedirs(os.path.join(EXT_ROOT, "voice")) memory_address = os.path.join(EXT_ROOT, "voice") os.startfile(memory_address) def _update_from_state(self, recorder_enabled): if self._btn is not None: self._btn.selected = recorder_enabled
35,085
Python
36.848975
124
0.57774
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/scripts/ui.py
from timedomain.ai.singer.instance import InstanceManagerBase from timedomain.ai.singer.utils_io import read_file import omni.ui as ui import omni.kit.ui import omni.kit.app import omni.kit.window.filepicker import omni.kit.pipapi a2f_audio = omni.audio2face.player_deps.import_a2f_audio() class Refreshable: def __init__(self): self.__need_refresh = False self.__update_sub = ( omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self.__on_update) ) def shutdown(self): self.__update_sub = None def refresh(self): # We can't call self._refresh() directly, since it will clear the UI # while the caller of this function could be that UI too self.__need_refresh = True def __on_update(self, *_): if self.__need_refresh: self.__need_refresh = False self._refresh() def _refresh(self): # Should be implemented in the derived class raise NotImplementedError class SimpleWidget(Refreshable): def __init__(self): super().__init__() self._frame = None def shutdown(self): self._frame = None super().shutdown() def build(self): self._frame = ui.VStack(height=0, spacing=0) with self._frame: self._build_content_wrapper() def show(self): if self._frame is not None: self._frame.visible = True def hide(self): if self._frame is not None: self._frame.visible = False def enable(self): if self._frame is not None: self._frame.enabled = True def disable(self): if self._frame is not None: self._frame.enabled = False def clear(self): if self._frame is not None: self._frame.clear() def _refresh(self): if self._frame is not None: self._frame.clear() with self._frame: self._build_content_wrapper() def _build_content_wrapper(self): # Required for extra UI wrapers in intermediate dervied classes self._build_content() def _build_content(self): # Should be implemented in the derived class raise NotImplementedError class BoolSettingWidgetBase(InstanceManagerBase): _track = None _audio_player = a2f_audio.AudioPlayer(verbose=True) def __init__(self): super().__init__() self._update_sub = omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_update) def shutdown(self): self._update_sub = None BoolSettingWidgetBase._audio_player.pause() BoolSettingWidgetBase._audio_player = None super().shutdown() def _build_content(self): self._build_widget() if self.boolSetting._state is not None: self._update_from_state(self.boolSetting._state) def _on_toggled(self): self.boolSetting._state = not self.boolSetting._state if self.boolSetting._state: if self.boolSetting._val is not None and self.boolSetting._filename is not None: BoolSettingWidgetBase._audio_player.play() self._update_from_state(True) self.boolSetting._state = True else: self._update_from_state(False) BoolSettingWidgetBase._audio_player.pause() self.boolSetting._state = False else: self._update_from_state(False) BoolSettingWidgetBase._audio_player.pause() def _load_track(self, track_fpath): bytes_data = read_file(track_fpath) track = a2f_audio.read_track_from_bytes(bytes_data) BoolSettingWidgetBase._track = track BoolSettingWidgetBase._audio_player.set_track(track) def _on_update(self, *_): if self.boolSetting._state: self.boolSetting.toggle() def _build_widget(self): # Should be implemented in the derived class raise NotImplementedError def _update_from_state(self): # Should be implemented in the derived class raise NotImplementedError
4,136
Python
30.340909
119
0.617505
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/extension.py
############# omniverse import ################## import omni.ext import omni.ui as ui import carb import pxr ############# python import ################## import asyncio import os import time import random import math import json import numpy as np ############# VRKitchen import ################## from .param import * # from .layout.house import House from .layout.randomizer import Randomizer from .layout.utils import add_semantics from .layout.house_new import House as HouseNew from .autotask.auto import AutoTasker # from .autotask.auto_label import AutoLabeler from .render.helper import CustomSyntheticDataHelper ###################### ui import ################ from .ui.indoorkit_ui_widget import TaskTypeComboboxWidget, CustomRecordGroup, CustomControlGroup, CustomBoolWidget, CustomSliderWidget, \ CustomSkySelectionGroup, CustomIdNotice, CustomPathButtonWidget, CustomRenderTypeSelectionGroup from omni.kit.window.popup_dialog import MessageDialog # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MyExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[vrkitchen.indoor.kit] VRKitchen2.0-Indoor-Kit startup") # set rendering settings: carb.settings.get_settings().set_bool("/rtx/ecoMode/enabled", True) FPS = 60.0 carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True) carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int( FPS)) # carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(FPS)) # stage and timeline self.stage = omni.usd.get_context().get_stage() pxr.UsdGeom.SetStageUpAxis(self.stage, pxr.UsdGeom.Tokens.y) self.timeline = omni.timeline.get_timeline_interface() # robot self.franka = None # self.auto_labeler = AutoLabeler(None) self.task_type = None # set up render self.use_isosurface = False # use isosurface self.render_folder = RENDER_ROOT self.render_helper = CustomSyntheticDataHelper() # build windows self.build_setup_layout_window() ################################################################################################ ######################################## Build omni ui window ################################## ################################################################################################ def build_setup_layout_window(self): """ Build a window to control/debug layout """ from .ui.style import julia_modeler_style self._window = ui.Window("VRKitchen2.0-Indoor-Kit", width=390) with self._window.frame: self._window.frame.style = julia_modeler_style with ui.ScrollingFrame(): with ui.VStack(height=0): # ui.Button("Debug", clicked_fn = self.debug) self.task_desc_ui = ui.StringField(height=20, style={ "margin_height": 2}) self.task_desc_ui.model.set_value(" Welcome to VRKitchen2.0 Indoor Kit!") ui.Spacer(height=10) ui.Line(style_type_name_override="HeaderLine") self.task_layout_collapse_ui = ui.CollapsableFrame("TASK LAYOUT", build_header_fn=self._build_custom_frame_header) # self.task_layout_collapse_ui.set_collapsed_changed_fn(lambda x:self.on_task_layout_ui_collapse(x)) with self.task_layout_collapse_ui: with ui.VStack(height=0, spacing=0): ui.Line(style_type_name_override="HeaderLine") ui.Spacer(height = 12) with ui.HStack(height=30): # set up tasks self.task_types = TASK_TYPES # ui.Label(" Task type: ", width = 30, style={ "margin": 2 , "color": "cornflowerblue", "font_size":18}) # default_task_index = self.task_types.index("pickup_object") # self.task_type_ui = ui.ComboBox(default_task_index, width = 200, *self.task_types, style={ "margin": 8, "color": "cornflowerblue", "font_size":18}) self.task_type_ui = TaskTypeComboboxWidget(label="Task type:\t", options=self.task_types, on_restore_fn=self.fill_task_info) # ui.Button(" + ", clicked_fn=self.auto_next_task, width = 20, style={ "margin_height": 8}) # ui.Button("+ object id", clicked_fn=self.auto_next_obj_only, style={ "margin": 8}) self.annotators = ANNOTATORS ui.Label(" Annotator: ", width = 30, style={ "font_size": 12 , "color": "PowderBlue"}, visible = False) annotator_index = ANNOTATORS.index("MyLuckyUser") self.annotator_ui = ui.ComboBox(annotator_index, width = 100, *self.annotators, style={ "margin_height": 8, "font_size": 12, "color": "PowderBlue" }, visible=False) # self.auto_suggest.annotator_ui = self.annotator_ui with ui.HStack(height=30): with ui.HStack(): ui.Label("\tObject id: ", width=30, style={"color": "DarkSalmon"}) self.task_id_ui = omni.ui.IntField(width = 30, name = "choose_id", style={ "color": "DarkSalmon"}) ui.Button("+", width = 30, style={"margin_height": 8, "color": "DarkSalmon", "border_color": 1, "border_width": 1}, clicked_fn=lambda: self.task_id_ui.model.set_value(min(self.task_id_ui.model.get_value_as_int() + 1, 19))) ui.Button("-", width = 30, style={ "margin_height": 8, "color": "DarkSalmon", "border_color": 1, "border_width": 1}, clicked_fn=lambda: self.task_id_ui.model.set_value(max(self.task_id_ui.model.get_value_as_int() - 1, 0 ))) ui.Button("Add object", name = "add_button", clicked_fn=self.auto_add_obj, style={ "color": "DarkSalmon"}) ui.Label(" Object ", width=20, visible = False) self.object_id_ui = omni.ui.IntField(height=20, width = 25, style={ "margin_height": 8 , "margin_width": 4}, visible = False) self.object_id_ui.model.set_value(0) ui.Button("+", width = 20, style={"margin_height": 8, "font_size": 12}, clicked_fn=lambda: self.object_id_ui.model.set_value(self.object_id_ui.model.get_value_as_int() + 1), visible = False) ui.Button("-", width = 20, style={ "margin_height": 8, "font_size": 12}, clicked_fn=lambda: self.object_id_ui.model.set_value(self.object_id_ui.model.get_value_as_int() - 1), visible = False) ui.Label(" Anchor:", width=20, visible = False) self.anchor_id_ui = omni.ui.IntField(height=20, width = 25, style={ "margin_height": 8 , "margin_width": 4}, visible = False) self.anchor_id_ui.model.set_value(0) ui.Button("+", width = 20, style={"margin_height": 8, "font_size": 12}, clicked_fn=lambda: self.anchor_id_ui.model.set_value(self.anchor_id_ui.model.get_value_as_int() + 1), visible = False) ui.Button("-", width = 20, style={ "margin_height": 8, "font_size": 12}, clicked_fn=lambda: self.anchor_id_ui.model.set_value(self.anchor_id_ui.model.get_value_as_int() - 1), visible = False) ui.Label(" Robot:", width=20, visible = False) self.robot_id_ui = omni.ui.IntField(height=20, width = 25, style={ "margin_height": 8 , "margin_width": 4}, visible = False) ui.Button("+", width = 20, style={"margin_height": 8, "font_size": 12}, clicked_fn=lambda: self.robot_id_ui.model.set_value(self.robot_id_ui.model.get_value_as_int() + 1), visible = False) ui.Button("-", width = 20, style={ "margin_height": 8, "font_size": 12}, clicked_fn=lambda: self.robot_id_ui.model.set_value(self.robot_id_ui.model.get_value_as_int() - 1), visible = False) ui.Label("Mission ", width=20, visible = False) self.mission_id_ui = omni.ui.IntField(height=20, width = 40, style={ "margin": 8 }, visible = False) with ui.HStack(): ui.Label("\tHouse id: ", width = 30, style = { "color": "Plum", "font_size": 14}) self.house_id_ui = omni.ui.IntField(width = 30, name = "choose_id", style={"color": "Plum"}) self.house_id_ui.model.set_value(0) ui.Button("+", width = 30, style={"margin_height": 8, "font_size": 14, "color": "Plum", "border_color": 1, "border_width": 1}, clicked_fn=lambda: self.house_id_ui.model.set_value(min(self.house_id_ui.model.get_value_as_int() + 1, 2))) ui.Button("-", width = 30, style={ "margin_height": 8, "font_size": 14, "color": "Plum", "border_color": 1, "border_width": 1}, clicked_fn=lambda: self.house_id_ui.model.set_value(max(self.house_id_ui.model.get_value_as_int() - 1, 0))) ui.Button("Add house", name = "add_button", clicked_fn=self.auto_add_house, style={ "color": "Plum"}) with ui.HStack(height=20, visible = False): ui.Button("Add robot", clicked_fn=self.auto_add_robot, style={ "margin": 4}) ui.Button("Add mission", clicked_fn=self.auto_add_mission, style={ "margin": 4}) # ui.Label(" |", width=10) with ui.HStack(height=20, visible = False): ui.Button("Record object", name = "record_button", clicked_fn=self.record_obj_new, style={ "margin": 4}) ui.Button("Record robot", name = "record_button", clicked_fn=self.record_robot_new, style={ "margin": 4}) ui.Label(" |", width=10) ui.Button("Record house", name = "record_button", clicked_fn=self.record_house_new, style={ "margin": 4}) with ui.HStack(height=20): ui.Button("Record scene", height = 40, name = "record_button", clicked_fn=self.record_scene, style={ "margin": 4}) with ui.HStack(height=20, visible = False): ui.Button("Load object", clicked_fn=self.load_obj_new, style={ "margin": 4}) ui.Button("Load robot", clicked_fn=self.load_robot_new, style={ "margin": 4}) # ui.Button("Load mission", clicked_fn=self.load_mission, style={ "margin": 4}) ui.Label(" |", width=10) ui.Button("Load house", clicked_fn=self.load_house_new, style={ "margin": 4}) ui.Spacer(height = 10) ui.Line(style_type_name_override="HeaderLine") with ui.CollapsableFrame("SCENE UTILITY"): with ui.VStack(height=0, spacing=4): ui.Line(style_type_name_override="HeaderLine") # open a new stage ui.Button("New scene", height = 40, name = "load_button", clicked_fn=lambda : omni.kit.window.file.new(), style={ "margin": 4}, tooltip = "open a new empty stage") # load recorded scene ui.Button("Load scene", height = 40, name = "load_button", clicked_fn=self.load_scene, style={ "margin": 4}) # ground plan CustomBoolWidget(label="Visible ground:", default_value=False, on_checked_fn = self.auto_add_ground) # light intensity CustomSliderWidget(min=0, max=3000, label="Light intensity:", default_val=1000, on_slide_fn = self.change_light_intensity) # sky selection CustomSkySelectionGroup(on_select_fn=self.randomize_sky) # house material CustomBoolWidget(label="Random house material:", default_value=False, on_checked_fn = self.randomize_material) # water isosurface CustomBoolWidget(label="Enable isosurface:", default_value=False, on_checked_fn = self.enable_isosurface) # PLAY group ui.Spacer(height = 10) ui.Line(style_type_name_override="HeaderLine") with ui.CollapsableFrame("PLAY"): with ui.VStack(height=0, spacing=0): ui.Line(style_type_name_override="HeaderLine") ui.Spacer(height = 12) # play and record record_group = CustomRecordGroup( on_click_record_fn=self.start_record, on_click_stop_fn=self.stop_record, on_click_replay_fn=self.replay_record, ) # robot control control_group = CustomControlGroup() record_group.control_group = control_group with ui.CollapsableFrame("Render"): with ui.VStack(height=0, spacing=0): CustomRenderTypeSelectionGroup(on_select_fn=self.set_render_type) ui.Button("Capture image", height = 40, name = "tool_button", clicked_fn=self.render_an_image, style={ "margin": 4}, tooltip = "Capture current screenshot") # PATH group ui.Spacer(height = 10) ui.Line(style_type_name_override="HeaderLine") with ui.CollapsableFrame("PATH", collapsed = True): with ui.VStack(height=0, spacing=0): ui.Line(style_type_name_override="HeaderLine") ui.Spacer(height = 12) CustomPathButtonWidget(label="Task folder:", path=DATA_PATH_NEW) CustomPathButtonWidget(label="Record folder:", path=SAVE_ROOT) CustomPathButtonWidget(label="Render folder:", path=self.render_folder) ################################################################################################ ######################################## Auto task labeling #################################### ################################################################################################ def fill_task_info(self, reset = False): """ Automatically (randomly fill task type, housing id, and object id) :: params: reset: if true, set all to zeros """ task_type_id = np.random.randint(len(self.task_types)) if not reset else 0 object_id = np.random.randint(20) if not reset else 0 # task id house_id = np.random.randint(3) if not reset else 0 # house id self.task_type_ui.model.get_item_value_model().set_value(task_type_id) self.task_id_ui.model.set_value(object_id) self.house_id_ui.model.set_value(house_id) def init_auto_tasker(self): """ Initialize auto task labeling tool """ # update stage self.stage = omni.usd.get_context().get_stage() pxr.UsdGeom.SetStageUpAxis(self.stage, pxr.UsdGeom.Tokens.y) task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int() task_type = self.task_types[task_index] task_id = self.task_id_ui.model.get_value_as_int() robot_id = self.robot_id_ui.model.get_value_as_int() anchor_id = self.anchor_id_ui.model.get_value_as_int() mission_id = self.mission_id_ui.model.get_value_as_int() house_id = self.house_id_ui.model.get_value_as_int() # meta_id = self.meta_id_ui.model.get_value_as_int() # FIXME: add annotator # annotator_index = self.annotator_ui.model.get_item_value_model().get_value_as_int() annotator = "MyLuckyUser" # self.annotators[annotator_index] self.auto_tasker = AutoTasker(task_type, task_id, robot_id, mission_id, house_id, anchor_id, annotator=annotator) AutoTasker.TASK_DESCRIPTION = self.task_desc_ui.model.get_value_as_string() def auto_next_obj_only(self): """ retrieve the next object index for current task """ # new scene AutoTasker.new_scene() global OBJ_INDEX OBJ_INDEX = self.object_id_ui.model.get_value_as_int() OBJ_INDEX += 1 self.object_id_ui.model.set_value(OBJ_INDEX) self.init_auto_tasker() self.auto_tasker.reconfig(OBJ_INDEX) self.task_desc_ui.model.set_value(AutoTasker.TASK_DESCRIPTION) def auto_next_task(self): """ next task """ task_id = self.task_id_ui.model.get_value_as_int() self.task_id_ui.model.set_value(task_id + 1) AutoTasker.new_scene() self.init_auto_tasker() self.auto_tasker.reconfig(0) self.task_desc_ui.model.set_value(AutoTasker.TASK_DESCRIPTION) def auto_next_task(self): """ next task """ task_id = self.task_id_ui.model.get_value_as_int() self.task_id_ui.model.set_value(task_id + 1) AutoTasker.new_scene() self.init_auto_tasker() self.auto_tasker.reconfig(0) self.task_desc_ui.model.set_value(AutoTasker.TASK_DESCRIPTION) def auto_add_obj(self): self.init_auto_tasker() if self.stage.GetPrimAtPath("/World/game"): dialog = MessageDialog( title="Add Object", message=f"Already have `/World/game` in the scene. Please start a new stage.", disable_cancel_button=True, ok_handler=lambda dialog: dialog.hide() ) dialog.show() return self.auto_tasker.add_obj() # self.auto_tasker.build_HUD() if self.stage.GetPrimAtPath("/World/game"): self.task_desc_ui.model.set_value("Task object added!") self.auto_add_robot() def auto_add_robot(self): self.init_auto_tasker() self.auto_tasker.add_robot() franka_prim = self.stage.GetPrimAtPath("/World/game/franka") if franka_prim: self.task_desc_ui.model.set_value("Feel free to move the robot, \nthen you can `Add house`") selection = omni.usd.get_context().get_selection() selection.clear_selected_prim_paths() selection.set_prim_path_selected(franka_prim.GetPath().pathString, True, True, True, True) viewport = omni.kit.viewport_legacy.get_viewport_interface() viewport = viewport.get_viewport_window() if viewport else None if viewport: viewport.focus_on_selected() else: from omni.kit.viewport.utility import frame_viewport_selection frame_viewport_selection(force_legacy_api=True) def auto_add_house(self): self.init_auto_tasker() if self.stage.GetPrimAtPath("/World/layout"): dialog = MessageDialog( title="Add house", message=f"Already have `/World/layout` in the scene. Please start a new stage.", disable_cancel_button=True, ok_handler=lambda dialog: dialog.hide() ) dialog.show() return self.auto_tasker.add_house() layout_prim = self.stage.GetPrimAtPath("/World/layout") if layout_prim: self.task_desc_ui.model.set_value("House added! Feel feel to move the /World/game and record scene.") selection = omni.usd.get_context().get_selection() selection.clear_selected_prim_paths() selection.set_prim_path_selected("/World/game", True, True, True, True) floor_prim = self.stage.GetPrimAtPath("/World/layout/floor") def auto_add_mission(self): self.init_auto_tasker() self.auto_tasker.add_task() ################################################################################################ ######################################## Modify Scene ########################################## ################################################################################################ def auto_add_ground(self, visible = False): """ Add ground to the scene """ self.stage = omni.usd.get_context().get_stage() if not self.stage.GetPrimAtPath("/World/game"): carb.log_error("Please add /World/game first!") self.task_desc_ui.model.set_value(f"Please `Add Object`") return from .layout.modify import add_ground_plane add_ground_plane(visiable=visible) self.task_desc_ui.model.set_value(f"Add ground to scene (visible : {visible})") selection = omni.usd.get_context().get_selection() selection.clear_selected_prim_paths() selection.set_prim_path_selected("/World/groundPlane", True, True, True, True) def randomize_material(self, rand = True): """ Randomize house materials """ self.stage = omni.usd.get_context().get_stage() if not self.stage.GetPrimAtPath("/World/layout"): carb.log_error("Please add /World/layout (load scene) first!") self.task_desc_ui.model.set_value(f"Please `Load Scene`") return self.randomizer = Randomizer() self.randomizer.randomize_house(rand = rand) self.task_desc_ui.model.set_value("Added floor/wall material") def randomize_sky(self, sky_type = None): """ Randomize house materials """ self.randomizer = Randomizer() self.randomizer.randomize_sky(sky_type = sky_type) self.task_desc_ui.model.set_value("Sky added.") def randomize_light(self): """ Randomize house materials """ self.randomizer = Randomizer() self.randomizer.randomize_light() self.task_desc_ui.model.set_value("Random light") def change_light_intensity(self, intensity): """ Change default light intensity """ self.stage = omni.usd.get_context().get_stage() light_prim = self.stage.GetPrimAtPath("/World/defaultLight") if not light_prim: # Create basic DistantLight omni.kit.commands.execute( "CreatePrim", prim_path="/World/defaultLight", prim_type="DistantLight", select_new_prim=False, attributes={pxr.UsdLux.Tokens.angle: 1.0, pxr.UsdLux.Tokens.intensity: 1000}, create_default_xform=True, ) light_prim = self.stage.GetPrimAtPath("/World/defaultLight") light_prim.GetAttribute("intensity").Set(float(intensity)) def enable_isosurface(self, enable = False): """ enable isosurface for water scene """ self.use_isosurface = enable dialog = MessageDialog( title="Isosurface", message=f"Enabled iso surface: {self.use_isosurface} \n Please a [New Scene] and [Load Scene] for water task again.", disable_cancel_button=True, ok_handler=lambda dialog: dialog.hide() ) dialog.show() ################################################################################################ ######################################## Load / Record ######################################### ################################################################################################ def init_new_house(self): """ Initiate HouseNew for recording/loading task info """ task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int() task_type = self.task_types[task_index] task_id = self.task_id_ui.model.get_value_as_int() robot_id = self.robot_id_ui.model.get_value_as_int() anchor_id = self.anchor_id_ui.model.get_value_as_int() mission_id = self.mission_id_ui.model.get_value_as_int() house_id = self.house_id_ui.model.get_value_as_int() annotator_index = self.annotator_ui.model.get_item_value_model().get_value_as_int() annotator = self.annotators[annotator_index] self.house = HouseNew(task_type, task_id, robot_id, mission_id, house_id, anchor_id, annotator) # self.house.build_HUD() # print("robot", self.house.robot_id) def record_scene(self): """ Record obj + robot + house """ self.init_new_house() self.house.record_obj_info() self.house.record_robot_info() self.house.record_house_info() self.task_desc_ui.model.set_value("Scene recorded! Please start a new empty scene [Load scene] \n Note: you don't have to save the current stage.") dialog = MessageDialog( title="Scene Recorded", message=f"Scene recorded! \nPlease start a [New scene] and then [Load scene] \nNote: you don't have to save the current stage.", disable_cancel_button=True, ok_handler=lambda dialog: dialog.hide() ) dialog.show() def record_obj_new(self): """ New pipeline to record game objects """ self.init_new_house() self.house.record_obj_info() self.task_desc_ui.model.set_value("object location recorded!") def record_robot_new(self): """ New pipeline to record game robots """ self.init_new_house() self.house.record_robot_info() # if BaseChecker.SUCCESS_UI: # BaseChecker.SUCCESS_UI.model.set_value("robot id (robot variation) recorded") self.task_desc_ui.model.set_value("robot location recorded!") def record_house_new(self): self.init_new_house() self.house.record_house_info() # if BaseChecker.SUCCESS_UI: # BaseChecker.SUCCESS_UI.model.set_value("house-anchor recorded") self.task_desc_ui.model.set_value("game location in house recorded!") def load_scene(self): """ Load obj + robot + house """ self.stage = omni.usd.get_context().get_stage() pxr.UsdGeom.SetStageUpAxis(self.stage, pxr.UsdGeom.Tokens.y) if self.stage.GetPrimAtPath("/World/game"): dialog = MessageDialog( title="Load scene", message=f"Already have `/World/game` in the scene. Please start a new stage.", disable_cancel_button=True, ok_handler=lambda dialog: dialog.hide() ) dialog.show() return dialog = MessageDialog( title="Loading scene ......", message=f"Please wait ......", disable_cancel_button=True, ok_handler=lambda dialog: dialog.hide() ) dialog.show() self.load_obj_new() self.load_robot_new() self.load_house_new() # focus on game selection = omni.usd.get_context().get_selection() selection.clear_selected_prim_paths() selection.set_prim_path_selected("/World/game", True, True, True, True) viewport = omni.kit.viewport_legacy.get_viewport_interface() viewport = viewport.get_viewport_window() if viewport else None if viewport: viewport.focus_on_selected() else: from omni.kit.viewport.utility import frame_viewport_selection frame_viewport_selection(force_legacy_api=True) selection.clear_selected_prim_paths() dialog.hide() dialog2 = MessageDialog( title="Loading scene ......", message=f"Loading scene complete!", disable_cancel_button=True, ok_handler=lambda dialog2: dialog2.hide() ) dialog2.show() def load_obj_new(self): """ New pipeline to load game objs """ stage = omni.usd.get_context().get_stage() default_prim_path = stage.GetDefaultPrim().GetPath() if default_prim_path.pathString == '': # default_prim_path = pxr.Sdf.Path('/World') root = pxr.UsdGeom.Xform.Define(stage, "/World").GetPrim() stage.SetDefaultPrim(root) default_prim_path = stage.GetDefaultPrim().GetPath() self.init_new_house() self.house.load_obj_info(relative=True) task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int() task_type = self.task_types[task_index] # fix linear joint scale if task_type in ["open_drawer","open_cabinet", "open_door", \ "close_drawer", "close_cabinet", "close_door", "tap_water"]: if task_type in ["open_door", "close_door"]: self.fix_linear_joint(fix_driver=True, damping_cofficient=1000) elif task_type in ["tap_water"]: self.fix_linear_joint(fix_driver=True, damping_cofficient=100) else: self.fix_linear_joint(fix_driver=True, damping_cofficient=10) if task_type in ["pour_water", "transfer_water", "tap_water"]: self.add_liquid_to_cup(task_type, self.use_isosurface) def load_robot_new(self): """ New pipeline to load robots objs """ self.is_initial_setup = False self.init_new_house() self.setup_robot(new_method=True) franka_prim = omni.usd.get_context().get_stage().GetPrimAtPath("/World/game/franka") if franka_prim: add_semantics(franka_prim, "franka") def load_house_new(self): self.stage = omni.usd.get_context().get_stage() self.init_new_house() self.load_house_successful = self.house.load_house_info() # if load house successfully, randomize sky, floor, and wall if self.load_house_successful: floor_prim = self.stage.GetPrimAtPath("/World/layout/floor") if floor_prim: add_semantics(floor_prim, "floor") furniture_prim = self.stage.GetPrimAtPath("/World/layout/furniture") if furniture_prim: add_semantics(furniture_prim, "furniture") wall_prim = self.stage.GetPrimAtPath("/World/layout/roomStruct") if wall_prim: add_semantics(wall_prim, "wall") # from .layout.randomizer import Randomizer # if not hasattr(self, "house_randomizer"): # self.house_randomizer = Randomizer(None) # self.house_randomizer.randomize_house(randomize_floor=True, randomize_wall=True) # if IS_IN_CREAT: # self.house_randomizer.randomize_sky() self.randomize_material(rand=True) # self.randomize_sky(sky_type="") ################################################################################################ ######################################## Second window ######################################### ################################################################################################ # pass ################################################################################### ################################ Robot ###################################### ################################################################################### def setup_robot(self, new_method = False): """ Set up robot in the currect example """ # get the game xform as the parent for the robot self.stage = omni.usd.get_context().get_stage() #game_xform = self.stage.GetPrimAtPath("/World/game") robot_parent_path = "/World/game" has_game_xform = True if not self.stage.GetPrimAtPath(robot_parent_path): has_game_xform = False xform_game = pxr.UsdGeom.Xform.Define(self.stage, robot_parent_path) xform_game.AddTranslateOp().Set(pxr.Gf.Vec3f(0.0, 0.0, 0.0)) xform_game.AddOrientOp().Set(pxr.Gf.Quatf(1.0, 0.0, 0.0, 0.0)) xform_game.AddScaleOp().Set(pxr.Gf.Vec3f(1.0, 1.0, 1.0)) # retreive timeline # _timeline = omni.timeline.get_timeline_interface() # _timeline.play() # default not playing if not new_method: # old method # load json info from example task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int() task_type = self.task_types[task_index] task_id = self.task_id_ui.model.get_value_as_int() house_id = self.house_id_ui.model.get_value_as_int() object_id = self.object_id_ui.model.get_value_as_int() task_json = os.path.join(DATA_PATH_ROOT, "tasks", task_type, str(house_id), str(object_id), str(task_id) + ".json") print("task json: ", task_json) has_robot_info = False if os.path.exists(task_json): # raise Exception( "The json file at path {} provided wasn't found".format(room_layout_json) ) layout = json.load(open(task_json)) if "robot" in layout: position = layout["robot"]["position"] rotation = layout["robot"]["rotation"] has_robot_info = True # if there is no robot information / or no game_xform if not has_robot_info or not has_game_xform: carb.log_warn("Don't know the location/rotation for the robot") position = [0,0,0] rotation = [-0.5,0.5,0.5,0.5] # new robot loading method else: #from .layout.house_new import HouseNew self.init_new_house() position, rotation = self.house.load_robot_info() # print("position, rotation ", np.array(position), np.array(rotation)) if False: # (not self.is_initial_setup) and IS_IN_ISAAC_SIM: # target_path = "/World/game/mobility_Bottle_3618" target_path = None for target_prim in self.stage.GetPrimAtPath("/World/game").GetChildren(): if "mobility" in target_prim.GetPath().pathString: target_path = target_prim.GetPath().pathString if target_path is None: raise Exception("Must have a game object with mobility in the scene") # self.franka = FrankabotKeyboard() self.franka = FrankabotGamePad(target_path, position=np.array(position), rotation=np.array(rotation), parent_path=robot_parent_path) else: franka_path = os.path.join(ROBOT_PATH, "franka/franka.usd") # load robot robot_prim = self.stage.GetPrimAtPath(robot_parent_path + "/franka") if not robot_prim.IsValid(): robot_prim = self.stage.DefinePrim(robot_parent_path + "/franka") success_bool = robot_prim.GetReferences().AddReference(franka_path) if not success_bool: raise Exception("The usd file at path {} provided wasn't found".format(franka_path)) # set robot xform # robot_xform = pxr.UsdGeom.Xformable.Get(self.stage, robot_prim.GetPath()) # print("position $ rotation: ", position[0], position[1], position[2], rotation) robot_xform_mat = pxr.Gf.Matrix4d().SetScale([1,1,1]) * \ pxr.Gf.Matrix4d().SetRotate(pxr.Gf.Quatf(float(rotation[0]), float(rotation[1]), float(rotation[2]), float(rotation[3]))) * \ pxr.Gf.Matrix4d().SetTranslate([float(position[0]), float(position[1]), float(position[2])]) omni.kit.commands.execute( "TransformPrimCommand", path=robot_prim.GetPath().pathString, new_transform_matrix=robot_xform_mat, ) # robot_xform.AddTranslateOp().Set(pxr.Gf.Vec3f(float(position[0]), float(position[1]), float(position[2]))) # robot_xform.AddOrientOp().Set(pxr.Gf.Quatf(float(rotation[0]), float(rotation[1]), float(rotation[2]), float(rotation[3]))) # robot_xform.AddScaleOp().Set(pxr.Gf.Vec3f(1.0, 1.0, 1.0)) # selection = omni.usd.get_context().get_selection() # selection.clear_selected_prim_paths() # selection.set_prim_path_selected(robot_parent_path + "/franka", True, True, True, True) # setup physics from pxr import PhysxSchema, UsdPhysics physicsScenePath = "/World/physicsScene" scene = UsdPhysics.Scene.Get(self.stage, physicsScenePath) if not scene: scene = UsdPhysics.Scene.Define(self.stage, physicsScenePath) self._gravityDirection = pxr.Gf.Vec3f(0.0, -1.0, 0.0) self._gravityMagnitude = 981 scene.CreateGravityDirectionAttr().Set(self._gravityDirection) scene.CreateGravityMagnitudeAttr().Set(self._gravityMagnitude) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(scene.GetPrim()) physxSceneAPI.CreateEnableCCDAttr().Set(True) physxSceneAPI.GetTimeStepsPerSecondAttr().Set(60) physxSceneAPI.CreateEnableGPUDynamicsAttr().Set(True) physxSceneAPI.CreateEnableEnhancedDeterminismAttr().Set(True) physxSceneAPI.CreateEnableStabilizationAttr().Set(True) def fix_linear_joint(self, fix_driver = True, damping_cofficient = 1): """ Fix the linear joint limit when scaling an object """ self.stage = omni.usd.get_context().get_stage() prim_list = self.stage.TraverseAll() for prim in prim_list: if "joint_" in str(prim.GetPath()): if fix_driver: # find linear drive joint_driver = pxr.UsdPhysics.DriveAPI.Get(prim, "linear") if joint_driver: joint_driver.CreateDampingAttr(damping_cofficient) # find linear drive joint_driver = pxr.UsdPhysics.DriveAPI.Get(prim, "angular") if joint_driver: joint_driver.CreateDampingAttr(damping_cofficient) # find linear joint upperlimit joint = pxr.UsdPhysics.PrismaticJoint.Get(self.stage, prim.GetPath()) if joint: upper_limit = joint.GetUpperLimitAttr().Get() #GetAttribute("xformOp:translate").Get() print(prim.GetPath(), "upper_limit", upper_limit) mobility_prim = prim.GetParent().GetParent() mobility_xform = pxr.UsdGeom.Xformable.Get(self.stage, mobility_prim.GetPath()) scale_factor = mobility_xform.GetOrderedXformOps()[2].Get()[0] print("scale_factor", scale_factor) joint.CreateUpperLimitAttr(upper_limit * scale_factor / 100) ################################################################################### ################################ Liquid ###################################### ################################################################################### def init_fluid_helper(self, use_isosurface = False): from .layout.fluid.cup_setup import CupFluidHelper # cup_id = 0 # self.cup_id_ui.model.get_value_as_int() # r = self.r_ui.model.get_value_as_float() # g = self.g_ui.model.get_value_as_float() # b = self.b_ui.model.get_value_as_float() self.cup_fluid_helper = CupFluidHelper(use_isosurface) # def set_up_fluid_helper(self): # # Fluid System setup # self.init_fluid_helper() # self.cup_fluid_helper.create() def add_liquid_to_cup(self, task_type, use_isosurface = False): self.init_fluid_helper(use_isosurface) self.stage = omni.usd.get_context().get_stage() game_prim = self.stage.GetPrimAtPath("/World/game") enable_physics = True if task_type == 'tap_water': enable_physics = False for prim in game_prim.GetChildren(): if "mobility_" in prim.GetPath().pathString and task_type in ["pour_water", "transfer_water"]: self.cup_fluid_helper.modify_cup_scene(prim, add_liquid = True, set_physics = enable_physics) elif "container_" in prim.GetPath().pathString: self.cup_fluid_helper.modify_cup_scene(prim, add_liquid = False, set_physics = enable_physics) ################################################################################### ################################ Play and Record ############################# ################################################################################### def init_franka_tensor(self): """ Init franka tensor controller """ from .param import APP_VERION assert APP_VERION >= "2022.0.0", "need Omniverse Isaac-Sim/Create in 2022" task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int() task_type = self.task_types[task_index] task_id = self.task_id_ui.model.get_value_as_int() # robot_id = self.robot_id_ui.model.get_value_as_int() # mission_id = self.mission_id_ui.model.get_value_as_int() house_id = self.house_id_ui.model.get_value_as_int() # anchor_id = self.anchor_id_ui.model.get_value_as_int() annotator_index = self.annotator_ui.model.get_item_value_model().get_value_as_int() annotator = ANNOTATORS[annotator_index] root_dir = '-'.join([str(os.path.join(SAVE_ROOT, annotator, task_type)),str(task_id), str(house_id)])#, \ #str(robot_id), str(mission_id), str(house_id), str(anchor_id)]) traj_dir = os.path.join(root_dir, TRAJ_FOLDER) # print("traj_dir", traj_dir) from .robot_setup.franka_tensor import FrankaTensor self.ft = FrankaTensor(save_path=traj_dir) def stop_record(self): """ Stop recording button """ if not hasattr(self, "ft"): self.timeline.stop() carb.log_error( "please load layout and start recording first") return self.ft.is_record = False self.ft.is_replay = False self.timeline.stop() self.task_desc_ui.model.set_value("Stop.") def replay_record(self): """ Replay recording button """ self.init_franka_tensor() self.ft.is_replay = True self.ft.is_record = False self.ft.load_record() self.timeline.play() self.task_desc_ui.model.set_value("Start replaying...") def start_record(self): """ Play and record """ self.init_franka_tensor() self.ft.is_replay = False self.ft.is_record = True import shutil if os.path.exists(self.ft.save_path): shutil.rmtree(self.ft.save_path) os.makedirs(self.ft.save_path, exist_ok=True) self.timeline.play() self.task_desc_ui.model.set_value("Start recording...") def set_render_type(self, render_type): """ Set up rendering type for current camera """ self.render_helper.reset() self.render_helper.render_type = render_type print("Setting render_type", self.render_helper.render_type) def render_an_image(self): """ Render an image to render folder according render type """ task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int() task_type = self.task_types[task_index] task_id = self.task_id_ui.model.get_value_as_int() house_id = self.house_id_ui.model.get_value_as_int() self.render_helper.render_image(self.render_folder, prefix = f"{task_type}_{task_id}_{house_id}") self.task_desc_ui.model.set_value("image captured!") ######################## ui ############################### def _build_custom_frame_header(self, collapsed, text): """ When task layout ui collapse, show id notified for task, object, and house id """ if collapsed: alignment = ui.Alignment.RIGHT_CENTER width = 8 height = 8 else: alignment = ui.Alignment.CENTER_BOTTOM width = 8 height = 8 with ui.HStack(): ui.Spacer(width=8) with ui.VStack(width=0): ui.Spacer() ui.Triangle( style = {"Triangle": {"background_color": 0xDDDDDDDD}}, width=width, height=height, alignment=alignment ) ui.Spacer() ui.Spacer(width=8) ui.Label(text, width = 100) if collapsed: self.id_note_ui = CustomIdNotice() # print("on_task_layout_ui_collapse", task_block_collapsed) self.id_note_ui.ui.visible = collapsed task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int() task_type = self.task_types[task_index] task_id = self.task_id_ui.model.get_value_as_int() robot_id = self.robot_id_ui.model.get_value_as_int() anchor_id = self.anchor_id_ui.model.get_value_as_int() mission_id = self.mission_id_ui.model.get_value_as_int() house_id = self.house_id_ui.model.get_value_as_int() self.id_note_ui.task_ui.text = task_type self.id_note_ui.object_ui.text = f"Object: {task_id}" self.id_note_ui.house_ui.text = f"House: {house_id}" ############################# shot down ######################### def on_shutdown(self): print("[vrkitchen.indoor.kit] VRKitchen2.0-Indoor-Kit shutdown") ############################# debug ############################# def debug(self): """ Debug """ print("debug")
48,704
Python
45.697028
196
0.528129
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/param.py
import omni import carb import os from pathlib import Path EXTENSION_FOLDER_PATH = Path( omni.kit.app.get_app().get_extension_manager().get_extension_path_by_module(__name__) ) ROOT = str(EXTENSION_FOLDER_PATH.parent.parent.resolve()) # ROOT = str(Path(__file__).parent.joinpath("../../../../../").resolve()) print("EXTENSION_FOLDER_PATH", EXTENSION_FOLDER_PATH, "ROOT", ROOT) IS_IN_ISAAC_SIM = str(carb.settings.get_settings().get("/app/window/title")).startswith("Isaac Sim") IS_IN_CREAT = str(carb.settings.get_settings().get("/app/window/title")).startswith("Create") IS_IN_CODE = str(carb.settings.get_settings().get("/app/window/title")).startswith("Code") APP_VERION = str(carb.settings.get_settings().get("/app/version")) assert APP_VERION >= "2022.1.0", "Please start Isaac-Sim/Create/Code with version no small than 2022.1.0" print("APP name: ", str(carb.settings.get_settings().get("/app/window/title")), APP_VERION) # root = '/home/yizhou/Research/' # root = '/home/vince/Documents/Research/' # ROOT = '/home/nikepupu/Desktop' if IS_IN_ISAAC_SIM else 'E:/researches' # Asset paths ASSET_PATH = ROOT + "/exts/vrkitchen.indoor.kit/asset/" SAPIEN_ASSET_PATH = ASSET_PATH + "/Sapien/" HOUSE_INFO_PATH = ASSET_PATH + "/3DFront/" CUSTOM_ASSET_PATH = ASSET_PATH + "/Custom/" # STORAGE_ASSET_PATH = ROOT + "/asset/sapien_parsed/StorageFurniture/" # Data path DATA_PATH_ROOT = ROOT + "/data/" DATA_PATH_NEW = DATA_PATH_ROOT + "/data_auto/" SAVE_ROOT = DATA_PATH_ROOT + '/data_record/' RENDER_ROOT = DATA_PATH_ROOT + '/data_render/' # ROBOT_PATH = ASSET_PATH + "Robot/" ORIGINAL_IMAGES_FORLDER = "raw_images" TRAJ_FOLDER = "trajectory" DEPTH_IMAGES_FOLDER = "depth_images" SEMANTIC_IMAGES_FOLDER = "semantic_images" USE_ISO_SURFACE = False #Annotator ANNOTATORS = [ "MyLuckyUser", ] # Task TASK_TYPES = ["pickup_object","reorient_object", "pour_water", "open_drawer"] # ,"open_cabinet", "put_object_into_box", "open_door", "transfer_water", #"close_drawer", "close_cabinet", "close_door", "take_object_out_box"] #Objects OBJECT_TYPES = ["Bottle", "Box", "Door", "Faucet", "LightSwitch", "Microwave", "StorageFurniture"] # Task objects GAME_OBJ_NAMES = ["mobility", "switch", "SM_", "watercup", "fluid"] CONTAINER_NAMES = ["box", "cup"] OTHER_OBJ_NAMES = ["basin"] # Physics RIGIDBODY_OBJ_TYPES = ["Bottle", "SM_"]
2,364
Python
32.309859
105
0.681895
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/render/helper.py
import math import time import typing import asyncio import carb import omni import numpy as np from PIL import Image import os import omni.syntheticdata as syn from omni.kit.window.popup_dialog import MessageDialog class CustomSyntheticDataHelper: def __init__(self): # initialize syntheticdata extension self.app = omni.kit.app.get_app_interface() ext_manager = self.app.get_extension_manager() if not ext_manager.is_extension_enabled("omni.syntheticdata"): ext_manager.set_extension_enabled("omni.syntheticdata", True) self.reset() def reset(self): # viewport self.render_type = "Rgb" # viewport = omni.kit.viewport_legacy.get_viewport_interface() # viewport_handle = viewport.get_instance("Viewport") from omni.kit.viewport.utility import get_active_viewport self.viewport = get_active_viewport() self.viewport_window = omni.kit.viewport.utility.get_viewport_from_window_name() # viewport.get_viewport_window(None) self.timeline = omni.timeline.get_timeline_interface() def render_image(self, export_folder = None, prefix = ""): print("rendering image...") self.stage = omni.usd.get_context().get_stage() # get camera # self.viewport_window.set_texture_resolution(*resolution) camera_name = self.viewport_window.get_active_camera().pathString.replace("/","") # set up export folder if export_folder: if not os.path.exists(export_folder): os.makedirs(export_folder, exist_ok=True) time_str = str(int(self.timeline.get_current_time() * self.stage.GetTimeCodesPerSecond())) img_save_path = f"{export_folder}/{prefix}_{camera_name}_{self.render_type}_{time_str}.png" # get render type # synthetic_type = syn._syntheticdata.SensorType.Rgb # if self.render_type == "Depth": # synthetic_type = syn._syntheticdata.SensorType.DepthLinear # elif self.render_type == "Semantic": # synthetic_type = syn._syntheticdata.SensorType.SemanticSegmentation # render and export async def render_img(): # Render one frame await omni.kit.app.get_app().next_update_async() syn.sensors.enable_sensors( self.viewport, [ syn._syntheticdata.SensorType.Rgb, syn._syntheticdata.SensorType.DepthLinear, syn._syntheticdata.SensorType.SemanticSegmentation, syn._syntheticdata.SensorType.InstanceSegmentation ], ) # # await syn.sensors.initialize_async(self.viewport_window, []) # await syn.sensors.next_sensor_data_async(self.viewport, True) # if self.render_type == "Depth": # from omni.syntheticdata.scripts.visualize import get_depth # data = get_depth(self.viewport_window, mode = "linear") # # print("img", data.shape) # img = Image.fromarray(data.astype(np.uint8)) if self.render_type == "Depth": await syn.sensors.next_sensor_data_async(self.viewport) data = syn.sensors.get_depth_linear(self.viewport) print("depthimg", data.shape) img = Image.fromarray(data.astype(np.uint8)) elif self.render_type == "Semantic": await syn.sensors.next_sensor_data_async(self.viewport) data = syn.sensors.get_instance_segmentation(self.viewport, parsed = True) img = Image.fromarray(data.astype(np.uint8)) else: await syn.sensors.next_sensor_data_async(self.viewport) data = syn.sensors.get_rgb(self.viewport) print("img", data.shape, data.dtype) img = Image.fromarray(data) if export_folder: img.save(img_save_path) print("image saved at path: ", img_save_path) dialog = MessageDialog( title="Image capture", message=f"Screenshot captured!", disable_cancel_button=True, ok_handler=lambda dialog: dialog.hide() ) dialog.show() asyncio.ensure_future(render_img())
4,492
Python
36.756302
126
0.585931
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/ui/style.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # __all__ = ["julia_modeler_style"] from omni.ui import color as cl from omni.ui import constant as fl from omni.ui import url import omni.kit.app import omni.ui as ui import pathlib EXTENSION_FOLDER_PATH = pathlib.Path( omni.kit.app.get_app().get_extension_manager().get_extension_path_by_module(__name__) ) ATTR_LABEL_WIDTH = 150 BLOCK_HEIGHT = 22 TAIL_WIDTH = 35 WIN_WIDTH = 400 WIN_HEIGHT = 930 # Pre-defined constants. It's possible to change them at runtime. cl.window_bg_color = cl(0.2, 0.2, 0.2, 1.0) cl.window_title_text = cl(.9, .9, .9, .9) cl.collapsible_header_text = cl(.8, .8, .8, .8) cl.collapsible_header_text_hover = cl(.95, .95, .95, 1.0) cl.main_attr_label_text = cl(.65, .65, .65, 1.0) cl.main_attr_label_text_hover = cl(.9, .9, .9, 1.0) cl.multifield_label_text = cl(.65, .65, .65, 1.0) cl.combobox_label_text = cl(.65, .65, .65, 1.0) cl.field_bg = cl(0.18, 0.18, 0.18, 1.0) cl.field_border = cl(1.0, 1.0, 1.0, 0.2) cl.btn_border = cl(1.0, 1.0, 1.0, 0.4) cl.slider_fill = cl(1.0, 1.0, 1.0, 0.3) cl.revert_arrow_enabled = cl(.25, .5, .75, 1.0) cl.revert_arrow_disabled = cl(.75, .75, .75, 1.0) cl.transparent = cl(0, 0, 0, 0) fl.main_label_attr_hspacing = 10 fl.attr_label_v_spacing = 3 fl.collapsable_group_spacing = 2 fl.outer_frame_padding = 15 fl.tail_icon_width = 15 fl.border_radius = 3 fl.border_width = 1 fl.window_title_font_size = 18 fl.field_text_font_size = 14 fl.main_label_font_size = 14 fl.multi_attr_label_font_size = 14 fl.radio_group_font_size = 14 fl.collapsable_header_font_size = 13 fl.range_text_size = 10 url.closed_arrow_icon = f"{EXTENSION_FOLDER_PATH}/icons/closed.svg" url.open_arrow_icon = f"{EXTENSION_FOLDER_PATH}/icons/opened.svg" url.revert_arrow_icon = f"{EXTENSION_FOLDER_PATH}/icons/revert_arrow.svg" url.checkbox_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/checkbox_on.svg" url.checkbox_off_icon = f"{EXTENSION_FOLDER_PATH}/icons/checkbox_off.svg" url.radio_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/radio_btn_on.svg" url.radio_btn_off_icon = f"{EXTENSION_FOLDER_PATH}/icons/radio_btn_off.svg" url.diag_bg_lines_texture = f"{EXTENSION_FOLDER_PATH}/icons/diagonal_texture_screenshot.png" ####################### Indoor Kit ########################################### # url.start_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/random.svg" url.start_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/toolbar_play.svg" url.replay_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/toolbar_replay.svg" url.stop_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/toolbar_stop.svg" url.pause_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/timeline_pause.svg" url.pencil_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/pencil.svg" url.open_folder_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/open_folder.svg" # The main style dict julia_modeler_style = { "Button::tool_button": { "background_color": cl.field_bg, "margin_height": 8, "margin_width": 6, "border_color": cl.btn_border, "border_width": fl.border_width, "font_size": fl.field_text_font_size, }, "CollapsableFrame::group": { "margin_height": fl.collapsable_group_spacing, "background_color": cl.transparent, }, # TODO: For some reason this ColorWidget style doesn't respond much, if at all (ie, border_radius, corner_flag) "ColorWidget": { "border_radius": fl.border_radius, "border_color": cl(0.0, 0.0, 0.0, 0.0), }, "Field": { "background_color": cl.field_bg, "border_radius": fl.border_radius, "border_color": cl.field_border, "border_width": fl.border_width, }, "Field::attr_field": { "corner_flag": ui.CornerFlag.RIGHT, "font_size": 2, # fl.field_text_font_size, # Hack to allow for a smaller field border until field padding works }, "Field::attribute_color": { "font_size": fl.field_text_font_size, }, "Field::multi_attr_field": { "padding": 4, # TODO: Hacky until we get padding fix "font_size": fl.field_text_font_size, }, "Field::path_field": { "corner_flag": ui.CornerFlag.RIGHT, "font_size": fl.field_text_font_size, }, "HeaderLine": {"color": cl(.5, .5, .5, .5)}, "Image::collapsable_opened": { "color": cl.collapsible_header_text, "image_url": url.open_arrow_icon, }, "Image::collapsable_opened:hovered": { "color": cl.collapsible_header_text_hover, "image_url": url.open_arrow_icon, }, "Image::collapsable_closed": { "color": cl.collapsible_header_text, "image_url": url.closed_arrow_icon, }, "Image::collapsable_closed:hovered": { "color": cl.collapsible_header_text_hover, "image_url": url.closed_arrow_icon, }, "Image::radio_on": {"image_url": url.radio_btn_on_icon}, "Image::radio_off": {"image_url": url.radio_btn_off_icon}, "Image::revert_arrow": { "image_url": url.revert_arrow_icon, "color": cl.revert_arrow_enabled, }, "Image::revert_arrow:disabled": { "image_url": url.revert_arrow_icon, "color": cl.revert_arrow_disabled }, "Image::revert_arrow_task_type": { "image_url": url.revert_arrow_icon, "color": cl.revert_arrow_enabled, }, "Image::revert_arrow_task_type:disabled": { "image_url": url.pencil_btn_on_icon, "color": cl.revert_arrow_disabled }, "Image::open_folder": { "image_url": url.open_folder_btn_on_icon, "color": cl.revert_arrow_disabled }, "Image::checked": {"image_url": url.checkbox_on_icon}, "Image::unchecked": {"image_url": url.checkbox_off_icon}, "Image::slider_bg_texture": { "image_url": url.diag_bg_lines_texture, "border_radius": fl.border_radius, "corner_flag": ui.CornerFlag.LEFT, }, "Label::attribute_name": { "alignment": ui.Alignment.RIGHT_TOP, "margin_height": fl.attr_label_v_spacing, "margin_width": fl.main_label_attr_hspacing, # "color": "lightsteelblue", "font_size": fl.main_label_font_size, }, "Label::attribute_name:hovered": {"color": cl.main_attr_label_text_hover}, "Label::collapsable_name": {"font_size": fl.collapsable_header_font_size}, "Label::multi_attr_label": { "color": cl.multifield_label_text, "font_size": fl.multi_attr_label_font_size, }, "Label::radio_group_name": { "font_size": fl.radio_group_font_size, "alignment": ui.Alignment.CENTER, "color": cl.main_attr_label_text, }, "Label::range_text": { "font_size": fl.range_text_size, }, "Label::window_title": { "font_size": fl.window_title_font_size, "color": cl.window_title_text, }, "ScrollingFrame::window_bg": { "background_color": cl.window_bg_color, "padding": fl.outer_frame_padding, "border_radius": 20 # Not obvious in a window, but more visible with only a frame }, "Slider::attr_slider": { "draw_mode": ui.SliderDrawMode.FILLED, "padding": 0, "color": cl.transparent, # Meant to be transparent, but completely transparent shows opaque black instead. "background_color": cl(0.28, 0.28, 0.28, 0.01), "secondary_color": cl.slider_fill, "border_radius": fl.border_radius, "corner_flag": ui.CornerFlag.LEFT, # TODO: Not actually working yet OM-53727 }, # Combobox workarounds "Rectangle::combobox": { # TODO: remove when ComboBox can have a border "background_color": cl.field_bg, "border_radius": fl.border_radius, "border_color": cl.btn_border, "border_width": fl.border_width, }, "ComboBox::dropdown_menu": { "color": "lightsteelblue", # label color "padding_height": 1.25, "margin": 2, "background_color": cl.field_bg, "border_radius": fl.border_radius, "font_size": fl.field_text_font_size, "secondary_color": cl.transparent, # button background color }, "Rectangle::combobox_icon_cover": {"background_color": cl.field_bg}, ################## VRKitchen Indoor Kit ############### "Field::choose_id": { "margin": 8, }, "Button::record_button": { "background_color": cl.field_bg, "border_color": cl.btn_border, "border_width": fl.border_width, "border_radius": 6, "margin": 4, "corner_flag": ui.CornerFlag.ALL, }, "Button::load_button": { "background_color": cl.field_bg, "border_color": cl.btn_border, "border_width": fl.border_width, "border_radius": 10, "margin": 4, "corner_flag": ui.CornerFlag.ALL, }, "Button::add_button": { "background_color": cl.field_bg, "border_color": cl.btn_border, "border_width": fl.border_width, "border_radius": 2, "margin": 8, "corner_flag": ui.CornerFlag.ALL, }, "Button::control_button": { "background_color": cl.field_bg, "border_color": cl.btn_border, "border_width": fl.border_width, "border_radius": 4, "margin": 2, "corner_flag": ui.CornerFlag.ALL, }, "Button::control_button_disabled": { "background_color": cl(0.1, 0.7, 0.3, 0.4), "border_color": cl.btn_border, "border_width": fl.border_width, "border_radius": 4, "margin": 2, "corner_flag": ui.CornerFlag.ALL, }, "Button::control_button_pressed1": { "background_color": cl( 0.7, 0.1, 0.3, 0.3), "border_color": cl.btn_border, "border_width": fl.border_width, "border_radius": 4, "margin": 2, "corner_flag": ui.CornerFlag.ALL, }, "Button::control_button_pressed2": { "background_color": cl(0.1, 0.3, 0.7, 0.3), "border_color": cl.btn_border, "border_width": fl.border_width, "border_radius": 4, "margin": 2, "corner_flag": ui.CornerFlag.ALL, }, "Button::control_button_pressed3": { "background_color": cl(0.7, 0.3, 0.7, 0.3), "border_color": cl.btn_border, "border_width": fl.border_width, "border_radius": 4, "margin": 2, "corner_flag": ui.CornerFlag.ALL, }, "Image::start_on": { "image_url": url.start_btn_on_icon, }, "Image::replay_on": { "image_url": url.replay_btn_on_icon, }, "Image::stop_on": { "image_url": url.stop_btn_on_icon, }, "Image::pause_on": { "image_url": url.pause_btn_on_icon, }, # "Image::radio_off": {"image_url": url.radio_btn_off_icon}, }
11,216
Python
33.943925
121
0.601373
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/ui/indoorkit_ui_widget.py
from typing import List, Optional import omni import omni.ui as ui from .style import ATTR_LABEL_WIDTH, cl, fl from .custom_base_widget import CustomBaseWidget from ..robot_setup.controller import Controller SPACING = 5 class TaskTypeComboboxWidget(): """A customized combobox widget""" def __init__(self, model: ui.AbstractItemModel = None, options: List[str] = None, default_value=0, on_restore_fn: callable = None, **kwargs): """ Set up the take type combo box widget ::params: :on_restore_fn: call when write/restore the widget """ self.__default_val = default_value self.__options = options or ["1", "2", "3"] self.__combobox_widget = None self.on_restore_fn = on_restore_fn # Call at the end, rather than start, so build_fn runs after all the init stuff # CustomBaseWidget.__init__(self, model=model, **kwargs) self.existing_model: Optional[ui.AbstractItemModel] = kwargs.pop("model", None) self.revert_img = None self.__attr_label: Optional[str] = kwargs.pop("label", "") self.__frame = ui.Frame() with self.__frame: self._build_fn() def destroy(self): self.existing_model = None self.revert_img = None self.__attr_label = None self.__frame = None self.__options = None self.__combobox_widget = None @property def model(self) -> Optional[ui.AbstractItemModel]: """The widget's model""" if self.__combobox_widget: return self.__combobox_widget.model @model.setter def model(self, value: ui.AbstractItemModel): """The widget's model""" self.__combobox_widget.model = value def _on_value_changed(self, *args): """Set revert_img to correct state.""" model = self.__combobox_widget.model index = model.get_item_value_model().get_value_as_int() self.revert_img.enabled = self.__default_val != index def _restore_default(self): """Restore the default value.""" if self.revert_img.enabled: # self.__combobox_widget.model.get_item_value_model().set_value( # self.__default_val) self.revert_img.enabled = False if self.on_restore_fn: self.on_restore_fn(True) else: self.revert_img.enabled = True if self.on_restore_fn: self.on_restore_fn(False) def _build_body(self): """Main meat of the widget. Draw the Rectangle, Combobox, and set up callbacks to keep them updated. """ with ui.HStack(): with ui.ZStack(): # TODO: Simplify when borders on ComboBoxes work in Kit! # and remove style rule for "combobox" Rect # Use the outline from the Rectangle for the Combobox ui.Rectangle(name="combobox", height=22) option_list = list(self.__options) self.__combobox_widget = ui.ComboBox( 0, *option_list, name="dropdown_menu", # Abnormal height because this "transparent" combobox # has to fit inside the Rectangle behind it height=10 ) # Swap for different dropdown arrow image over current one with ui.HStack(): ui.Spacer() # Keep it on the right side with ui.VStack(width=0): # Need width=0 to keep right-aligned ui.Spacer(height=5) with ui.ZStack(): ui.Rectangle(width=15, height=15, name="combobox_icon_cover") ui.Image(name="collapsable_closed", width=12, height=12) ui.Spacer(width=2) # Right margin ui.Spacer(width=ui.Percent(5)) self.__combobox_widget.model.add_item_changed_fn(self._on_value_changed) def _build_head(self): """Build the left-most piece of the widget line (label in this case)""" ui.Label( self.__attr_label, width=80, style = {"color": "lightsteelblue", "margin_height": 2, "alignment": ui.Alignment.RIGHT_TOP} ) def _build_tail(self): """Build the right-most piece of the widget line. In this case, we have a Revert Arrow button at the end of each widget line. """ with ui.HStack(width=0): # ui.Spacer(width=5) with ui.VStack(height=0): ui.Spacer(height=3) self.revert_img = ui.Image( name="revert_arrow_task_type", fill_policy=ui.FillPolicy.PRESERVE_ASPECT_FIT, width=12, height=13, enabled=False, tooltip="randomly fill (or reset) task type, object id, and house id." ) ui.Spacer(width=5) # call back for revert_img click, to restore the default value self.revert_img.set_mouse_pressed_fn( lambda x, y, b, m: self._restore_default()) def _build_fn(self): """Puts the 3 pieces together.""" with ui.HStack(): self._build_head() self._build_body() self._build_tail() class CustomRecordGroup: STYLE = { "Rectangle::image_button": { "background_color": 0x0, "border_width": 1.5, "border_radius": 2.0, "margin": 4, "border_color": cl.btn_border, "corner_flag": ui.CornerFlag.RIGHT, }, "Rectangle::image_button:hovered": { "background_color": 0xAAB8B8B8, "border_width": 0, "border_radius": 2.0, }, "Rectangle::image_button:selected": { "background_color": 0x0, "border_width": 1, "border_color": 0xFFC5911A, "border_radius": 2.0, }, } def __init__(self, width = 60, height = 60, on_click_record_fn: callable = None, on_click_stop_fn: callable = None, on_click_replay_fn: callable = None, ): self.timeline = omni.timeline.get_timeline_interface() self.on_click_record_fn = on_click_record_fn self.on_click_stop_fn = on_click_stop_fn self.on_click_replay_fn = on_click_replay_fn # another ui for control self.control_group : CustomControlGroup = None self._selected = False with ui.HStack(): with ui.HStack(): with ui.ZStack(width=0, height=0, spacing=0): # with ui.Placer(offset_x=width, offset_y=0): self.play_label = ui.Label("Record", width = 60) with ui.Placer(offset_x=0, offset_y=0): self.rect_play = ui.Rectangle(name="image_button", width=2 * width, height=height, style=CustomRecordGroup.STYLE) with ui.Placer(offset_x=5, offset_y=5): self.image_play = ui.Image( name="start_on", width=width - 10, height=height - 10, fill_policy=ui.FillPolicy.STRETCH ) self.rect_play.set_mouse_pressed_fn(lambda x, y, btn, a: self._on_mouse_pressed_play(btn)) with ui.ZStack(width=0, height=0, spacing=0): # with ui.Placer(offset_x=width, offset_y=0): self.stop_label = ui.Label("Stop", width = 60) with ui.Placer(offset_x=0, offset_y=0): self.rect_stop = ui.Rectangle(name="image_button", width=2 * width, height=height, style=CustomRecordGroup.STYLE) with ui.Placer(offset_x=5, offset_y=5): self.image_stop = ui.Image( name="stop_on", width=width - 10, height=height - 10, fill_policy=ui.FillPolicy.STRETCH ) self.rect_stop.set_mouse_pressed_fn(lambda x, y, btn, a: self._on_mouse_pressed_stop(btn)) # with ui.HStack(): with ui.ZStack(width=0, height=0, spacing=0): with ui.Placer(offset_x=width, offset_y=0): self.replay_label = ui.Label("Replay", width = 60) with ui.Placer(offset_x=0, offset_y=0): self.rect_replay = ui.Rectangle(name="image_button", width= 2 * width, height=height, style=CustomRecordGroup.STYLE) with ui.Placer(offset_x=10, offset_y=10): self.image_replay = ui.Image( name="replay_on", width=width - 20, height=height - 20, fill_policy=ui.FillPolicy.STRETCH ) self.rect_replay.set_mouse_pressed_fn(lambda x, y, btn, a: self._on_mouse_pressed_replay(btn)) def __del__(self): # set ui.Image objects to None explicitly to avoid this error: # Client omni.ui Failed to acquire interface [omni::kit::renderer::IGpuFoundation v0.2] while unloading all plugins self.image_play = None def _on_mouse_pressed_play(self, key): # 0 is for mouse left button if key == 0: if self.timeline.is_stopped(): # if stopped, start recording self.play_label.text = "Pause" self.image_play.name = "pause_on" self.on_click_record_fn() if self.control_group: self.control_group.enable() elif self.timeline.is_playing(): # if is playing, pause self.play_label.text = "Continue" self.image_play.name = "start_on" self.timeline.pause() else: # if is paused, just play self.play_label.text = "Pause" self.image_play.name = "pause_on" self.timeline.play() def _on_mouse_pressed_replay(self, key): # 0 is for mouse left button if key == 0: if self.timeline.is_stopped(): # if stopped, start recording self.replay_label.text = "Pause" self.image_replay.name = "pause_on" self.on_click_replay_fn() elif self.timeline.is_playing(): # if is playing, pause self.replay_label.text = "Continue" self.image_replay.name = "replay_on" self.timeline.pause() else: # if is paused, just play self.replay_label.text = "Pause" self.image_replay.name = "pause_on" self.timeline.play() def _on_mouse_pressed_stop(self, key): # print("press stop button", self.timeline.is_playing(), self.timeline.is_stopped()) # 0 is for mouse left button if key == 0: self.play_label.text = "Record" self.image_play.name = "start_on" self.replay_label.text = "Replay" self.image_replay.name = "replay_on" self.on_click_stop_fn() if self.control_group: self.control_group.disable() @property def selected(self): return self._selected @selected.setter def selected(self, value): self._selected = value class CustomControlGroup(): def __init__(self) -> None: self.collapse_frame = ui.CollapsableFrame("Robot control") self.collapse_frame.collapsed = False self.collapse_frame.enabled = True # ui with self.collapse_frame: with ui.VStack(height=0, spacing=0): with ui.HStack(): ui.Label("position control: ") self.button_w = ui.Button("W", name = "control_button", tooltip = "move end factor forward") self.button_s = ui.Button("S", name = "control_button", tooltip = "move end factor backward") self.button_a = ui.Button("A", name = "control_button", tooltip = "move end factor to left") self.button_d = ui.Button("D", name = "control_button", tooltip = "move end factor to right") self.button_q = ui.Button("Q", name = "control_button", tooltip = "move end factor to down") self.button_e = ui.Button("E", name = "control_button", tooltip = "move end factor to up") with ui.HStack(): ui.Label("rotation control: ") self.button_up = ui.Button("UP", name = "control_button", tooltip = "Rotate hand upward") self.button_down = ui.Button("DOWN", name = "control_button", tooltip = "Rotate hand downard") self.button_left = ui.Button("LEFT", name = "control_button", tooltip = "Rotate hand to left") self.button_right = ui.Button("RIGHT", name = "control_button", tooltip = "Rotate hand to right") with ui.HStack(): ui.Label("gripper control: ") self.button_control = ui.Button("LEFT CTRL", name = "control_button", tooltip = "Close/Open gripper") self.button_list = [self.button_w, self.button_s, self.button_a, self.button_d, self.button_q, self.button_e, self.button_up, self.button_down, self.button_left, self.button_right, ] self.button_w.set_clicked_fn(lambda : self._on_button("w")) self.button_s.set_clicked_fn(lambda : self._on_button("s")) self.button_a.set_clicked_fn(lambda : self._on_button("a")) self.button_d.set_clicked_fn(lambda : self._on_button("d")) self.button_q.set_clicked_fn(lambda : self._on_button("q")) self.button_e.set_clicked_fn(lambda : self._on_button("e")) self.button_up.set_clicked_fn(lambda : self._on_button("up", 2)) self.button_down.set_clicked_fn(lambda : self._on_button("down", 2)) self.button_left.set_clicked_fn(lambda : self._on_button("left", 2)) self.button_right.set_clicked_fn(lambda : self._on_button("right", 2)) self.button_control.set_clicked_fn(lambda: self._on_button_control()) self.disable() def enable(self): """ Enable itself by showing the robot controling buttons """ self.collapse_frame.collapsed = False self.collapse_frame.enabled = True self.enable_buttons() def disable(self): """ Disable itself by closing the robot controling buttons """ self.collapse_frame.collapsed = True # self.collapse_frame.enabled = False def disable_buttons(self): for button in self.button_list: button.name = "control_button_disabled" # button.enabled = False Controller.reset_movement() def enable_buttons(self): for button in self.button_list: button.enabled = True button.name = "control_button" Controller.reset_movement() def _on_button(self, attr_name:str, style = 1): attr = getattr(Controller, attr_name) # print("attr", attr_name, attr) button = getattr(self, f"button_{attr_name}") if attr: setattr(Controller, attr_name, False) button.name = "control_button" self.enable_buttons() else: self.disable_buttons() setattr(Controller, attr_name, True) button.enabled = True button.name = f"control_button_pressed{style}" def _on_button_control(self): if Controller.left_control: Controller.left_control = False self.button_control.text = "LEFT CTRL" self.button_control.name = "control_button" else: Controller.left_control = True self.button_control.text = "Gripper closed" self.button_control.name = "control_button_pressed3" class CustomBoolWidget(CustomBaseWidget): """A custom checkbox or switch widget""" def __init__(self, model: ui.AbstractItemModel = None, default_value: bool = True, on_checked_fn: callable = None, **kwargs): self.__default_val = default_value self.__bool_image = None self.on_checked_fn = on_checked_fn # Call at the end, rather than start, so build_fn runs after all the init stuff CustomBaseWidget.__init__(self, model=model, **kwargs) def destroy(self): CustomBaseWidget.destroy() self.__bool_image = None def _restore_default(self): """Restore the default value.""" if self.revert_img.enabled: self.__bool_image.checked = self.__default_val self.__bool_image.name = ( "checked" if self.__bool_image.checked else "unchecked" ) self.revert_img.enabled = False def _on_value_changed(self): """Swap checkbox images and set revert_img to correct state.""" self.__bool_image.checked = not self.__bool_image.checked self.__bool_image.name = ( "checked" if self.__bool_image.checked else "unchecked" ) self.revert_img.enabled = self.__default_val != self.__bool_image.checked if self.on_checked_fn: self.on_checked_fn(self.__bool_image.checked) def _build_body(self): """Main meat of the widget. Draw the appropriate checkbox image, and set up callback. """ with ui.HStack(): with ui.VStack(): # Just shift the image down slightly (2 px) so it's aligned the way # all the other rows are. ui.Spacer(height=2) self.__bool_image = ui.Image( name="checked" if self.__default_val else "unchecked", fill_policy=ui.FillPolicy.PRESERVE_ASPECT_FIT, height=16, width=16, checked=self.__default_val ) # Let this spacer take up the rest of the Body space. ui.Spacer() self.__bool_image.set_mouse_pressed_fn( lambda x, y, b, m: self._on_value_changed()) NUM_FIELD_WIDTH = 50 SLIDER_WIDTH = ui.Percent(100) FIELD_HEIGHT = 22 # TODO: Once Field padding is fixed, this should be 18 SPACING = 4 TEXTURE_NAME = "slider_bg_texture" class CustomSliderWidget(CustomBaseWidget): """A compound widget for scalar slider input, which contains a Slider and a Field with text input next to it. """ def __init__(self, model: ui.AbstractItemModel = None, num_type: str = "int", min=0.0, max=1.0, default_val=0.0, display_range: bool = False, on_slide_fn: callable = None, **kwargs): self.__slider: Optional[ui.AbstractSlider] = None self.__numberfield: Optional[ui.AbstractField] = None self.__min = min self.__max = max self.__default_val = default_val self.__num_type = num_type self.__display_range = display_range self.on_slide_fn = on_slide_fn # Call at the end, rather than start, so build_fn runs after all the init stuff CustomBaseWidget.__init__(self, model=model, **kwargs) def destroy(self): CustomBaseWidget.destroy() self.__slider = None self.__numberfield = None @property def model(self) -> Optional[ui.AbstractItemModel]: """The widget's model""" if self.__slider: return self.__slider.model @model.setter def model(self, value: ui.AbstractItemModel): """The widget's model""" self.__slider.model = value self.__numberfield.model = value def _on_value_changed(self, *args): """Set revert_img to correct state.""" if self.__num_type == "float": index = self.model.as_float else: index = self.model.as_int self.revert_img.enabled = self.__default_val != index if self.on_slide_fn: self.on_slide_fn(index) def _restore_default(self): """Restore the default value.""" if self.revert_img.enabled: self.model.set_value(self.__default_val) self.revert_img.enabled = False def _build_display_range(self): """Builds just the tiny text range under the slider.""" with ui.HStack(): ui.Label(str(self.__min), alignment=ui.Alignment.LEFT, name="range_text") if self.__min < 0 and self.__max > 0: # Add middle value (always 0), but it may or may not be centered, # depending on the min/max values. total_range = self.__max - self.__min # subtract 25% to account for end number widths left = 100 * abs(0 - self.__min) / total_range - 25 right = 100 * abs(self.__max - 0) / total_range - 25 ui.Spacer(width=ui.Percent(left)) ui.Label("0", alignment=ui.Alignment.CENTER, name="range_text") ui.Spacer(width=ui.Percent(right)) else: ui.Spacer() ui.Label(str(self.__max), alignment=ui.Alignment.RIGHT, name="range_text") ui.Spacer(height=.75) def _build_body(self): """Main meat of the widget. Draw the Slider, display range text, Field, and set up callbacks to keep them updated. """ with ui.HStack(spacing=0): # the user provided a list of default values with ui.VStack(spacing=3, width=ui.Fraction(3)): with ui.ZStack(): # Put texture image here, with rounded corners, then make slider # bg be fully transparent, and fg be gray and partially transparent with ui.Frame(width=SLIDER_WIDTH, height=FIELD_HEIGHT, horizontal_clipping=True): # Spacing is negative because "tileable" texture wasn't # perfectly tileable, so that adds some overlap to line up better. with ui.HStack(spacing=-12): for i in range(50): # tiling the texture ui.Image(name=TEXTURE_NAME, fill_policy=ui.FillPolicy.PRESERVE_ASPECT_CROP, width=50,) slider_cls = ( ui.FloatSlider if self.__num_type == "float" else ui.IntSlider ) self.__slider = slider_cls( height=FIELD_HEIGHT, min=self.__min, max=self.__max, name="attr_slider" ) if self.__display_range: self._build_display_range() with ui.VStack(width=ui.Fraction(1)): model = self.__slider.model model.set_value(self.__default_val) field_cls = ( ui.FloatField if self.__num_type == "float" else ui.IntField ) # Note: This is a hack to allow for text to fill the Field space more, as there was a bug # with Field padding. It is fixed, and will be available in the next release of Kit. with ui.ZStack(): # height=FIELD_HEIGHT-1 to account for the border, so the field isn't # slightly taller than the slider ui.Rectangle( style_type_name_override="Field", name="attr_field", height=FIELD_HEIGHT - 1 ) with ui.HStack(height=0): ui.Spacer(width=2) self.__numberfield = field_cls( model, height=0, style={ "background_color": cl.transparent, "border_color": cl.transparent, "padding": 4, "font_size": fl.field_text_font_size, }, ) if self.__display_range: ui.Spacer() model.add_value_changed_fn(self._on_value_changed) class CustomSkySelectionGroup(CustomBaseWidget): def __init__(self, on_select_fn: callable = None ) -> None: self.on_select_fn = on_select_fn self.sky_type = "" CustomBaseWidget.__init__(self, label = "Sky type:") def _build_body(self): with ui.HStack(): self.button_clear = ui.Button("Sunny", name = "control_button") self.button_cloudy = ui.Button("Cloudy", name = "control_button") self.button_overcast = ui.Button("Overcast", name = "control_button") self.button_night = ui.Button("Night", name = "control_button") self.button_clear.set_clicked_fn(lambda : self._on_button("clear")) self.button_cloudy.set_clicked_fn(lambda : self._on_button("cloudy")) self.button_overcast.set_clicked_fn(lambda : self._on_button("overcast")) self.button_night.set_clicked_fn(lambda : self._on_button("night")) self.button_list = [self.button_clear, self.button_cloudy, self.button_overcast, self.button_night] def enable_buttons(self): for button in self.button_list: button.enabled = True button.name = "control_button" def _on_button(self, sky_type:str): if self.on_select_fn: self.on_select_fn(sky_type.capitalize()) self.enable_buttons() button = getattr(self, f"button_{sky_type}") button.name = f"control_button_pressed{2}" self.revert_img.enabled = True def _restore_default(self): """Restore the default value.""" if self.revert_img.enabled: self.revert_img.enabled = False self.enable_buttons() self.on_select_fn("") class CustomIdNotice(): def __init__(self) -> None: self.ui = ui.HStack() with self.ui: ui.Spacer(width=4) self.task_ui = ui.Button("pickup_object", name = "control_button", style = {"color": "lightsteelblue", "border_color": "lightsteelblue"}, enabled = False) ui.Spacer(width=4) self.object_ui = ui.Button("object: 0", name = "control_button", style = {"color": "DarkSalmon", "border_color": "DarkSalmon"}, enabled = False) ui.Spacer(width=4) self.house_ui = ui.Button("house: 1", name = "control_button", style = {"color": "Plum", "border_color": "Plum"}, enabled = False) self.ui.visible = False class CustomRenderTypeSelectionGroup(CustomBaseWidget): def __init__(self, on_select_fn: callable = None ) -> None: self.on_select_fn = on_select_fn self.sky_type = "" CustomBaseWidget.__init__(self, label = "Render type:") def _build_body(self): with ui.HStack(): self.button_rgb = ui.Button("RGB", name = "control_button_pressed3") self.button_depth= ui.Button("Depth", name = "control_button") self.button_semantic = ui.Button("Semantic", name = "control_button") self.button_rgb.set_clicked_fn(lambda : self._on_button("rgb")) self.button_depth.set_clicked_fn(lambda : self._on_button("depth")) self.button_semantic.set_clicked_fn(lambda : self._on_button("semantic")) self.button_list = [self.button_rgb, self.button_depth, self.button_semantic] def enable_buttons(self): for button in self.button_list: button.enabled = True button.name = "control_button" def _on_button(self, render_type:str): if self.on_select_fn: self.on_select_fn(render_type.capitalize()) self.enable_buttons() button = getattr(self, f"button_{render_type}") button.name = f"control_button_pressed{3}" self.revert_img.enabled = True def _restore_default(self): """Restore the default value.""" if self.revert_img.enabled: self.revert_img.enabled = False self.enable_buttons() self._on_button("rgb") import subprocess, os, platform class CustomPathButtonWidget: """A compound widget for holding a path in a StringField, and a button that can perform an action. TODO: Get text ellision working in the path field, to start with "..." """ def __init__(self, label: str, path: str, btn_callback: callable = None): self.__attr_label = label self.__pathfield: ui.StringField = None self.__path = path self.__btn = None self.__callback = btn_callback self.__frame = ui.Frame() with self.__frame: self._build_fn() def destroy(self): self.__pathfield = None self.__btn = None self.__callback = None self.__frame = None @property def model(self) -> Optional[ui.AbstractItem]: """The widget's model""" if self.__pathfield: return self.__pathfield.model @model.setter def model(self, value: ui.AbstractItem): """The widget's model""" self.__pathfield.model = value def get_path(self): return self.model.as_string def _build_fn(self): """Draw all of the widget parts and set up callbacks.""" with ui.HStack(): ui.Label( self.__attr_label, name="attribute_name", width=120, ) self.__pathfield = ui.StringField( name="path_field", enabled = False, ) ui.Spacer(width = 8) # # TODO: Add clippingType=ELLIPSIS_LEFT for long paths self.__pathfield.model.set_value(self.__path) self.folder_img = ui.Image( name="open_folder", fill_policy=ui.FillPolicy.PRESERVE_ASPECT_FIT, width=12, height=18, ) self.folder_img.set_mouse_pressed_fn(lambda x, y, b, m: self.open_path(self.__path)) def open_path(self, path): if platform.system() == "Darwin": # macOS subprocess.call(("open", path)) elif platform.system() == "Windows": # Windows os.startfile(path) else: # linux variants subprocess.call(("xdg-open", path))
31,182
Python
38.12547
166
0.540344
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/ui/custom_base_widget.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # __all__ = ["CustomBaseWidget"] from typing import Optional import omni.ui as ui from .style import ATTR_LABEL_WIDTH class CustomBaseWidget: """The base widget for custom widgets that follow the pattern of Head (Label), Body Widgets, Tail Widget""" def __init__(self, *args, model=None, **kwargs): self.existing_model: Optional[ui.AbstractItemModel] = kwargs.pop("model", None) self.revert_img = None self.__attr_label: Optional[str] = kwargs.pop("label", "") self.__frame = ui.Frame() with self.__frame: self._build_fn() def destroy(self): self.existing_model = None self.revert_img = None self.__attr_label = None self.__frame = None def __getattr__(self, attr): """Pretend it's self.__frame, so we have access to width/height and callbacks. """ return getattr(self.__frame, attr) def _build_head(self): """Build the left-most piece of the widget line (label in this case)""" ui.Label( self.__attr_label, name="attribute_name", width=120, ) def _build_body(self): """Build the custom part of the widget. Most custom widgets will override this method, as it is where the meat of the custom widget is. """ ui.Spacer() def _build_tail(self): """Build the right-most piece of the widget line. In this case, we have a Revert Arrow button at the end of each widget line. """ with ui.HStack(width=0): ui.Spacer(width=5) with ui.VStack(height=0): ui.Spacer(height=3) self.revert_img = ui.Image( name="revert_arrow", fill_policy=ui.FillPolicy.PRESERVE_ASPECT_FIT, width=12, height=13, enabled=False, ) ui.Spacer(width=5) # call back for revert_img click, to restore the default value self.revert_img.set_mouse_pressed_fn( lambda x, y, b, m: self._restore_default()) def _build_fn(self): """Puts the 3 pieces together.""" with ui.HStack(): self._build_head() self._build_body() self._build_tail()
2,769
Python
32.373494
87
0.590105
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/autotask/auto_config.py
# automatically generation configs meta data for task generation import json import copy g_meta_json_path = "./configs.json" # initail and target value pair for continous task g_init_target_value_pair = [ (0, 0.25), (0, 0.5), (0, 0.75), (0, 1), (0.25, 0.5), (0.25, 0.75), (0.25, 1), (0.5, 0.75), (0.5, 1), (0.75, 1) ] g_mission_template = { "size": 0, "orient": [0, 0, 0.7071068, 0.7071068], "robot_offset": [-40, 0, 0], "robot_orient": [0.7071068, -0.7071068,0, 0], "task_type": "", "task_id": "", "robot_id": "", "mission_id": "", "goal":{ "description":"Open the door a little.", "condition": { "init_value": -1, "type": "rotation", "target": "", "joint":"", "target_value": 0 } } } def add_continuous_meta_open_mission(task_type, meta_json_path = g_meta_json_path): """ add continous mission types for open task """ # load json assert task_type in ["open_door", "open_drawer", "open_cabinet", "close_door", "pour_water", "close_drawer", "close_cabinet", "transfer_water", "tap_water"] meta_json = json.load(open(meta_json_path)) # if task_type not in meta_json: # clean meta_json[task_type] = [] task_missions = meta_json[task_type] for init_value, target_value in g_init_target_value_pair: mission = copy.deepcopy(g_mission_template) goal = mission["goal"] condition = goal["condition"] if task_type == "open_door": #mission["robot_offset"] = [-40, 0, 0] mission["robot_offset"] = [50, 0, 0] mission["robot_orient"] = [0,0,0.7071068,0.7071068] goal["description"] = "Open the door" condition["type"] = "rotation" condition["init_value"] = init_value condition["target_value"] = target_value elif task_type == "close_door": mission["robot_offset"] = [70, 0, 0] mission["robot_orient"] = [0,0,0.7071068,0.7071068] goal["description"] = "close the door" condition["type"] = "rotation" condition["init_value"] = target_value condition["target_value"] = init_value elif task_type == "pour_water": # only pour half and empty if not (init_value, target_value) in [(0.5, 1), (0, 1)]: continue mission["robot_offset"] = [-30, 0, 0] goal["description"] = "Pour the liquid out of the contrainer." condition["type"] = "liquid" condition["init_value"] = target_value condition["target_value"] = init_value mission["size"] = 1.0 mission["orient"] = [1, 0, 0, 0] elif task_type == "transfer_water": # only pour half and empty if not (init_value, target_value) in [(0, 0.25), (0, 0.5), (0, 0.75), (0, 1)]: continue mission["robot_offset"] = [-30, 0, 0] goal["description"] = "Pour the liquid into another contrainer." condition["type"] = "liquid" # condition["init_value"] = target_value condition["target_value"] = target_value mission["size"] = 1.0 mission["orient"] = [1, 0, 0, 0] elif task_type == "close_drawer": condition["type"] = "linear" mission["robot_offset"] = [-70, 0, 0] goal["description"] = "close the drawer" condition["init_value"] = target_value condition["target_value"] = init_value mission["size"] = 70 elif task_type == "open_drawer": condition["type"] = "linear" mission["robot_offset"] = [-50, 0, 0] goal["description"] = "Open the drawer" condition["init_value"] = init_value condition["target_value"] = target_value mission["size"] = 70 elif task_type == "open_cabinet": condition["type"] = "rotation" mission["robot_offset"] = [-50, 0, 0] goal["description"] = "Open the cabinet" condition["init_value"] = init_value condition["target_value"] = target_value mission["size"] = 70 elif task_type == "close_cabinet": condition["type"] = "rotation" mission["robot_offset"] = [-870, 0, 0] goal["description"] = "Close the cabinet" condition["init_value"] = target_value condition["target_value"] = init_value mission["size"] = 70 elif task_type == "tap_water": # only pour half and empty if not (init_value, target_value) in [(0, 0.25), (0, 0.5), (0, 0.75), (0, 1)]: continue mission["robot_offset"] = [-30, 0, 0] goal["description"] = "Get tap water." condition["type"] = "liquid" condition["init_value"] = init_value condition["target_value"] = target_value mission["size"] = 20 mission["orient"] = [0.7071068,-0.7071068,0,0] task_missions.append(mission) print("task_missions", task_missions) with open(meta_json_path, "w") as f: json.dump(meta_json, f, indent = 4) if __name__ == "__main__": print("genrating continous mission") add_continuous_meta_open_mission("open_door")
5,589
Python
34.605095
97
0.510646
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/autotask/auto.py
# auto task generating import os import json import numpy as np import asyncio import omni import pxr import carb from omni.physx.scripts import physicsUtils from ..param import IS_IN_ISAAC_SIM, DATA_PATH_NEW, CUSTOM_ASSET_PATH, ROBOT_PATH, SAPIEN_ASSET_PATH, IS_IN_CREAT, \ GAME_OBJ_NAMES, CONTAINER_NAMES, OTHER_OBJ_NAMES, HOUSE_INFO_PATH from ..task_check import BaseChecker #, JointChecker, GraspChecker, OrientChecker, ContainerChecker from .meta import AUTOTASK_META # if IS_IN_CREAT: # import omni.kit.viewport_widgets_manager as wm # from ..ui.hud import LabelWidget class AutoTasker(): TASK_DESCRIPTION = "" TASK_ID = "" def __init__(self, task_type:str, task_id:int, robot_id:int = 0, mission_id:int = 0, house_id:int = 0, anchor_id:int = 0, meta_id : int = 0, # to retrieve which config from meta data annotator : int = 0, ) -> None: self.task_type = task_type self.task_id = str(task_id) self.robot_id = str(robot_id) self.mission_id = str(mission_id) self.house_id = str(house_id) self.anchor_id = str(anchor_id) self.meta_id = mission_id # meta_id self.data_path = DATA_PATH_NEW # scene self.stage = omni.usd.get_context().get_stage() ## self.annotator = annotator # get objects self.probe_obj_folder() def probe_obj_folder(self): """ check task folder """ task_type_folder = os.path.join(self.data_path, self.annotator, "task", self.task_type) if not os.path.exists(task_type_folder): os.makedirs(task_type_folder) task_folder = os.path.join(self.data_path, self.annotator, "task", self.task_type, str(self.task_id)) if not os.path.exists(task_folder): os.makedirs(task_folder) """ Get furniture """ if self.task_type in ["open_drawer", "open_cabinet", "close_drawer", "close_cabinet"]: self.obj_type = "StorageFurniture" self.obj_folder = os.path.join(SAPIEN_ASSET_PATH, self.obj_type) elif self.task_type in ["pickup_object", "reorient_object"]: self.obj_type = "Bottle" self.obj_folder = os.path.join(CUSTOM_ASSET_PATH, self.obj_type) elif self.task_type in ["put_object_into_box", "take_object_out_box"]: self.obj_type = "Box" self.obj_folder = os.path.join(SAPIEN_ASSET_PATH, self.obj_type) elif self.task_type in ["open_door", "close_door"]: self.obj_type = "Door" self.obj_folder = os.path.join(SAPIEN_ASSET_PATH, self.obj_type) elif self.task_type in ["pour_water", "transfer_water"]: self.obj_type = "Cup" self.obj_folder = os.path.join(CUSTOM_ASSET_PATH, self.obj_type) elif self.task_type in ["tap_water"]: self.obj_type = "Faucet" self.obj_folder = os.path.join(SAPIEN_ASSET_PATH, self.obj_type) else: raise Exception(f"current task type not supported: {self.task_type}") objs = [ item for item in os.listdir(self.obj_folder) if item.isnumeric() ] self.obj_list = sorted( objs, key=lambda x: int(x)) self.obj_id = self.obj_list[int(self.task_id)] self.target_obj_path = "/mobility_" + self.obj_type + "_" + str(self.obj_id) def reconfig(self, obj_index): """ Reconfig obj from object index """ self.obj_index = obj_index self.obj_id = self.obj_list[int(obj_index)] self.target_obj_path = "/mobility_" + self.obj_type + "_" + str(self.obj_id) print("AUTOTASK_META[self.task_type][self.meta_id]", AUTOTASK_META[self.task_type][self.meta_id]) AutoTasker.TASK_DESCRIPTION = AUTOTASK_META[self.task_type][self.meta_id]["goal"]["description"] print("AutoTasker.TASK_DESCRIPTION", AutoTasker.TASK_DESCRIPTION) def add_obj(self): """ Add object to the scene """ self.stage = omni.usd.get_context().get_stage() # set up game root default_prim_path_str = self.stage.GetDefaultPrim().GetPath().pathString ## this is necessary because for standalone this might not be /World if not default_prim_path_str: default_prim_path_str = "/World" self.xform_game_path = default_prim_path_str + "/game" # omni.usd.get_stage_next_free_path(self.stage, "/World/game", True) # move obj to the correct place xform_game = self.stage.GetPrimAtPath(self.xform_game_path) if not xform_game: xform_game = pxr.UsdGeom.Xform.Define(self.stage, self.xform_game_path) # set game xform game_xform = pxr.Gf.Matrix4d().SetScale([1, 1, 1]) * \ pxr.Gf.Matrix4d().SetRotate(pxr.Gf.Quatf(1.0,0.0,0.0,0.0)) * pxr.Gf.Matrix4d().SetTranslate([0,0,0]) omni.kit.commands.execute( "TransformPrimCommand", path=self.xform_game_path, new_transform_matrix=game_xform, ) # set obj prim path mobility_prim_path = xform_game.GetPath().pathString + self.target_obj_path print("mobility_prim_path", mobility_prim_path) prim = self.stage.GetPrimAtPath(mobility_prim_path) if not prim.IsValid(): prim = self.stage.DefinePrim(mobility_prim_path) if self.task_type in ["pour_water", "transfer_water"]: obj_usd_path = os.path.join(self.obj_folder, self.obj_id, "cup.usd") else: obj_usd_path = os.path.join(self.obj_folder, self.obj_id, "mobility.usd") # import obj success_bool = prim.GetReferences().AddReference(obj_usd_path) if not success_bool: raise Exception(f"Cannot import obj usd at path {obj_usd_path}") # set up scale if self.task_type in ["open_door", "close_door"]: from .utils import calculate_door_size scale = calculate_door_size(prim) else: scale = [AUTOTASK_META[self.task_type][self.meta_id]["size"]]*3 if prim.HasAttribute("xformOp:scale"): prim.GetAttribute("xformOp:scale").Set(pxr.Gf.Vec3f(scale)) else: obj_xform = pxr.Gf.Matrix4d().SetScale(scale) omni.kit.commands.execute( "TransformPrimCommand", path=prim.GetPath().pathString, new_transform_matrix=obj_xform, ) # set up orient #if self.task_type "reorient_object": orient = AUTOTASK_META[self.task_type][self.meta_id]["orient"] print("orient: ", orient) mat = pxr.Gf.Matrix4f(pxr.UsdGeom.Xformable(prim).ComputeLocalToWorldTransform(0)) obj_xform = pxr.Gf.Matrix4f().SetScale(scale) * pxr.Gf.Matrix4f().SetRotate(pxr.Gf.Quatf(*orient)) new_xform = obj_xform # new_xform = obj_xform * mat print("new_xform", prim, obj_xform, mat, "rot", new_xform.ExtractRotationQuat(), "scale:", scale) omni.kit.commands.execute( "TransformPrimCommand", path=prim.GetPath().pathString, new_transform_matrix=new_xform, ) # other imports if self.task_type in ["put_object_into_box", "transfer_water", "tap_water"]: self.add_auxilary_object() # unbind material if self.task_type in ["transfer_water", "pour_water"]: print("unbind material") omni.kit.commands.execute( 'BindMaterial', prim_path=prim.GetPath().pathString + "/cupShape", material_path=None, strength=pxr.UsdShade.Tokens.strongerThanDescendants ) def add_auxilary_object(self): """ Add object to the scene """ self.stage = omni.usd.get_context().get_stage() # set up game root default_prim_path_str = self.stage.GetDefaultPrim().GetPath().pathString ## this is necessary because for standalone this might not be /World if not default_prim_path_str: default_prim_path_str = "/World" self.xform_game_path = default_prim_path_str + "/game" # omni.usd.get_stage_next_free_path(self.stage, "/World/game", True) # move obj to the correct place xform_game = self.stage.GetPrimAtPath(self.xform_game_path) if not xform_game: raise Exception(f"must have /World/game prim") if self.task_type == "put_object_into_box": aux_folder = os.path.join(CUSTOM_ASSET_PATH, "standalone") aux_folder_objs = os.listdir(aux_folder) aux_obj_name = aux_folder_objs[self.obj_index + 12] aux_prim_path = xform_game.GetPath().pathString + "/mobility_standalone_" + aux_obj_name obj_usd_path = os.path.join(aux_folder, aux_obj_name, "mobility.usd") position = [-20,0,0] else: aux_folder = os.path.join(CUSTOM_ASSET_PATH, "Cup") aux_folder_objs = sorted(os.listdir(aux_folder), key=lambda x:int(x)) aux_obj_name = str(int(self.task_id)) aux_prim_path = xform_game.GetPath().pathString + "/container_Cup_" + aux_obj_name obj_usd_path = os.path.join(aux_folder, aux_obj_name, "cup.usd") position = [0,0,-20] # print("aux_prim_path", aux_prim_path) prim = self.stage.GetPrimAtPath(aux_prim_path) if not prim.IsValid(): prim = self.stage.DefinePrim(aux_prim_path) success_bool = prim.GetReferences().AddReference(obj_usd_path) if not success_bool: raise Exception(f"Cannot import obj usd at path {obj_usd_path}") # offset if True: purposes = [pxr.UsdGeom.Tokens.default_] bboxcache = pxr.UsdGeom.BBoxCache(pxr.Usd.TimeCode.Default(), purposes) game_prim = self.stage.GetPrimAtPath(self.xform_game_path) bboxes = bboxcache.ComputeWorldBound(game_prim) # print("bboxes", bboxes) game_bboxes = [bboxes.ComputeAlignedRange().GetMin(),bboxes.ComputeAlignedRange().GetMax()] else: game_bboxes = omni.usd.get_context().compute_path_world_bounding_box(self.xform_game_path) position[1] += game_bboxes[0][1] # the same y position[0] += game_bboxes[0][0] # offset x position[2] += game_bboxes[0][2] # offset x # set up scale obj_xform = pxr.Gf.Matrix4d().SetScale([1,1,1]).SetRotate(pxr.Gf.Quatf(1,0,0,0)).SetTranslate(position) omni.kit.commands.execute( "TransformPrimCommand", path=prim.GetPath().pathString, new_transform_matrix=obj_xform, ) # unbind material if self.task_type in ["transfer_water", "pour_water"]: print("unbind material") omni.kit.commands.execute( 'BindMaterial', prim_path=prim.GetPath().pathString + "/cupShape", material_path=None, strength=pxr.UsdShade.Tokens.strongerThanDescendants ) def add_robot(self): """ Add robot to the scene: 1. load robot 2. calculate position """ self.stage = omni.usd.get_context().get_stage() franka_path = os.path.join(ROBOT_PATH, "franka/franka.usd") self.xform_game_path = "/World/game" # position, rotation position = [i for i in AUTOTASK_META[self.task_type][self.meta_id]["robot_offset"]] rotation = [i for i in AUTOTASK_META[self.task_type][self.meta_id]["robot_orient"]] # offset if True: ##IS_IN_ISAAC_SIM: purposes = [pxr.UsdGeom.Tokens.default_] bboxcache = pxr.UsdGeom.BBoxCache(pxr.Usd.TimeCode.Default(), purposes) prim = self.stage.GetPrimAtPath(self.xform_game_path) bboxes = bboxcache.ComputeWorldBound(prim) # print("bboxes", bboxes) game_bboxes = [bboxes.ComputeAlignedRange().GetMin(),bboxes.ComputeAlignedRange().GetMax()] else: game_bboxes = omni.usd.get_context().compute_path_world_bounding_box(self.xform_game_path) print("game_bboxes", game_bboxes) position[1] += game_bboxes[0][1] # print("game_bboxes", game_bboxes, position) if position[0] != 0 : position[0] += game_bboxes[0][0] if position[2] != 0 : position[2] += game_bboxes[0][2] # load robot robot_prim = self.stage.GetPrimAtPath(self.xform_game_path + "/franka") if not robot_prim.IsValid(): robot_prim = self.stage.DefinePrim(self.xform_game_path + "/franka") print("add robot at path: ", franka_path) success_bool = robot_prim.GetReferences().AddReference(franka_path) if not success_bool: raise Exception("The usd file at path {} provided wasn't found".format(franka_path)) # set robot xform robot_xform = pxr.UsdGeom.Xformable.Get(self.stage, robot_prim.GetPath()) robot_xform.ClearXformOpOrder() # print("position $ rotation: ", position[0], position[1], position[2], rotation) robot_xform.AddTranslateOp().Set(pxr.Gf.Vec3f(float(position[0]), float(position[1]), float(position[2]))) robot_xform.AddOrientOp().Set(pxr.Gf.Quatf(float(rotation[0]), float(rotation[1]), float(rotation[2]), float(rotation[3]))) robot_xform.AddScaleOp().Set(pxr.Gf.Vec3f(1.0, 1.0, 1.0)) #selection = omni.usd.get_context().get_selection() #selection.clear_selected_prim_paths() #selection.set_prim_path_selected(robot_parent_path + "/franka", True, True, True, True) def add_house(self): """ Add house from house_d """ print("auto add house??") # scene self.stage = omni.usd.get_context().get_stage() self.layer = self.stage.GetRootLayer() house_path = os.path.join(HOUSE_INFO_PATH, self.house_id, "layout.usd") # omni.kit.commands.execute( # "CreateSublayer", # layer_identifier=self.layer.identifier, # sublayer_position=0, # new_layer_path=house_path, # transfer_root_content=False, # create_or_insert=False, # layer_name="house", # ) # move obj to the correct place house_prim_path = "/World/layout" house_prim = self.stage.GetPrimAtPath(house_prim_path) if not house_prim.IsValid(): house_prim = self.stage.DefinePrim(house_prim_path) success_bool = house_prim.GetReferences().AddReference(house_path) if not success_bool: raise Exception(f"The house is not load at {house_path}") if not self.task_type in ["tap_water", "transfer_water", "pour_water"]: from omni.physx.scripts.utils import setStaticCollider # static collider furniture_prim = self.stage.GetPrimAtPath(house_prim_path + "/furniture") setStaticCollider(furniture_prim, approximationShape="none") # TODO: check room_struct collider room_struct_prim = self.stage.GetPrimAtPath(house_prim_path + "/roomStruct") setStaticCollider(room_struct_prim, approximationShape="none") # put game onto ground game_prim_path = "/World/game" game_prim = self.stage.GetPrimAtPath(game_prim_path) if game_prim: if True: #IS_IN_ISAAC_SIM: purposes = [pxr.UsdGeom.Tokens.default_] bboxcache = pxr.UsdGeom.BBoxCache(pxr.Usd.TimeCode.Default(), purposes) bboxes = bboxcache.ComputeWorldBound(game_prim) # print("bboxes", bboxes) y = bboxes.ComputeAlignedRange().GetMin()[1] else: # prim_path = stage.GetDefaultPrim().GetPath().pathString usd_context = omni.usd.get_context() bboxes = usd_context.compute_path_world_bounding_box(game_prim_path) y = bboxes[0][1] game_xform = pxr.Gf.Matrix4d().SetScale([1, 1, 1]) * \ pxr.Gf.Matrix4d().SetRotate(pxr.Gf.Quatf(1.0,0.0,0.0,0.0)) * pxr.Gf.Matrix4d().SetTranslate([0,-y,0]) omni.kit.commands.execute( "TransformPrimCommand", path=game_prim_path, new_transform_matrix=game_xform, ) # add ground ground_prim = self.stage.GetPrimAtPath("/World/groundPlane") if not ground_prim: physicsUtils.add_ground_plane(self.stage, "/World/groundPlane", "Y", 1000.0, pxr.Gf.Vec3f(0.0, 0.0, 0), pxr.Gf.Vec3f(0.2)) ground_prim = self.stage.GetPrimAtPath("/World/groundPlane") # prim_list = list(self.stage.TraverseAll()) # prim_list = [ item for item in prim_list if 'groundPlane' in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ] # for prim in prim_list: ground_prim.GetAttribute('visibility').Set('invisible') def add_task(self): """ Add task to current scene """ self.stage = omni.usd.get_context().get_stage() self.task_checker = BaseChecker(self.task_type, self.task_id, self.robot_id, self.mission_id, annotator = "Yizhou", run_time = False) # if self.task_type in ["open_drawer", "open_cabinet", "open_door", "close_door"]: # self.task_checker = JointChecker(self.task_type, self.task_id, self.robot_id, self.mission_id) # elif self.task_type == "pickup_object": # self.task_checker = GraspChecker(self.task_type, self.task_id, self.robot_id, self.mission_id) # elif self.task_type == "reorient_object": # self.task_checker = OrientChecker(self.task_type, self.task_id, self.robot_id, self.mission_id) # elif self.task_type in ["put_object_into_box"]: # self.task_checker = ContainerChecker(self.task_type, self.task_id, self.robot_id, self.mission_id) # else: # raise Exception(f"Current task type {self.task_type} not supported") # modify task from template # print(AUTOTASK_META[self.task_type][self.meta_index]["task_template"]) self.task_checker.current_mission = AUTOTASK_META[self.task_type][self.meta_id] condition = self.task_checker.current_mission["goal"]["condition"] # get target target_prim = None for prim in self.stage.GetPrimAtPath("/World/game").GetChildren(): for game_name in GAME_OBJ_NAMES: if game_name in prim.GetPath().pathString: target_prim = prim break condition["target"] = target_prim.GetPath().pathString.split("/")[-1] # other condition if self.task_type in ["open_drawer", "open_cabinet", "open_door", "close_door", "close_drawer", "close_cabinet"]: selection = omni.usd.get_context().get_selection() assert len(selection.get_selected_prim_paths()) == 1, "Please select one joint!" joint_path = selection.get_selected_prim_paths()[0] joint_name = joint_path.split("/")[-1] # print("joint_name:", joint_name) self.task_checker.current_mission["goal"] condition["joint"] = joint_name elif self.task_type in ["put_object_into_box", "transfer_water", "take_object_out_box", "tap_water"]: container_prim = None for prim in self.stage.GetPrimAtPath("/World/game").GetChildren(): for game_name in CONTAINER_NAMES: if game_name in prim.GetPath().pathString.lower(): container_prim = prim break if not container_prim: raise Exception(f"Container prim must exist at under /World/game") condition["container"] = container_prim.GetPath().pathString.split("/")[-1] # save mission self.task_checker.current_mission["goal"]["description"] = AutoTasker.TASK_DESCRIPTION print("current_mission", self.task_checker.current_mission) self.task_checker.current_mission["goal"]["condition"] = condition self.task_checker.save_mission() @classmethod def new_scene(cls): async def open_new_scene(): await omni.usd.get_context().new_stage_async() await omni.kit.app.get_app().next_update_async() asyncio.ensure_future(open_new_scene()) # def build_HUD(self): # if IS_IN_CREAT or IS_IN_ISAAC_SIM: # gui_path = self.stage.GetDefaultPrim().GetPath().pathString + "/GUI" # gui = self.stage.GetPrimAtPath(gui_path) # if not gui: # gui = pxr.UsdGeom.Xform.Define(self.stage, gui_path) # gui_location = pxr.Gf.Vec3f(0, 50, 0) # gui.AddTranslateOp().Set(gui_location) # self.wiget_id = wm.add_widget(gui_path, LabelWidget(f"Object id: {self.obj_id}"), wm.WidgetAlignment.TOP)
21,575
Python
41.98008
141
0.584056
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/autotask/utils.py
# utility function import re import omni import pxr from ..param import IS_IN_CREAT def calculate_door_size(prim, scale = 1): """ calculate door size to scale it to the proper size for 3DFront """ target_box_size = [10, 73.157, 209] # 3D-FRONT door frame size if False: #IS_IN_CREAT: usd_context = omni.usd.get_context() prim_bboxes = usd_context.compute_path_world_bounding_box(prim.GetPath().pathString) # In create else: purposes = [pxr.UsdGeom.Tokens.default_] bboxcache = pxr.UsdGeom.BBoxCache(pxr.Usd.TimeCode.Default(), purposes) bboxes = bboxcache.ComputeWorldBound(prim) # print("bboxes", bboxes) prim_bboxes = [bboxes.ComputeAlignedRange().GetMin(), bboxes.ComputeAlignedRange().GetMax()] print("prim_bboxes", prim_bboxes) s_x = target_box_size[0] / (prim_bboxes[1][0] - prim_bboxes[0][0]) * scale s_y = target_box_size[1] / (prim_bboxes[1][1] - prim_bboxes[0][1]) * scale s_z = target_box_size[2] / (prim_bboxes[1][2] - prim_bboxes[0][2]) * scale # if prim_bboxes[1][1] - prim_bboxes[0][1] < prim_bboxes[1][2] - prim_bboxes[0][2]: # s_y, s_z = s_z, s_y print("[1, s_y, s_z]", s_x, s_y, s_z) return [1, s_y, s_z]
1,263
Python
37.303029
100
0.610451
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/autotask/meta.py
import json from pathlib import Path import os auto_folder = str(Path(__file__).parent.resolve()).replace("\\", "/") # print("auto_folder", auto_folder) AUTOTASK_META = json.load(open(os.path.join(auto_folder,"configs.json")))
231
Python
22.199998
74
0.692641
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/autotask/auto_suggest.py
# task labeling suggestion from logging import root from omni import ui import os import json import carb from ..param import DATA_PATH_NEW, TASK_TYPES, ANNOTATORS def generate_suggestion_text_from_list(id_list): if len(id_list) == 0: return "no suggestion" return ",".join([str(_) for _ in id_list]) class AutoSuggest(): def __init__(self) -> None: pass def read_ui(self): self.task_type_index = self.suggest_task_type_ui.model.get_item_value_model().get_value_as_int() self.task_type = TASK_TYPES[self.task_type_index - 1] self.task_id = self.suggest_task_id_ui.model.get_value_as_int() self.robot_id = self.suggest_robot_id_ui.model.get_value_as_int() self.mission_id = self.suggest_mission_id_ui.model.get_value_as_int() self.house_id = self.suggest_house_id_ui.model.get_value_as_int() self.anchor_id = self.suggest_anchor_id_ui.model.get_value_as_int() self.annotator_index = self.annotator_ui.model.get_item_value_model().get_value_as_int() self.annotator = ANNOTATORS[self.annotator_index] def reset_ui(self): self.suggest_task_type_ui.model.get_item_value_model().set_value(0) self.suggest_task_id_ui.model.set_value(-1) self.suggest_robot_id_ui.model.set_value(-1) self.suggest_mission_id_ui.model.set_value(-1) self.suggest_house_id_ui.model.set_value(-1) self.suggest_anchor_id_ui.model.set_value(-1) self.suggest_task_id_text_ui.model.set_value("") self.suggest_robot_id_text_ui.model.set_value("") self.suggest_mission_id_text_ui.model.set_value("") self.suggest_anchor_id_text_ui.model.set_value("") self.suggest_house_id_text_ui.model.set_value("") self.info_ui.model.set_value("") def suggest_trial_num(self): from ..param import SAVE_ROOT root_dir = '-'.join([self.task_type, str(self.task_id), str(self.robot_id), str(self.mission_id), str(self.house_id), \ str(self.anchor_id) ]) folders = os.listdir(SAVE_ROOT) folders = [folder for folder in folders if folder.startswith(root_dir)] return len(folders) def suggest_task(self): self.read_ui() task_ids = os.listdir(os.path.join(DATA_PATH_NEW, self.annotator, "task", self.task_type)) task_ids.sort(key=lambda x: int(x)) self.suggest_task_id_text_ui.model.set_value(generate_suggestion_text_from_list(task_ids)) def suggest_robot(self): self.read_ui() robot_file = os.path.join(DATA_PATH_NEW, self.annotator, "task", self.task_type, str(self.task_id), "robots.json") if os.path.exists(robot_file): robot_ids = list(json.load(open(robot_file)).keys()) else: carb.log_warn(f"No robots found for task {self.task_type}: {self.task_id}") robot_ids = [] # print(robot_ids) self.suggest_robot_id_text_ui.model.set_value(generate_suggestion_text_from_list(robot_ids)) def suggest_anchor_id(self): self.read_ui() house_folder = os.path.join(DATA_PATH_NEW, self.annotator, "house") house_folders = os.listdir(house_folder) keys = [] # folder: 0, 1, 2 etc... display = [] for folder in house_folders: path = str(os.path.join(house_folder, folder, "anchor.json" )) if os.path.exists(path): with open(path) as f: data = json.load(f) keys.extend(list(data.keys())) for name in keys: tmp = name.split() assert (len(tmp) == 4) task_type = tmp[0] task_id = tmp[1] robot_id = tmp[2] anchor_id = tmp[3] if task_type == self.task_type and str(task_id) == str(self.task_id) and str(robot_id) == str(self.robot_id): display.append(anchor_id) self.suggest_anchor_id_text_ui.model.set_value(generate_suggestion_text_from_list(display)) def suggest_houseID(self): self.read_ui() house_folder = os.path.join(DATA_PATH_NEW, self.annotator, "house") house_folders = os.listdir(house_folder) keys = [] # folder: 0, 1, 2 etc... display = [] for folder in house_folders: path = str(os.path.join(house_folder, folder, "anchor.json" )) if os.path.exists(path): with open(path) as f: data = json.load(f) keys.extend(list(data.keys())) for name in keys: tmp = name.split() assert (len(tmp) == 4) task_type = tmp[0] task_id = tmp[1] robot_id = tmp[2] anchor_id = tmp[3] if task_type == self.task_type and str(task_id) == str(self.task_id) and str(robot_id) == str(self.robot_id): display.append(folder) self.suggest_house_id_text_ui.model.set_value(generate_suggestion_text_from_list(display)) def suggest_mission(self): self.read_ui() mission_file = os.path.join(DATA_PATH_NEW, self.annotator, "task", self.task_type, str(self.task_id), "missions.json") mission_ids = [] if os.path.exists(mission_file): mission_info = json.load(open(mission_file)) # identifier_prefix = self.task_type + " " + str(self.task_id) + " " + str(self.robot_id) identifier_prefix = self.task_type + " " + str(self.task_id) #+ " " + str(self.robot_id) for key in mission_info: if key.startswith(identifier_prefix): mission_ids.append(key.split()[-1]) else: carb.log_warn(f"No mission found for task {self.task_type}: {self.task_id}") self.suggest_mission_id_text_ui.model.set_value(generate_suggestion_text_from_list(mission_ids)) def suggest_goal(self): self.read_ui() task_folder = os.path.join(DATA_PATH_NEW, self.annotator, "task", self.task_type, str(self.task_id)) if not os.path.exists(task_folder): carb.log_warn(f"Task folder not exist at {task_folder}") self.info_ui.model.set_value("Please add mission.") mission_file_path = os.path.join(task_folder, "missions.json") if os.path.exists(mission_file_path): missions = json.load(open(mission_file_path)) carb.log_info(f"Loading missions.json at path {mission_file_path}") mission_identifier_prefix = self.task_type + " " + str(self.task_id) + " " mission_identifier_suffix = str(self.mission_id) for key, value in missions.items(): if key.startswith(mission_identifier_prefix) and key.endswith(mission_identifier_suffix): current_task = missions[key] self.info_ui.model.set_value(json.dumps(current_task["goal"], indent = 2)) else: self.info_ui.model.set_value("Please add mission.")
7,252
Python
41.415204
129
0.576117
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/autotask/auto_label.py
import omni import numpy as np try: import pandas as pd except: omni.kit.pipapi.install("pandas") import pandas as pd GOODLE_SHEET_INFO = { "close_cabinet": "187VN5J70tEH6ByemAs60FRA2uxE5UmtMr2rBZ0DCOAs", "close_door": "1Lm-nqYdeUfjGZc2WyqJCG5JcI1z5zDhfeoxZiUX7VKE", "close_drawer": "1OMmuQNKcvbc-CQm67CQbQSmiQGRMVXtNYYXgTsNg9NE", "open_cabinet": "1SWXaK5v701wMklIMu4MTgh8Wes5WS9bd_YTrH9-DPdw", "open_drawer": "1DHYxbRRs0i11rEmDKJ7XK4H0UTTct2QpPTpIPkHnImU", "pickup_object": "1mq7qCTsJWKnr1-MWA7kzOehZM6fw-o8iHpqKAS6PM44", "pour_water": "1mS1HUljpu2tZCfiHNvHc2FfrsvGFzwyXRm6pqj3uzZU", "reorient_object": "1VyoSXjUxp5ef2RPGRxovIv3SA5rr-gm66sjABegqcwM", "transfer_water": "1fKLFHfF3LsYIWlheqQwGHIf6Bpn05BnT-AQheANyO6o", "tap_water": "1kgXT6baclDuvyCe4ijJgrR1xTDbkZggxP7d5gQpWR8w", "open_door": "1fKp1vzDMeoR0lPspqtVZTaHdNhCyXdJ6SN2EnIjQ6CA", } # for key in GOODLE_SHEET_INFO: # sheet_id = GOODLE_SHEET_INFO[key] # test = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv") # print(test.head()) class AutoLabeler(): def __init__(self, task_type) -> None: # load task self.task_type = task_type self.cache = {} # for task_type_cache in GOODLE_SHEET_INFO.keys(): # cache_id = GOODLE_SHEET_INFO[task_type_cache] # try: # self.cache[task_type_cache] = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{cache_id}/export?format=csv") # except: # print("service not available: ", task_type_cache) # load data if self.task_type: sheet_id = GOODLE_SHEET_INFO[self.task_type] self.data = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv") self.cache[task_type] = self.data # load id self.current_id = -1 def set_task_type(self, task_type): if task_type not in self.cache: cache_id = GOODLE_SHEET_INFO[task_type] try: self.cache[task_type] = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{cache_id}/export?format=csv") except: print("service not available: ", task_type) self.data = self.cache[task_type] def set_id(self, id): """ set current id """ self.current_id = id def find_row_num(self, task_id, robot_id, mission_id, house_id, trial_id): cond = np.where( (self.data['task_id'] == int(task_id)) & (self.data['robot_id'] == int(robot_id)) & (self.data['mission_id'] == int(mission_id)) & (self.data['house_id'] == int(house_id)) & (self.data['trial_id'] == int(trial_id)) ) try: return int(cond[0])+2 except: return -1 def load_row(self): """ Load task information from row_id """ assert self.current_id >= 0 if self.current_id >= len(self.data): raise Exception(f"Note: current labeling is done {self.task_type}: {self.current_id} / {len(self.data)}") id = self.current_id task_id = self.data["task_id"][id] robot_id = self.data["robot_id"][id] mission_id = self.data["mission_id"][id] house_id = self.data["house_id"][id] trial_id = self.data["trial_id"][id] return int(task_id), int(robot_id), int(mission_id), int(house_id), int(trial_id) def next(self): """ find next id """ if self.current_id >= 0: self.current_id += 1 else: """ find current labeling index """ for i in range(len(self.data)): if pd.isnull(self.data['progress'][i]): self.current_id = i return
3,942
Python
33.893805
144
0.576865
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/house.py
import os import json import omni import pxr import carb # phyxc from omni.physx.scripts.utils import setCollider, setRigidBody, setStaticCollider, set_physics_scene_asyncsimrender from ..param import SAPIEN_ASSET_PATH, HOUSE_INFO_PATH, DATA_PATH_ROOT, RIGIDBODY_OBJ_TYPES, GAME_OBJ_NAMES from .utils import rename_prim, rotationXYZ_to_quaternion # from omni.isaac.core.utils.stage import ( # get_current_stage, # ) from pxr import UsdGeom, UsdLux, Gf, Vt, UsdPhysics, PhysxSchema, Usd, UsdShade, Sdf class House(): def __init__(self, data_path:str = DATA_PATH_ROOT, sapien_asset_path:str = SAPIEN_ASSET_PATH, house_info_path:str = HOUSE_INFO_PATH): self.data_path = data_path self.sapien_asset_path = sapien_asset_path self.house_info_path = house_info_path self.layout = { "id":0, "params":{ # "SCENE_ASSET_PATH":self.data_path, "SAPIEN_ASSET_PATH":self.sapien_asset_path, "HOUSE_INFO_PATH":self.house_info_path, }, "asset":{ "room_name":"", "sapien":[], }, "layout_offsets":[] } def set_id(self, example_id): """ Set up example id """ self.example_id = example_id self.layout["id"] = example_id def set_task(self, task_type, task_id = None): """ Set up task type """ self.layout["task"] = task_type def get_furniture_info(self): """ Get furniture information especially for collision from current scene """ self.stage = omni.usd.get_context().get_stage() # furniture parent furni_parent = self.stage.GetPrimAtPath("/World/layout/furniture") additional_collisions = [] for prim in furni_parent.GetChildren(): if prim.HasAPI(pxr.UsdPhysics.RigidBodyAPI) or prim.HasAPI(pxr.UsdPhysics.CollisionAPI): # prim.GetAttribute("physics:rigidBodyEnabled").Set(False) print("collision prim name", prim.GetPath(), prim.GetAttribute("physics:rigidBodyEnabled").Get()) # robot_prim.GetAttribute("xformOp:orient").Get() additional_collisions.append(prim.GetPath().pathString) self.layout["asset"]["furniture_collisions"] = additional_collisions def get_robot_info(self, robot_prim_path = "/World/game/franka"): """ Get robot information at robot_prim_path """ self.stage = omni.usd.get_context().get_stage() robot_prim = self.stage.GetPrimAtPath(robot_prim_path) if not robot_prim or not pxr.UsdGeom.Xform.Get(self.stage, robot_prim_path): raise Exception(f"Must have a robot with XForm at path {robot_prim_path}") quad = robot_prim.GetAttribute("xformOp:orient").Get() if not quad: rotateXYZ = robot_prim.GetAttribute("xformOp:rotateXYZ").Get() quad = rotationXYZ_to_quaternion(rotateXYZ) translate = robot_prim.GetAttribute("xformOp:translate").Get() scale = robot_prim.GetAttribute("xformOp:scale").Get() quad = eval(str(quad)) # print(quad) robot_info = { "position": [round(translate[0], 3), round(translate[1],3), round(translate[2], 3)], "rotation": [round(quad[0], 3), round(quad[1], 3), round(quad[2], 3), round(quad[3], 3)], } return robot_info def add_asset_info(self): """ Add other asset infomation """ # move to randomizer pass def get_asset_info(self, append = False): """ Get mobility, and furniture information from current scene :param:: append: append room information if True else delete json """ self.stage = omni.usd.get_context().get_stage() room_layout_json = os.path.join(self.data_path, "house", str(self.example_id) + ".json") # if layout json already exists, record game/parent offset as obj randomization if os.path.exists(room_layout_json): carb.log_warn(f"room info already exists at {room_layout_json}") # append other information into json if append: self.layout = json.load(open(room_layout_json)) self.add_asset_info() return else: # delete json and start another os.remove(room_layout_json) # Get room name room_path = self.stage.GetRootLayer().realPath # print("room_path: ", room_path) if room_path: relative_path = omni.client.make_relative_url(self.house_info_path, room_path) print("room_name: ", relative_path) self.layout["asset"]["room_name"] = relative_path else: self.layer = self.stage.GetRootLayer() # print("layer: ", ) for ref in self.layer.GetExternalReferences(): if "layout" in str(ref): #PathUtils.compute_relative_path(self.house_info_path,str(ref)) relative_path = omni.client.make_relative_url(self.house_info_path, str(ref)) relative_path.replace("\\\\", "/") self.layout["asset"]["room_name"] = relative_path break # Get sapien asset name prims = [self.stage.GetDefaultPrim()] game_prim = self.stage.GetPrimAtPath("/World/game") if game_prim: prims.append(game_prim) for game_prim in prims: for prim in game_prim.GetChildren(): # if prim is game obj, record information is_game_obj = False for game_name in GAME_OBJ_NAMES: if game_name in prim.GetPath().pathString: is_game_obj = True break if is_game_obj: reference, _ = omni.usd.get_composed_references_from_prim(prim)[0] print("mobility reference: ", reference.assetPath) # get obj type from paths path_splits = reference.assetPath.split("/") if 'sapien_parsed' in path_splits: # sapien objs obj_type = reference.assetPath.split("/")[-3] obj_id = int(reference.assetPath.split("/")[-2]) assetPath = None elif 'omniverse:' in path_splits: # obj from omniverse cloud assetPath = reference.assetPath obj_type = path_splits[-2] obj_id = 0 else: # custom objs assetPath = "/".join(path_splits[-3:]) obj_type = path_splits[-3] obj_id = path_splits[-2] obj_info = { "asset_path": assetPath, "obj_type": obj_type, "obj_id": obj_id, } # for attr in prim.GetAttributes(): # print(attr) if prim.HasAttribute("xformOp:orient"): quad = prim.GetAttribute("xformOp:orient").Get() else: rotateXYZ = prim.GetAttribute("xformOp:rotateXYZ").Get() quad = rotationXYZ_to_quaternion(rotateXYZ) translate = prim.GetAttribute("xformOp:translate").Get() scale = prim.GetAttribute("xformOp:scale").Get() quad = eval(str(quad)) # print("quad", quad) obj_info["xformOp:translate"] = [translate[0], translate[1], translate[2]] obj_info["xformOp:orient"] = [quad[0], quad[1], quad[2], quad[3]] obj_info["xformOp:scale"] = [scale[0],scale[1],scale[2]] self.layout["asset"]["sapien"].append(obj_info) # print("get mobility info ???") # get robot information if don't have # if "robot" not in self.layout: # if self.stage.GetPrimAtPath("/World/game/franka"): # # if has robot # self.get_robot_info() # get additional furniture collision information if don't have # if "furniture_collisions" not in self.layout["asset"]: # self.get_furniture_info() print("get mobility info", self.layout) def save_asset_info(self): """ Save asset at data_path """ print("saveing file at " + str(self.layout["id"]) + ".json") with open(os.path.join(self.data_path, "house", str(self.layout["id"]) + ".json"), "w") as output_file: json.dump(self.layout, output_file, sort_keys=True, indent=4) def _setup_physics_material(self, path): """ Set up physic material for prim at Path """ # def _setup_physics_material(self, path: Sdf.Path): from pxr import UsdGeom, UsdLux, Gf, Vt, UsdPhysics, PhysxSchema, Usd, UsdShade, Sdf from omni.physx.scripts import physicsUtils stage = omni.usd.get_context().get_stage() _material_static_friction = 1.0 _material_dynamic_friction = 1.0 _material_restitution = 0.0 _physicsMaterialPath = None if _physicsMaterialPath is None: _physicsMaterialPath = stage.GetDefaultPrim().GetPath().AppendChild("physicsMaterial") UsdShade.Material.Define(stage, _physicsMaterialPath) material = UsdPhysics.MaterialAPI.Apply(stage.GetPrimAtPath(_physicsMaterialPath)) material.CreateStaticFrictionAttr().Set(_material_static_friction) material.CreateDynamicFrictionAttr().Set(_material_dynamic_friction) material.CreateRestitutionAttr().Set(_material_restitution) collisionAPI = UsdPhysics.CollisionAPI.Get(stage, path) prim = stage.GetPrimAtPath(path) if not collisionAPI: collisionAPI = UsdPhysics.CollisionAPI.Apply(prim) # apply material # physicsUtils.add_physics_material_to_prim(stage, prim, _physicsMaterialPath) def load_asset_info(self, house_id, object_id = None): """ load asset from data path """ room_layout_json = os.path.join(self.data_path, "house", str(house_id) + ".json") print("hosue id", str(house_id), "data path: wtf", room_layout_json) if not os.path.exists(room_layout_json): raise Exception( "The json file at path {} provided wasn't found".format(room_layout_json) ) # load json self.layout = json.load(open(room_layout_json)) # get currect stage and layer self.stage = omni.usd.get_context().get_stage() self.layer = self.stage.GetRootLayer() # load house info house_path = os.path.join(self.house_info_path, self.layout["asset"]["room_name"].replace("\\","/")) # print('self.layout["asset"]["room_name"]',self.layout["asset"]["room_name"]) print("house_path: ", house_path) omni.kit.commands.execute( "CreateSublayer", layer_identifier=self.layer.identifier, sublayer_position=0, new_layer_path=house_path, transfer_root_content=False, create_or_insert=False, layer_name="", ) # set up furniture root default_prim_path_str = self.stage.GetDefaultPrim().GetPath().pathString ## this is necessary because for standalone this might not be /World if not default_prim_path_str: default_prim_path_str = "/World" self.xform_game_path = default_prim_path_str + "/game" # omni.usd.get_stage_next_free_path(self.stage, "/World/game", True) if not self.stage.GetPrimAtPath(self.xform_game_path): xform_game = pxr.UsdGeom.Xform.Define(self.stage, self.xform_game_path) xform_game.AddTranslateOp().Set(pxr.Gf.Vec3f(0.0, 0.0, 0.0)) xform_game.AddOrientOp().Set(pxr.Gf.Quatf(1.0, 0.0, 0.0, 0.0)) xform_game.AddScaleOp().Set(pxr.Gf.Vec3f(1.0, 1.0, 1.0)) # # Everything has to have collision # furni_parent = self.stage.GetPrimAtPath("/World/furniture") # for prim in furni_parent.GetChildren(): # setCollider(prim, "convexDecomposition") # floor_prim = self.stage.GetPrimAtPath("/World/floors") # setCollider(floor_prim, "convexDecomposition") # add collision infomation if "furniture_collisions" in self.layout["asset"]: for furni_path in self.layout["asset"]["furniture_collisions"]: prim = self.stage.GetPrimAtPath(furni_path) setCollider(prim, "convexDecomposition") print("try to set collider: ", furni_path) setRigidBody(prim, "convexDecomposition", False) physicsAPI = UsdPhysics.RigidBodyAPI.Apply(prim) physicsAPI.CreateRigidBodyEnabledAttr(False) # physicsAPI.CreateDisableGravityAttr(True) print("set rigid body: ", furni_path) # load furniture info for obj in self.layout["asset"]["sapien"]: # filter object only necessary for currect task if object_id != None: if obj['obj_id'] != object_id: continue # get asset path if "asset_path" in obj and obj["asset_path"] is not None: if "omniverse:" in obj["asset_path"]: # cloud obj obj_usd_path = obj["asset_path"] else: # custom object obj_usd_path = os.path.join(self.sapien_asset_path, "../custom", obj["asset_path"]) else: # sapien object obj_usd_path = os.path.join(self.sapien_asset_path, obj["obj_type"], str(obj["obj_id"]), "mobility.usd") print("obj_usd_path", obj_usd_path) # load data mobility_prim_path = xform_game.GetPath().pathString + "/mobility" prim = self.stage.GetPrimAtPath(mobility_prim_path) if not prim.IsValid(): prim = self.stage.DefinePrim(mobility_prim_path) success_bool = prim.GetReferences().AddReference(obj_usd_path) if not success_bool: raise Exception("The usd file at path {} provided wasn't found".format(obj_usd_path)) # set xform # obj_xform = pxr.UsdGeom.Xformable.Get(self.stage, prim.GetPath()) # translate_component = obj_xform.GetOrderedXformOps()[0] # orient_component = obj_xform.GetOrderedXformOps()[1] # scale_component = obj_xform.GetOrderedXformOps()[2] translate = obj["xformOp:translate"] # translate_component.Set(tuple(translate)) orient = eval(obj["xformOp:orient"]) if isinstance(obj["xformOp:orient"], str) else obj["xformOp:orient"] rotation = pxr.Gf.Quatd(orient[0], orient[1], orient[2], orient[3]) # orient_component.Set(rotation) scale = obj["xformOp:scale"] # scale_component.Set(tuple(scale)) xform = pxr.Gf.Matrix4d().SetScale(scale) * pxr.Gf.Matrix4d().SetRotate(rotation) * pxr.Gf.Matrix4d().SetTranslate(translate) omni.kit.commands.execute( "TransformPrimCommand", path=prim.GetPath(), new_transform_matrix=xform, ) ## or # xform_geom.AddTranslateOp().Set(position) # xform_geom.AddOrientOp().Set(orientation) # xform_geom.AddScaleOp().Set(scale) # set collision & rigidbody should_add_rigidbody = False for collision_type in RIGIDBODY_OBJ_TYPES: if collision_type in obj["obj_type"]: should_add_rigidbody = True break if should_add_rigidbody: setRigidBody(prim, "convexDecomposition", False) # set up physcial materials # self._setup_physics_material(prim.GetPath()) # rename path # TODO: set up name rules old_prim_name = prim.GetPath().pathString new_prim_path = prim.GetPath().GetParentPath().AppendChild("mobility_" + obj["obj_type"] + "_" + str(obj["obj_id"])) new_prim_name = omni.usd.get_stage_next_free_path(self.stage, new_prim_path.pathString, False) carb.log_info("rename:" + old_prim_name + ";" + new_prim_name) rename_prim(old_prim_name, new_prim_name) default_prim_path_str = self.stage.GetDefaultPrim().GetPath().pathString ## this is necessary because for standalone this might not be /World if not default_prim_path_str: default_prim_path_str = "/World" #set up physics scene # from omni.physx.scripts import utils _gravityMagnitude = 100.0 # IN CM/s2 - use a lower gravity to avoid fluid compression at 60 FPS _gravityDirection = Gf.Vec3f(0.0, -1.0, 0.0) _solver = "TGS" _gpuMaxNumPartitions = 4 physicsScenePath = os.path.join(default_prim_path_str, "physicsScene") scene = UsdPhysics.Scene.Define(self.stage, physicsScenePath) scene.CreateGravityDirectionAttr().Set(_gravityDirection) scene.CreateGravityMagnitudeAttr().Set(_gravityMagnitude) set_physics_scene_asyncsimrender(scene.GetPrim()) physxAPI = PhysxSchema.PhysxSceneAPI.Apply(scene.GetPrim()) physxAPI.CreateSolverTypeAttr(_solver) physxAPI.CreateGpuMaxNumPartitionsAttr(_gpuMaxNumPartitions) def add_distraction_objects(self): pass
18,324
Python
40.647727
137
0.560194
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/utils.py
# utility functions import omni import pxr from pxr import Gf, Semantics import carb import json import numpy as np def add_semantics(prim, semantic_label): if not prim.HasAPI(Semantics.SemanticsAPI): sem = Semantics.SemanticsAPI.Apply(prim, "Semantics") sem.CreateSemanticTypeAttr() sem.CreateSemanticDataAttr() sem.GetSemanticTypeAttr().Set("class") sem.GetSemanticDataAttr().Set(semantic_label) def rename_prim(old_prim_name, new_prim_name): # old_prim_name = prim.GetPath().pathString # new_prim_name = prim.GetPath().GetParentPath() # new_prim_name = new_prim_name.AppendChild("Door1") # new_prim_name = omni.usd.get_stage_next_free_path(self.stage, new_prim_name.pathString, False) # print("new_prim_name: ", new_prim_name) move_dict = {old_prim_name: new_prim_name} if pxr.Sdf.Path.IsValidPathString(new_prim_name): move_dict = {old_prim_name: new_prim_name} omni.kit.commands.execute("MovePrims", paths_to_move=move_dict, on_move_fn=None) else: carb.log_error(f"Cannot rename {old_prim_name} to {new_prim_name} as its not a valid USD path") def freeze_prim(prim, scale = [1, 1, 1]): """ Perform free transform command to current x_form_prim """ stage = omni.usd.get_context().get_stage() omni.kit.undo.begin_group() prim_name = prim.GetPath().pathString temp_name = prim_name + "_temp" rename_prim(prim_name, temp_name) temp_prim = stage.GetPrimAtPath(temp_name) # transform to the correct scale prim_xform = Gf.Matrix4d().SetScale(scale) omni.kit.commands.execute( "TransformPrimCommand", path=temp_name, new_transform_matrix=prim_xform, ) # create an unit xform omni.kit.commands.execute( "CreatePrim", prim_path=prim_name, prim_type="Xform", select_new_prim=False, ) move_dict = {} for prim in temp_prim.GetChildren(): old_prim_name = prim.GetPath().pathString new_prim_name = old_prim_name.replace("_temp", "") move_dict[old_prim_name] = new_prim_name omni.kit.commands.execute("MovePrims", paths_to_move=move_dict, keep_world_transform = True, on_move_fn=None) # print(0/0) omni.kit.commands.execute("DeletePrims", paths=[temp_prim.GetPath()]) # return new root prim return stage.GetPrimAtPath(prim_name) def rotationXYZ_to_quaternion(rotationXYZ): translate = Gf.Vec3d(0, 0, 0) euler = rotationXYZ scale = Gf.Vec3d(1, 1, 1) rotation = ( Gf.Rotation(Gf.Vec3d.ZAxis(), euler[2]) * Gf.Rotation(Gf.Vec3d.YAxis(), euler[1]) * Gf.Rotation(Gf.Vec3d.XAxis(), euler[0]) ) xform = Gf.Matrix4d().SetScale(scale) * Gf.Matrix4d().SetRotate(rotation) * Gf.Matrix4d().SetTranslate(translate) return xform.ExtractRotationQuat() class NpEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) if isinstance(obj, np.floating): # 👇️ alternatively use str() return float(obj) if isinstance(obj, np.ndarray): return obj.tolist() return json.JSONEncoder.default(self, obj)
3,272
Python
31.73
117
0.640587
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/randomizer.py
import omni import pxr from pxr import Gf import carb import os import random import json from omni.kit.material.library import get_material_prim_path, create_mdl_material from ..param import IS_IN_ISAAC_SIM, SAPIEN_ASSET_PATH, HOUSE_INFO_PATH, DATA_PATH_ROOT class Randomizer(): def __init__(self, task_json_path=None, random_seed = 1) -> None: # self.house = house # self.layout = self.house.layout if house is not None else {} self.task_json_path = task_json_path self.random_seed = random_seed # randomize index self.light_rnd = -1 # light randomized index self.location_rnd = -1 # game loc randomized index self.material_rnd = -1 # material randomized index if task_json_path: if not os.path.exists(self.task_json_path): raise Exception( "The json file at path {} provided wasn't found".format(self.task_json_path)) self.task_json = json.load(open(self.task_json_path)) else: self.task_json = {} # init randomization if "random" not in self.task_json: self.random_info = { "lights":[], "materials":{}, "locations":[{ "translate":[0,0,0], "orient":[1,0,0,0], "scale":[1.0,1.0,1.0] }], } self.task_json["random"] = self.random_info else: self.random_info = self.task_json["random"] # material self.material_dict = {} # @staticmethod def get_water_material(self): from pxr import Tf, Sdf, Usd, UsdShade # self.setup_material_helper() # print() water_url = 'http://localhost:8080/omniverse://127.0.0.1/NVIDIA/Materials/Base/Natural/Water.mdl' water_mtl_name = water_url.split("/")[-1][:-4] # print("material dict: ", self.material_dict) water_material_prim_path = get_material_prim_path(water_mtl_name) # omni.kit.commands.execute( # "CreatePrim", prim_path=water_material_prim_path, prim_type="Scope", select_new_prim=False # ) def on_create(path): pass return create_mdl_material(omni.usd.get_context().get_stage(), water_url, water_mtl_name, on_create) # stage = omni.usd.get_context().get_stage() # if stage.HasDefaultPrim(): # mtl_path = omni.usd.get_stage_next_free_path( # stage, "{}/Looks/{}".format(stage.GetDefaultPrim().GetPath(), Tf.MakeValidIdentifier(water_mtl_name)), False # ) # else: # mtl_path = omni.usd.get_stage_next_free_path( # stage, "/Looks/{}".format(Tf.MakeValidIdentifier(water_mtl_name)), False # ) # omni.kit.commands.execute("CreateMdlMaterialPrim", mtl_url=water_url, mtl_name=water_mtl_name, # mtl_path=water_material_prim_path, select_new_prim=False) # return water_material_prim_path # omni.kit.commands.execute( # "CreateMdlMaterialPrim", # mtl_url=water_url, # mtl_name=water_mtl_name, # mtl_path=water_material_prim_path, # select_new_prim=False, # ) # omni.kit.commands.execute( # 'BindMaterial', # prim_path=prim.GetPath(), # material_path = water_material_prim_path, # strength=pxr.UsdShade.Tokens.strongerThanDescendants # ) return water_material_prim_path def set_seed(self, seed): self.random_seed = seed def randomize_light(self): """ Randomize light intensity """ self.random_info["lights"] = [0, 200, 400, 600, 800, 1000] # light intensity indexes self.light_rnd = random.choice([_ for _ in range(len(self.random_info["lights"]))]) self.stage = omni.usd.get_context().get_stage() self.default_prim = self.stage.GetDefaultPrim() # print("?", self.default_prim.GetPath().pathString + "/defaultLight") light_prim = self.stage.GetPrimAtPath(self.default_prim.GetPath().pathString + "/defaultLight") assert light_prim.GetTypeName() == "DistantLight" light_prim.GetAttribute("intensity").Set(self.random_info["lights"][self.light_rnd]) def randomize_game_location(self): """ Randomize light intensity """ assert len(self.random_info["locations"]) > 0 self.location_rnd = (self.location_rnd + 1) % len(self.random_info["locations"]) self.stage = omni.usd.get_context().get_stage() self.default_prim = self.stage.GetDefaultPrim() game_prim = self.stage.GetPrimAtPath(self.default_prim.GetPath().pathString + "/game") game_layout = self.random_info["locations"][self.location_rnd] assert "translate" in game_layout and "orient" in game_layout translate = game_layout["translate"] orient = game_layout["orient"] rotation = Gf.Quatd(orient[0], orient[1], orient[2], orient[3]) # TODO: check whether scale can be randomized scale = (1.0, 1.0, 1.0) print("location") xform = Gf.Matrix4d().SetScale(scale) * Gf.Matrix4d().SetRotate(rotation) * Gf.Matrix4d().SetTranslate(translate) omni.kit.commands.execute( "TransformPrimCommand", path=game_prim.GetPath(), new_transform_matrix=xform, ) def setup_material_helper(self): """ set up material randomizer """ self.stage = omni.usd.get_context().get_stage() # check if has material if len(self.material_dict) > 0: return carb.log_info("loading necleu materials") # load from saved params try: # load the materials from nucleus url link mat_root_path = "http://localhost:8080/omniverse://127.0.0.1/NVIDIA/Materials/" carb.log_info(f"Collecting files for {mat_root_path}") result1, entries = omni.client.list(mat_root_path) from .material.param import NECLEUS_MATERIALS self.material_dict = NECLEUS_MATERIALS except: # load the materials from nucleus url link mat_root_path = "http://localhost:8080/omniverse://127.0.0.1/NVIDIA/Materials/" carb.log_info(f"Collecting files for {mat_root_path}") result1, entries = omni.client.list(mat_root_path) if result1 != omni.client.Result.OK: raise Exception(f"nucleus connect error at path: {mat_root_path}") for e in entries: print("result: ", e.relative_path) material_type_folder = mat_root_path + e.relative_path + "/" result2, mat_type_entries = omni.client.list(material_type_folder) for mat_type_e in mat_type_entries: if mat_type_e.relative_path not in self.material_dict: self.material_dict[mat_type_e.relative_path] = [] material_folder = material_type_folder + mat_type_e.relative_path + "/" result3, mat_entries = omni.client.list(material_folder) for mat_e in mat_entries: if mat_e.relative_path.endswith(".mdl"): mat_path = material_folder + mat_e.relative_path self.material_dict[mat_type_e.relative_path].append(mat_path) # filter_out_empty temp_dict = {} for key in self.material_dict: if len(self.material_dict[key]) > 0: temp_dict[key] = self.material_dict[key] self.material_dict = temp_dict # mtl_created_list = [] # omni.kit.commands.execute( # "CreateAndBindMdlMaterialFromLibrary", # mdl_name='http://localhost:8080/omniverse://127.0.0.1/NVIDIA/Materials/Base/Architecture/Ceiling_Tiles.mdl', # mtl_name='Ceiling_Tiles', # mtl_created_list=mtl_created_list, # bind_selected_prims=True, # select_new_prim=False, # ) def randomize_house(self, rand = True, randomize_floor =True, randomize_wall = True): """ randomize house's floor and wall by default, we only randomize floor """ self.setup_material_helper() floor_parent = self.stage.GetPrimAtPath("/World/layout/floors") wall_parent = self.stage.GetPrimAtPath("/World/layout/structure") # roomStruct self.random_info["floor_materials"] = [x for k in ["Wood"] for x in self.material_dict[k]] # Carpet self.random_info["wall_materials"] = [x for k in ["Wall_Board"] for x in self.material_dict[k]] # "Masonry", "Architecture" # print(self.random_info["floor_materials"]) # len_floor = len(self.random_info["floor_materials"]) # len_wall = len(self.random_info["wall_materials"]) wall_mtl_url = random.choice(self.random_info["wall_materials"]) if rand else self.random_info["wall_materials"][0] floor_mtl_url = random.choice(self.random_info["floor_materials"]) if rand else self.random_info["floor_materials"][0] wall_mtl_name = wall_mtl_url.split("/")[-1][:-4] floor_mtl_name = floor_mtl_url.split("/")[-1][:-4] # change mtl new_looks_path1, wall_material_prim_path = get_material_prim_path(wall_mtl_name) if new_looks_path1 and randomize_wall: omni.kit.commands.execute( "CreatePrim", prim_path=new_looks_path1, prim_type="Scope", select_new_prim=False ) new_looks_path2, floor_material_prim_path = get_material_prim_path(floor_mtl_name) if new_looks_path2 and randomize_floor: omni.kit.commands.execute( "CreatePrim", prim_path=new_looks_path2, prim_type="Scope", select_new_prim=False ) for prim in floor_parent.GetChildren(): if prim is None: raise Exception("no house in scene!") carb.log_info("changing material at path: " + prim.GetPath().pathString) if floor_material_prim_path: omni.kit.commands.execute( "CreateMdlMaterialPrim", mtl_url=floor_mtl_url, mtl_name=floor_mtl_name, mtl_path=floor_material_prim_path, select_new_prim=False, ) omni.kit.commands.execute( 'BindMaterial', prim_path=prim.GetPath(), material_path=floor_material_prim_path, strength=pxr.UsdShade.Tokens.strongerThanDescendants ) for prim in wall_parent.GetChildren(): if prim is None: raise Exception("no house in scene!") carb.log_info("changing material at path: " + prim.GetPath().pathString) if wall_material_prim_path: omni.kit.commands.execute( "CreateMdlMaterialPrim", mtl_url=wall_mtl_url, mtl_name=wall_mtl_name, mtl_path=wall_material_prim_path, select_new_prim=False, ) omni.kit.commands.execute( 'BindMaterial', prim_path=prim.GetPath(), material_path=wall_material_prim_path, strength=pxr.UsdShade.Tokens.strongerThanDescendants ) def randomize_material(self): """ randomize material for mobility """ self.setup_material_helper() # print("house material_dict: ", self.material_dict) # print(os.getcwd()) # if selected, update selection materials prim_paths = omni.usd.get_context().get_selection().get_selected_prim_paths() if prim_paths and len(prim_paths) > 0: pass else: # find target object target_obj_id = str(self.task_json["object_id"]) obj_prim = None self.stage = omni.usd.get_context().get_stage() game_parent = self.stage.GetPrimAtPath("/World/game") for prim in game_parent.GetChildren(): # if no materials if target_obj_id in prim.GetPath().pathString: obj_prim = prim break # print("obj_path_string", obj_prim.GetPath().pathString) if len(self.random_info["materials"]) == 0: material_list = [x for v in self.material_dict.values() for x in v] mat_urls = random.sample(material_list, 10) # random sample ten materials 80% train 20% test self.random_info["materials"] = {"train":mat_urls[:8], "test":mat_urls[8:]} # self.save_asset_info() # if has materials, load train material type self.material_rnd = (1 + self.material_rnd) % len(self.random_info["materials"]["train"]) mtl_url = self.random_info["materials"]["train"][self.material_rnd] #random.choice(self.random_info["materials"]["train"]) mtl_name = mtl_url.split("/")[-1][:-4] if obj_prim is None: raise Exception(f"must load mobility first (object id){target_obj_id}") carb.log_info("changing material at path: " + obj_prim.GetPath().pathString) # change mtl new_looks_path, material_prim_path = get_material_prim_path(mtl_name) if new_looks_path: omni.kit.commands.execute( "CreatePrim", prim_path=new_looks_path, prim_type="Scope", select_new_prim=False ) if material_prim_path: omni.kit.commands.execute( "CreateMdlMaterialPrim", mtl_url=mtl_url, mtl_name=mtl_name, mtl_path=material_prim_path, select_new_prim=False, ) omni.kit.commands.execute( 'BindMaterial', prim_path=obj_prim.GetPath(), material_path=material_prim_path, strength=pxr.UsdShade.Tokens.strongerThanDescendants ) # mat_type = random.choice(list(self.material_dict.keys())) # mtl_url = random.choice(self.material_dict[mat_type]) # mtl_name = mtl_url.split("/")[-1][:-4] # # mtl_url = "http://localhost:8080/omniverse://127.0.0.1/NVIDIA/Materials/Base/Architecture/Ceiling_Tiles.mdl" # # mtl_name = "Ceiling_Tiles" # new_looks_path, material_prim_path = get_material_prim_path(mtl_name) # if new_looks_path: # omni.kit.commands.execute( # "CreatePrim", prim_path=new_looks_path, prim_type="Scope", select_new_prim=False # ) # if material_prim_path: # omni.kit.commands.execute( # "CreateMdlMaterialPrim", # mtl_url=mtl_url, # mtl_name=mtl_name, # mtl_path=material_prim_path, # select_new_prim=False, # ) # for prim_path in prim_paths: # omni.kit.commands.execute( # 'BindMaterial', # prim_path=prim_path, # material_path=material_prim_path, # strength=pxr.UsdShade.Tokens.strongerThanDescendants # ) def record_game_offset(self): # record game xform position and rotation self.stage = omni.usd.get_context().get_stage() game_prim = self.stage.GetPrimAtPath("/World/game") #pxr.UsdGeom.Xform.Get(self.stage, "/World/game") if game_prim: quad = game_prim.GetAttribute("xformOp:orient").Get() translate = game_prim.GetAttribute("xformOp:translate").Get() # print("game_prim", game_prim, eval(str(quad))) quad = eval(str(quad)) layout_offset = { "translate": [translate[0], translate[1], translate[2]], "orient": [quad[0], quad[1], quad[2], quad[3]], "scale": [1.0, 1.0, 1.0], } # check if currect layout offset is already recorded layout_offset_already_recorded = False #if "layout_offsets" in self.random_info["locations"]: for offset in self.random_info["locations"]: #if offset == layout_offset: print("offset", offset) if offset["translate"] == layout_offset["translate"] and \ offset["orient"] == layout_offset["orient"] and \ offset["scale"] == layout_offset["scale"]: layout_offset_already_recorded = True break # if not in record, add offset record if not layout_offset_already_recorded: self.random_info["locations"].append(layout_offset) print("New game offset recorded at: ", layout_offset) def record_randomization(self): with open(self.task_json_path, "w") as f: json.dump(self.task_json, f, indent=4) def randomize_sky(self, sky_type:str = None, url= "http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Skies/Dynamic/"): """ Add sky to the environment """ # return # FIXME: not compatible with new version self.stage = omni.usd.get_context().get_stage() ENVIRONMENT_ROOT = "/Environment" sky_prim_path = f"{ENVIRONMENT_ROOT}/sky" # disable light # light_prim_path = "/World/defaultLight" # light_prim = self.stage.GetPrimAtPath(light_prim_path) # if light_prim: # light_prim.GetAttribute('visibility').Set('invisible') if sky_type: sky_name = f"{sky_type}Sky" if not sky_type == "Overcast" else "Overcast" else: sky_list = ["ClearSky","CloudySky","Overcast","NightSky"] sky_name = random.choice(sky_list) sky_url = f"{url}{sky_name}.usd" # if found existing env, return sky_prim = self.stage.GetPrimAtPath(sky_prim_path) if sky_prim: carb.log_warn("Sky already in the env") sky_prim.GetReferences().ClearReferences() else: sky_prim = self.stage.DefinePrim(sky_prim_path, "Xform") if len(sky_type) == 0: # invalid sky type: return sky_prim.GetReferences().AddReference(sky_url) rot = pxr.Gf.Vec3d(0, 0, 0) properties = sky_prim.GetPropertyNames() if "xformOp:rotateXYZ" in properties: rotation = sky_prim.GetAttribute("xformOp:rotateXYZ") rotation.Set(rot) elif "xformOp:rotateZYX" in properties: rotation = sky_prim.GetAttribute("xformOp:rotateZYX") rotation.Set(rot) elif "xformOp:transform" in properties: carb.log_info("Object missing rotation op. Adding it.") xform = pxr.UsdGeom.Xformable(sky_prim) xform_op = xform.AddXformOp(pxr.UsdGeom.XformOp.TypeRotateXYZ, pxr.UsdGeom.XformOp.PrecisionDouble, "") rotate = Gf.Vec3d(rot[0], rot[1], rot[2]) xform_op.Set(rotate) # if IS_IN_ISAAC_SIM: # from omni.isaac.core.utils.stage import add_reference_to_stage # add_reference_to_stage(sky_url ,sky_prim_path) # else: # omni.kit.commands.execute("CreateUsdSkyPrimCommand", sky_url=sky_url, sky_path=sky_prim_path) # too light, lower intensity to pretect eyes # # domelight_prim = self.stage.GetPrimAtPath("/Environment/sky/DomeLight") # domelight_prim.GetAttribute("intensity").Set(0)
20,304
Python
40.354379
142
0.556984
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/house_new.py
from cgitb import enable import os import json from typing import Container import numpy as np import asyncio import omni import pxr import carb from omni.physx.scripts import physicsUtils from omni.physx.scripts.utils import setCollider, setRigidBody, setStaticCollider from omni.usd import get_world_transform_matrix, get_local_transform_matrix from ..param import DATA_PATH_NEW, ASSET_PATH, HOUSE_INFO_PATH, IS_IN_ISAAC_SIM, RIGIDBODY_OBJ_TYPES, GAME_OBJ_NAMES, \ IS_IN_CREAT, CONTAINER_NAMES, OTHER_OBJ_NAMES from .utils import rename_prim, rotationXYZ_to_quaternion, freeze_prim from .modify import modify_game_obj_prim # if IS_IN_CREAT or IS_IN_ISAAC_SIM: # import omni.kit.viewport_widgets_manager as wm # from ..ui.hud import LabelWidget from .utils import NpEncoder class House(): def __init__(self, task_type:str, task_id:int, robot_id:int = 0, mission_id:int = 0, house_id:int = 0, anchor_id:int=0, annotator="", ): self.task_type = task_type self.task_id = str(task_id) self.data_path = DATA_PATH_NEW self.robot_id = str(robot_id) self.anchor_id = str(anchor_id) self.mission_id = str(mission_id) self.house_id = str(house_id) self.annotator = str(annotator) # task saving dicts/lists self.object_info = [] self.robot_info = {} self.make_task_saving_folder() # house saving dict self.house_appearance = {} self.house_task_anchor = {} self.object_prims = [] def make_task_saving_folder(self): """ check task saving folder """ task_type_folder = os.path.join(self.data_path, self.annotator, "task", self.task_type) if not os.path.exists(task_type_folder): os.makedirs(task_type_folder) task_folder = os.path.join(self.data_path, self.annotator, "task", self.task_type, str(self.task_id)) if not os.path.exists(task_folder): os.makedirs(task_folder) def record_obj_info(self): """ record game object information and save """ # scene self.stage = omni.usd.get_context().get_stage() # Get sapien asset name #prims = [self.stage.GetDefaultPrim()] game_prim = self.stage.GetPrimAtPath("/World/game") if not game_prim: raise Exception("Please move object and robot under /World/game") #print("prims", prims) for prim in game_prim.GetChildren(): # print("prim ", prim.GetPath()) # if prim is game obj, record information is_game_obj = False for game_name in GAME_OBJ_NAMES + CONTAINER_NAMES + OTHER_OBJ_NAMES: if game_name in prim.GetPath().pathString.lower(): is_game_obj = True break if is_game_obj: reference, _ = omni.usd.get_composed_references_from_prim(prim)[0] print("mobility reference: ", reference.assetPath) relative_path = omni.client.make_relative_url(ASSET_PATH, reference.assetPath) relative_path = relative_path.replace("\\\\","/").replace("\\","/") # get obj type from paths path_splits = relative_path.split("/") # print("path_splits", path_splits) # asset_path = "/".join(path_splits[2:]) obj_info = { "asset_path": relative_path, "obj_type": path_splits[-3], "obj_id": path_splits[-2], "materials":[], } mat = get_world_transform_matrix(prim) if prim.HasAttribute("xformOp:orient"): quad = prim.GetAttribute("xformOp:orient").Get() else: rotateXYZ = prim.GetAttribute("xformOp:rotateXYZ").Get() quad = rotationXYZ_to_quaternion(rotateXYZ) # quad = prim.GetAttribute("xformOp:orient").Get() # eval(str(mat.ExtractRotationQuat())) #eval(str(mat.ExtractRotation().GetQuat())) quad = eval(str(quad)) translate = mat.ExtractTranslation() scale = prim.GetAttribute("xformOp:scale").Get() #print("translate", translate) #print("quad", prim.GetPath(), quad) obj_info["translate"] = [translate[0], translate[1], translate[2]] obj_info["orient"] = [quad[0], quad[1], quad[2], quad[3]] obj_info["scale"] = [scale[0],scale[1],scale[2]] print("obj_info", obj_info) # task_identity = obj_info["obj_type"] + obj_info["obj_id"] self.object_info.append(obj_info) # IMPORTANT: if the object is unbalanced scale, freeze object by # To enter this condition is very strict: open/close door, wrong proportion of scale # 1. Create a new xform # 2. Move the object under the unit xform # 3. Save the obj as another usd variance game_obj_info = self.object_info[0] game_obj_scale = game_obj_info["scale"] if self.task_type in ["open_door", "close_door"]: need_freeze = abs(game_obj_scale[0] / game_obj_scale[1]) > 1.2 or \ abs(game_obj_scale[0] / game_obj_scale[1]) < 0.8 or \ abs(game_obj_scale[1] / game_obj_scale[2]) > 1.2 or \ abs(game_obj_scale[1] / game_obj_scale[2]) < 0.8 or \ abs(game_obj_scale[0] / game_obj_scale[2]) > 1.2 or \ abs(game_obj_scale[0] / game_obj_scale[2]) < 0.8 if need_freeze: carb.log_warn("Found non-unit scale object, freezing transfrom...") original_usd_path = os.path.join(ASSET_PATH, game_obj_info["asset_path"]) var_usd_path = original_usd_path.replace("mobility", f"mobility_{self.annotator}_{self.task_type}_{self.task_id}_{self.robot_id}_{self.mission_id}_{self.house_id}_{self.anchor_id}") import shutil shutil.copyfile(original_usd_path, var_usd_path) omni.usd.get_context().close_stage() omni.usd.get_context().open_stage(var_usd_path) stage = omni.usd.get_context().get_stage() default_prim = stage.GetDefaultPrim() # default_prim.GetAttribute("xformOp:scale").Set(pxr.Gf.Vec3f(1, 2, 1)) new_prim = freeze_prim(default_prim, game_obj_scale) pxr.UsdPhysics.ArticulationRootAPI.Apply(new_prim) stage.SetDefaultPrim(new_prim) omni.usd.get_context().save_stage() # time.sleep(1.0) # omni.usd.get_context().close_stage() relative_path = omni.client.make_relative_url(ASSET_PATH, var_usd_path) relative_path.replace("\\", "/") game_obj_info["asset_path"] = relative_path new_size = (game_obj_scale[0] * game_obj_scale[1] * game_obj_scale[2]) ** (1/3) game_obj_info["scale"] = [1 / new_size , 1 / new_size , 1 / new_size] # save obj info if len(self.object_info) > 0: if self.house_id != "-1" and self.anchor_id != "-1": obj_identifier = f"{self.house_id} {self.anchor_id}" task_obj_path = os.path.join(self.data_path, self.annotator,"task", self.task_type, self.task_id, "objects_with_rooms.json") objects_with_rooms = {} if not os.path.exists(task_obj_path) else json.load(open(task_obj_path)) objects_with_rooms[obj_identifier] = self.object_info with open(task_obj_path, "w") as f: json.dump(objects_with_rooms, f, indent=4, cls=NpEncoder) else: task_obj_path = os.path.join(self.data_path, self.annotator,"task", self.task_type, self.task_id, "objects.json") with open(task_obj_path, "w") as f: json.dump(self.object_info, f, indent=4, cls=NpEncoder) carb.log_info(f"current objects info saving at: {task_obj_path}") def load_obj_info(self, relative = False): """ Load objects for the task if relative: put obj at the original position """ # scene self.stage = omni.usd.get_context().get_stage() # set up game root default_prim_path_str = "/World" self.xform_game_path = default_prim_path_str + "/game" # omni.usd.get_stage_next_free_path(self.stage, "/World/game", True) # check if in house self.object_info = None if self.house_id != "-1" and self.anchor_id != "-1": obj_identifier = f"{self.house_id} {self.anchor_id}" task_obj_path = os.path.join(self.data_path, self.annotator,"task", self.task_type, self.task_id, "objects_with_rooms.json") objects_with_rooms = {} if not os.path.exists(task_obj_path) else json.load(open(task_obj_path)) if obj_identifier in objects_with_rooms: self.object_info = objects_with_rooms[obj_identifier] if self.object_info is None: task_obj_path = os.path.join(self.data_path, self.annotator, "task", self.task_type, self.task_id, "objects.json") if not os.path.exists(task_obj_path): raise Exception( "The json file at path {} provided wasn't found".format(task_obj_path) ) # load object info self.object_info = json.load(open(task_obj_path)) for obj_idx, obj in enumerate(self.object_info): # load object usd obj_usd_path = os.path.join(ASSET_PATH, obj["asset_path"]) translate = obj["translate"] orient = obj["orient"] rotation = pxr.Gf.Quatd(orient[0], orient[1], orient[2], orient[3]) scale = obj["scale"] # move game xform to the first object # set up parent if obj_idx == 0: xform_game = self.stage.GetPrimAtPath(self.xform_game_path) if not xform_game: xform_game = pxr.UsdGeom.Xform.Define(self.stage, self.xform_game_path) self.game_translate = translate if not relative else [0,0,0] game_xform = pxr.Gf.Matrix4d().SetScale([1,1,1]) * \ pxr.Gf.Matrix4d().SetRotate(pxr.Gf.Quatf(1.0,0.0,0.0,0.0)) * pxr.Gf.Matrix4d().SetTranslate(self.game_translate) omni.kit.commands.execute( "TransformPrimCommand", path=self.xform_game_path, new_transform_matrix=game_xform, ) # xform_game.AddTranslateOp().Set(pxr.Gf.Vec3f(*translate)) # xform_game.AddOrientOp().Set() # xform_game.AddScaleOp().Set(pxr.Gf.Vec3f(1.0, 1.0, 1.0)) # move obj to the correct place mobility_prim_path = xform_game.GetPath().pathString + "/mobility" prim = self.stage.GetPrimAtPath(mobility_prim_path) if not prim.IsValid(): prim = self.stage.DefinePrim(mobility_prim_path) success_bool = prim.GetReferences().AddReference(obj_usd_path) # print("get prim children", prim.GetChildren()) if not success_bool: raise Exception("The usd file at path {} provided wasn't found".format(obj_usd_path)) # relative translate if obj_idx == 0: # main object rel_translate = [0,0,0] else: rel_translate = [self.game_translate[i] + obj["translate"][i] for i in range(3)] xform = pxr.Gf.Matrix4d().SetScale(scale) * pxr.Gf.Matrix4d().SetRotate(rotation) * pxr.Gf.Matrix4d().SetTranslate(rel_translate) omni.kit.commands.execute( "TransformPrimCommand", path=prim.GetPath(), new_transform_matrix=xform, ) if obj["obj_type"].lower() in GAME_OBJ_NAMES or obj_idx == 0: # main object obj_prefix = "mobility_" elif obj["obj_type"].lower() in CONTAINER_NAMES: obj_prefix = "container_" else: obj_prefix = "other_" # if IS_IN_ISAAC_SIM: # add_update_semantics(prim, obj["obj_type"]) # TODO: set up name rules old_prim_name = prim.GetPath().pathString new_prim_path = prim.GetPath().GetParentPath().AppendChild(obj_prefix + obj["obj_type"] + "_" + str(obj["obj_id"])) new_prim_name = omni.usd.get_stage_next_free_path(self.stage, new_prim_path.pathString, False) # carb.log_info("rename:" + old_prim_name + ";" + new_prim_name ";" + prim.GetPath().pathString) rename_prim(old_prim_name, new_prim_name) target_obj_prim = self.stage.GetPrimAtPath(new_prim_name) modify_game_obj_prim(target_obj_prim) print("modify prim name: ", new_prim_name) self.object_prims.append(new_prim_name) def record_robot_info(self, robot_prim_path = "/World/game/franka"): """ Record robots infomation, and save it RELATIVE position from the main game obj :params: robot_prim_path: default robot path """ self.stage = omni.usd.get_context().get_stage() # Get sapien asset name #prims = [self.stage.GetDefaultPrim()] game_prim = self.stage.GetPrimAtPath("/World/game") if not game_prim: raise Exception("Please move object and robot under /World/game") #for game_prim in prims: for prim in game_prim.GetChildren(): # print("prim ", prim.GetPath()) # if prim is game obj, record information is_game_obj = False for game_name in GAME_OBJ_NAMES: if game_name in prim.GetPath().pathString: is_game_obj = True break if is_game_obj: mat = omni.usd.utils.get_world_transform_matrix(prim) game_translate = mat.ExtractTranslation() break if not game_translate: raise Exception("Before recording robot, there must be a game object") # then, find robot and calcuate relative postion """ Get robot information at robot_prim_path """ robot_prim = self.stage.GetPrimAtPath(robot_prim_path) if not robot_prim or not pxr.UsdGeom.Xform.Get(self.stage, robot_prim_path): raise Exception(f"Must have a robot with XForm at path {robot_prim_path}") # get robot world transform # if IS_IN_ISAAC_SIM: # from omni.isaac.core.prims import XFormPrim # pos, rot = XFormPrim(robot_prim_path).get_local_pose() # translate = np.array(pos) # quad = np.array(rot) # else: mat = get_local_transform_matrix(robot_prim) translate = mat.ExtractTranslation() quad = eval(str(mat.ExtractRotation().GetQuat())) rob_info = { "type":"franka", "translate": [round(translate[0], 3), round(translate[1],3), round(translate[2], 3)], "orient": [round(quad[0], 3), round(quad[1], 3), round(quad[2], 3), round(quad[3], 3)], } if self.house_id != "-1" and self.anchor_id != "-1": task_robot_path = os.path.join(self.data_path, self.annotator, "task", self.task_type, self.task_id, "robots_with_rooms.json") robot_identifier = f"{self.robot_id} {self.house_id} {self.anchor_id} {self.mission_id}" objects_with_rooms = {} if not os.path.exists(task_robot_path) else json.load(open(task_robot_path)) objects_with_rooms[robot_identifier] = rob_info with open(task_robot_path, "w") as f: json.dump(objects_with_rooms, f, indent=4, cls=NpEncoder) else: task_robot_path = os.path.join(self.data_path, self.annotator, "task", self.task_type, self.task_id, "robots.json") if os.path.exists(task_robot_path): self.robot_info = json.load(open(task_robot_path)) robot_identifier = str(self.robot_id) self.robot_info[robot_identifier] = rob_info with open(task_robot_path, "w") as f: json.dump(self.robot_info, f, indent=4, cls=NpEncoder) carb.log_info(f"Saving robot json file at {task_robot_path}") def load_robot_info(self): """ Load robot for currect task """ # if append house and anchor info rot_info = None if self.house_id != "-1" and self.anchor_id != "-1": task_robot_path = os.path.join(self.data_path, self.annotator, "task", self.task_type, self.task_id, "robots_with_rooms.json") robot_identifier = f"{self.robot_id} {self.house_id} {self.anchor_id}" robot_identifier = f"{self.robot_id} {self.house_id} {self.anchor_id} {self.mission_id}" objects_with_rooms = {} if not os.path.exists(task_robot_path) else json.load(open(task_robot_path)) if robot_identifier in objects_with_rooms: rot_info = objects_with_rooms[robot_identifier] if rot_info is None: task_robot_path = os.path.join(self.data_path, self.annotator, "task", self.task_type, self.task_id, "robots.json") if not os.path.exists(task_robot_path): raise Exception( "The json file at path {} provided wasn't found".format(task_robot_path) ) # load json information self.robot_info = json.load(open(task_robot_path)) # assert self.robot_id in self.robot_info, \ # f"Please record robot id variation first {self.task_type}, task_id {self.task_id}, robot_id {self.robot_id}" if self.robot_id in self.robot_info: rot_info = self.robot_info[self.robot_id] else: return None, None return rot_info["translate"], rot_info["orient"] def record_house_info(self): """ Record house information ::params: anchor_id: postion of the game root """ # scene self.stage = omni.usd.get_context().get_stage() relative_path = None # house/layer asset relative path # Get room name room_path = self.stage.GetRootLayer().realPath # print("room_path: ", room_path) if room_path: relative_path = omni.client.make_relative_url(HOUSE_INFO_PATH, room_path) relative_path = relative_path.replace("\\\\", "/").replace("\\", "/") # print("room_name: ", relative_path) # self.layout["asset"]["room_name"] = relative_path else: self.layer = self.stage.GetRootLayer() # print("layer: ", ) for ref in self.layer.GetExternalReferences(): if "layout" in str(ref): #PathUtils.compute_relative_path(self.house_info_path,str(ref)) relative_path = omni.client.make_relative_url(HOUSE_INFO_PATH, str(ref)) relative_path = relative_path.replace("\\\\", "/").replace("\\", "/") # print("relative_path", relative_path) # self.layout["asset"]["room_name"] = relative_path break # make house saving folder assert relative_path is not None house_id = relative_path.split("/")[-2] house_folder = os.path.join(self.data_path, self.annotator,"house", house_id) if not os.path.exists(house_folder): os.makedirs(house_folder) # # make appearance # appearance_json_path = os.path.join(house_folder, "appearance.json") # if os.path.exists(appearance_json_path): # self.house_appearance = json.load(open(appearance_json_path)) # self.house_appearance["asset_path"] = relative_path # with open(appearance_json_path, "w") as f: # json.dump(self.house_appearance, f, indent=4) # carb.log_info(f"Saving hosue appearce json file at {appearance_json_path}") # find game, task, anchor information default_prim_path_str = "/World" #self.stage.GetDefaultPrim().GetPath().pathString game_prim = self.stage.GetPrimAtPath(default_prim_path_str + "/game") # if game information exists if game_prim: # load anchor anchor_json_path = os.path.join(house_folder, "anchor.json") if os.path.exists(anchor_json_path): self.house_task_anchor = json.load(open(anchor_json_path)) # get game transform mat = omni.usd.utils.get_world_transform_matrix(game_prim) quad = eval(str(mat.ExtractRotation().GetQuat())) translate = mat.ExtractTranslation() translate = [i for i in translate] anchor_info = { "task_type": self.task_type, "task_id": self.task_id, "robot_id": self.robot_id, "anchor_id": self.anchor_id, "game_location": { "translate": translate, "orient":quad, } } anchor_info["additional_collisions"] = [] # self.get_furniture_collisions() # print("anchor_info", anchor_info) anchor_identifier = self.task_type + " " + self.task_id + " " + self.robot_id + " " + self.anchor_id self.house_task_anchor[anchor_identifier] = anchor_info with open(anchor_json_path, "w") as f: json.dump(self.house_task_anchor, f, indent=4, cls=NpEncoder) carb.log_info(f"Saving anchor json file at {anchor_json_path}") def load_house_info(self, enable_collision=True): """ load house infomation from house_id, and anchor_id """ print("loading house") # scene self.stage = omni.usd.get_context().get_stage() # self.layer = self.stage.GetRootLayer() house_path = os.path.join(HOUSE_INFO_PATH, self.house_id, "layout.usd") # omni.kit.commands.execute( # "CreateSublayer", # layer_identifier=self.layer.identifier, # sublayer_position=0, # new_layer_path=house_path, # transfer_root_content=False, # create_or_insert=False, # layer_name="house", # ) # Check anchor exists, if not, then only the scene house_folder = os.path.join(self.data_path, self.annotator, "house", self.house_id) anchor_json_path = os.path.join(house_folder, "anchor.json") if not os.path.exists(anchor_json_path): carb.log_warn("No anchor file found, record anchor information first") return False # print("anchor_json_path: ", anchor_json_path) try: self.house_task_anchor = json.load(open(anchor_json_path)) except: carb.log_error("anchro_json path not correct: " + str(anchor_json_path)) return False anchor_identifier_prefix = self.task_type + " " + self.task_id # + " " + self.robot_id + " " + self.anchor_id has_anchor = False for key in self.house_task_anchor: if key.startswith(anchor_identifier_prefix): has_anchor = True anchor_identifier = key break if not has_anchor: carb.log_warn(f"No anchor id: {self.anchor_id}, please record anchor at {anchor_json_path}") return False # move obj to the correct place house_prim_path = "/World/layout" house_prim = self.stage.GetPrimAtPath(house_prim_path) if not house_prim.IsValid(): house_prim = self.stage.DefinePrim(house_prim_path) success_bool = house_prim.GetReferences().AddReference(house_path) if not success_bool: raise Exception(f"The house is not load at {house_path}") # static collider # print("set collisiton") # furniture_prim = self.stage.GetPrimAtPath(house_prim_path + "/furniture/furniture_87879") # setStaticCollider(furniture_prim, approximationShape="convexDecomposition") furniture_prim = self.stage.GetPrimAtPath(house_prim_path + "/furniture") # if furniture_prim: # setStaticCollider(furniture_prim, approximationShape="convexHull") # else: # return False # if not self.task_type in ["tap_water", "transfer_water", "pour_water"] and enable_collision: # room_struct_prim = self.stage.GetPrimAtPath(house_prim_path + "/roomStruct") # setStaticCollider(room_struct_prim, approximationShape="none") # check task/task_type/robot anchor_info = self.house_task_anchor[anchor_identifier] # if anchor_info["task_type"] != self.task_type or \ # anchor_info["task_id"] != self.task_id or \ # anchor_info["robot_id"] != self.robot_id: # raise Exception("Anchor information at {} does not match UI inputs".format(anchor_json_path)) # find game, task, anchor information default_prim_path_str = "/World" game_prim = self.stage.GetPrimAtPath(default_prim_path_str + "/game") # if game information exists if not game_prim: carb.log_error(f"must have game obj at path {default_prim_path_str} + /game ") return False print("anchor_info", anchor_info) orient = anchor_info["game_location"]["orient"] translate = anchor_info["game_location"]["translate"] rotation = pxr.Gf.Quatd(orient[0], orient[1], orient[2], orient[3]) game_xform = pxr.Gf.Matrix4d().SetScale([1,1,1]) * \ pxr.Gf.Matrix4d().SetRotate(rotation) * pxr.Gf.Matrix4d().SetTranslate(translate) omni.kit.commands.execute( "TransformPrimCommand", path=default_prim_path_str + "/game", new_transform_matrix=game_xform, ) # set up additional collision # for furni_path in anchor_info["additional_collisions"]: # prim = self.stage.GetPrimAtPath(furni_path) # # set rigidbody and disable it, only leave with collision # setRigidBody(prim, "convexDecomposition", False) # prim.GetAttribute("physics:rigidBodyEnabled").Set(False) # print("try to set collider: ", furni_path) ## add ground ground_prim = self.stage.GetPrimAtPath(default_prim_path_str + '/groundPlane') if not ground_prim: physicsUtils.add_ground_plane(self.stage, '/groundPlane', "Y", 1000.0, pxr.Gf.Vec3f(0.0, 0.0, 0), pxr.Gf.Vec3f(0.2)) ground_prim = self.stage.GetPrimAtPath(default_prim_path_str + '/groundPlane') # prim_list = list(self.stage.TraverseAll()) # prim_list = [ item for item in prim_list if 'groundPlane' in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ] # for prim in prim_list: ground_prim.GetAttribute('visibility').Set('invisible') # if ground_prim: # omni.kit.commands.execute("DeletePrims", paths=[ground_prim.GetPath()]) # ground_prim = self.stage.GetPrimAtPath("/World/groundPlane") # if ground_prim: # omni.kit.commands.execute("DeletePrims", paths=[ground_prim.GetPath()]) # gui = self.stage.GetPrimAtPath("/World/GUI") # if gui: # omni.kit.commands.execute("DeletePrims", paths=[gui.GetPath()]) return True #----------------------------------------utils--------------------------------------------- def get_furniture_collisions(self): """ Get furniture information especially for collision from current scene """ # scene # furniture parent self.stage = omni.usd.get_context().get_stage() additional_collisions = [] furni_parent = self.stage.GetPrimAtPath("/World/furniture") # if has furniture if furni_parent: for prim in furni_parent.GetChildren(): if prim.HasAPI(pxr.UsdPhysics.RigidBodyAPI) or prim.HasAPI(pxr.UsdPhysics.CollisionAPI): # prim.GetAttribute("physics:rigidBodyEnabled").Set(False) print("collision prim name", prim.GetPath(), prim.GetAttribute("physics:rigidBodyEnabled").Get()) # robot_prim.GetAttribute("xformOp:orient").Get() additional_collisions.append(prim.GetPath().pathString) return additional_collisions def regularizing_game_robot_obj_location(self): """ Regulariting game/robot/obj locations: put /World/game translate as the obj location """ carb.log_info("Regularizing game/robot/obj locations") # move game to main object stage = omni.usd.get_context().get_stage() game_prim = stage.GetPrimAtPath("/World/game") if game_prim: for obj_prim in game_prim.GetChildren(): if "mobility" in obj_prim.GetPath().pathString: pos = pxr.UsdGeom.Xformable(obj_prim).ComputeLocalToWorldTransform(0).ExtractTranslation() # rot = pos = pxr.UsdGeom.Xformable(obj_prim).ComputeLocalToWorldTransform(0).ExtractRotation().GetQuat() # print("pos", pos, "rot", rot) pos = [i for i in pos] game_xform = pxr.Gf.Matrix4d().SetScale([1,1,1]) * \ pxr.Gf.Matrix4d().SetRotate(pxr.Gf.Quatf(1.0,0.0,0.0,0.0)) * pxr.Gf.Matrix4d().SetTranslate(pos) omni.kit.commands.execute( "TransformPrimCommand", path=game_prim.GetPath().pathString, new_transform_matrix=game_xform, ) obj_prim.GetAttribute("xformOp:translate").Set(pxr.Gf.Vec3f(0.0, 0.0, 0.0)) # also transfer the location of the robot robot_prim = stage.GetPrimAtPath("/World/game/franka") if robot_prim: robot_translate = robot_prim.GetAttribute("xformOp:translate").Get() new_robot_translate = [robot_translate[i] - pos[i] for i in range(3)] robot_prim.GetAttribute("xformOp:translate").Set(pxr.Gf.Vec3f(*new_robot_translate)) break def house_anchor_id_suggestion(self): """ Get house ids that are possible for current task_type/task_id/anchor """ suggested_house_ids = [] suggested_anchor_ids = [] anchor_identifier_prefix = self.task_type + " " + self.task_id + " " + self.robot_id house_root = os.path.join(self.data_path, self.annotator, "house") print("os.listdir(house_root)", house_root) for house_name in os.listdir(house_root): anchor_json_path = os.path.join(house_root, house_name, "anchor.json") if not os.path.exists(anchor_json_path): carb.log_warn("please add anchor.json to current task") return "" with open(anchor_json_path, "r") as f: anchor_info = json.load(f) for identifier in anchor_info.keys(): if identifier.startswith(anchor_identifier_prefix): suggested_house_ids.append(house_name) anchod_id = identifier.split()[-1] suggested_anchor_ids.append(anchod_id) return [str((i,j)) for i,j in zip(suggested_house_ids, suggested_anchor_ids)] # def build_HUD(self): # if IS_IN_CREAT or IS_IN_ISAAC_SIM: # self.stage = omni.usd.get_context().get_stage() # gui_path = self.stage.GetDefaultPrim().GetPath().pathString + "/GUI" # gui = self.stage.GetPrimAtPath(gui_path) # if not gui: # gui = pxr.UsdGeom.Xform.Define(self.stage, gui_path) # gui_location = pxr.Gf.Vec3f(0, 100, 100) # gui.AddTranslateOp().Set(gui_location) # self.wiget_id = wm.add_widget(gui_path, LabelWidget(f"House id: {self.house_id}"), wm.WidgetAlignment.TOP)
33,507
Python
45.474341
152
0.555854
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/modify.py
import omni import pxr import carb from pxr import UsdPhysics, UsdShade, Gf, Semantics from omni.physx.scripts import physicsUtils from omni.physx.scripts.utils import setCollider, setRigidBody, setStaticCollider, removeCollider from ..param import IS_IN_ISAAC_SIM from .utils import add_semantics if IS_IN_ISAAC_SIM: from omni.isaac.core.utils.semantics import add_update_semantics def modify_game_obj_prim(prim): """ modify game object attributes: if Bottle, add rigibody, physical material, and mass """ # add game object semantic add_semantics(prim, "game_obj") # print("modifyiing: " + prim.GetPath().pathString) if "Bottle" in prim.GetPath().pathString or "standalone" in prim.GetPath().pathString: """ Set bottle rigidbox and physical material """ setRigidBody(prim, "convexDecomposition", False) #prim.GetAttribute("physics:rigidBodyEnabled").Set(False) setup_physics_material(prim) add_mass_to_prim(prim) # stage = omni.usd.get_context().get_stage() # physicsUtils.add_ground_plane(stage, "/groundPlane", "Y", 750.0, Gf.Vec3f(0.0, -10.0, 0), Gf.Vec3f(0.5)) # if 'Faucet' in prim.GetPath().pathString: # setup_physics_material(prim) # add_mass_to_prim(prim) if IS_IN_ISAAC_SIM and "Bottle" in prim.GetPath().pathString : add_update_semantics(prim, "Bottle") if "StorageFurniture" in prim.GetPath().pathString: """ Set up physical material for handles """ # setup_physics_material(prim) # add_physical_material_to("coll") fix_handle('StorageFurniture') # remove_collider_to("visuals") # if IS_IN_ISAAC_SIM: # add_update_semantics(prim, "StorageFurniture") # add_semantics("handle") if "Basin" in prim.GetPath().pathString: approximationShape = "convexDecomposition" # convex decomp basin stage = omni.usd.get_context().get_stage() collision_api = UsdPhysics.MeshCollisionAPI.Get(stage, prim.GetPath()) if not collision_api: collision_api = UsdPhysics.MeshCollisionAPI.Apply(prim) collision_api.CreateApproximationAttr().Set(approximationShape) # set up physical metarial # add_physical_material_to("Basin") if IS_IN_ISAAC_SIM: add_update_semantics(prim, "Basin") elif "Faucet" in prim.GetPath().pathString: from .fluid.cup_data import FAUCET_INFO faucet_id = prim.GetPath().pathString.split("_")[-1] inflow_position = FAUCET_INFO[faucet_id]["inflow_pos"] omni.kit.commands.execute( "CreatePrim", prim_path="/World/game/inflow", prim_type="Xform", select_new_prim=False, ) inflow_xform = pxr.Gf.Matrix4d().SetTranslate(inflow_position) omni.kit.commands.execute( "TransformPrimCommand", path="/World/game/inflow", new_transform_matrix=inflow_xform, ) stage = omni.usd.get_context().get_stage() import re link_pattern = re.compile('.*'+'link_[0-9]+$') links = list(filter( lambda x : link_pattern.findall(x.GetPath().pathString) , list(stage.TraverseAll()) )) for link in links: add_mass_to_prim(link, 0.1) if IS_IN_ISAAC_SIM: add_update_semantics(prim, "Faucet") def add_mass_to_prim(prim, mass:float=0.02, density:float=1): stage = omni.usd.get_context().get_stage() mass_api = UsdPhysics.MassAPI.Get(stage, prim.GetPath()) if not mass_api: mass_api = UsdPhysics.MassAPI.Apply(prim) mass_api.CreateMassAttr().Set(mass) # mass_api.CreateDensityAttr().Set(density) else: mass_api.GetMassAttr().Set(mass) # mass_api.GetDensityAttr().Set(density) def setup_physics_material(prim): """ Set up physic material for prim at Path """ # def _setup_physics_material(self, path: Sdf.Path): stage = omni.usd.get_context().get_stage() _material_static_friction = 100.0 _material_dynamic_friction = 100.0 _material_restitution = 0.0 _physicsMaterialPath = None if _physicsMaterialPath is None: # _physicsMaterialPath = stage.GetDefaultPrim().GetPath().AppendChild("physicsMaterial") _physicsMaterialPath = prim.GetPath().AppendChild("physicsMaterial") # print("physics_material_path: ", _physicsMaterialPath) UsdShade.Material.Define(stage, _physicsMaterialPath) material = UsdPhysics.MaterialAPI.Apply(stage.GetPrimAtPath(_physicsMaterialPath)) material.CreateStaticFrictionAttr().Set(_material_static_friction) material.CreateDynamicFrictionAttr().Set(_material_dynamic_friction) material.CreateRestitutionAttr().Set(_material_restitution) collisionAPI = UsdPhysics.CollisionAPI.Get(stage, prim.GetPath()) # prim = stage.GetPrimAtPath(path) if not collisionAPI: collisionAPI = UsdPhysics.CollisionAPI.Apply(prim) # apply material physicsUtils.add_physics_material_to_prim(stage, prim, _physicsMaterialPath) print("physics material: path: ", _physicsMaterialPath) def add_ground_plane(prim_path = "/World/game", visiable = False): stage = omni.usd.get_context().get_stage() ground_prim = stage.GetPrimAtPath("/World/groundPlane") if not ground_prim: #IS_IN_ISAAC_SIM: purposes = [pxr.UsdGeom.Tokens.default_] bboxcache = pxr.UsdGeom.BBoxCache(pxr.Usd.TimeCode.Default(), purposes) prim = stage.GetPrimAtPath(prim_path) bboxes = bboxcache.ComputeWorldBound(prim) # print("bboxes", bboxes) y = bboxes.ComputeAlignedRange().GetMin()[1] physicsUtils.add_ground_plane(stage, "/World/groundPlane", "Y", 750.0, pxr.Gf.Vec3f(0.0, y, 0), pxr.Gf.Vec3f(0.2)) # select ground selection = omni.usd.get_context().get_selection() selection.clear_selected_prim_paths() selection.set_prim_path_selected("/World/groundPlane", True, True, True, True) ground_prim = stage.GetPrimAtPath("/World/groundPlane") visibility = "visible" if visiable else 'invisible' ground_prim.GetAttribute('visibility').Set(visibility) # prim_list = list(stage.TraverseAll()) # prim_list = [ item for item in prim_list if 'groundPlane' in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ] # for prim in prim_list: # prim.GetAttribute('visibility').Set('invisible') # else: # # prim_path = stage.GetDefaultPrim().GetPath().pathString # usd_context = omni.usd.get_context() # bboxes = usd_context.compute_path_world_bounding_box(prim_path) # physicsUtils.add_ground_plane(stage, "/groundPlane", "Y", 750.0, pxr.Gf.Vec3f(0.0, bboxes[0][1], 0), pxr.Gf.Vec3f(0.2)) def add_physical_material_to(keyword:str): """ Set up physical material """ stage = omni.usd.get_context().get_stage() prim_list = list(stage.TraverseAll()) prim_list = [ item for item in prim_list if keyword in item.GetPath().pathString and 'visuals' not in item.GetPath().pathString ] for prim in prim_list: setup_physics_material(prim) print("add physics material to handle") setStaticCollider(prim, approximationShape = "convexDecomposition") def fix_handle(keyword): """ Set up physical material and change collision type ot covex decomposition """ stage = omni.usd.get_context().get_stage() prim_list = list(stage.TraverseAll()) #========================= prim_list = [ item for item in prim_list if keyword in item.GetPath().pathString and \ 'handle' in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ] # print("prim_list: ", prim_list) for prim in prim_list: setStaticCollider(prim, approximationShape = "convexDecomposition") setup_physics_material(prim) # table = {} # for prim_path in prim_list: # prefix, suffix = "/".join(prim_path.split('/')[:-1]), prim_path.split('/')[-1] # if prefix not in table: # table[prefix] = [] # table[prefix].append(suffix) # for prefix, value in table.items(): # handle = value[-1] # import os # from omni.isaac.core.utils.prims import get_prim_at_path # handle_path =str(os.path.join(prefix, handle)) # handle_prim = get_prim_at_path(handle_path) # setup_physics_material(handle_prim) # setStaticCollider(handle_prim, approximationShape = "convexDecomposition") #================================= # prim_list = list(stage.TraverseAll()) # prim_list = [ item for item in prim_list if keyword in item.GetPath().pathString and \ # 'visuals' in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ] # print(prim_list) # for prim in prim_list: # setup_physics_material(prim) # setStaticCollider(prim, approximationShape = "convexDecomposition") def remove_collider_to(keyword:str): """ Set up physical material """ stage = omni.usd.get_context().get_stage() prim_list = list(stage.TraverseAll()) prim_list = [ item for item in prim_list if keyword in item.GetPath().pathString ] for prim in prim_list: removeCollider(prim.GetPath().pathString)
9,558
Python
38.829167
133
0.633919
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/param.py
from ..param import ROOT, APP_VERION
36
Python
35.999964
36
0.777778
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/fluid/cup_setup.py
import math import os from ..param import ROOT as root from ...param import IS_IN_ISAAC_SIM, APP_VERION, USE_ISO_SURFACE import carb import omni import pxr from pxr import Gf, UsdPhysics, Sdf, Usd, UsdGeom, PhysxSchema, Vt from omni.physx.scripts import utils, physicsUtils if APP_VERION.startswith("2022"): from omni.physx.scripts import particleUtils import numpy as np from .constants import PARTICLE_PROPERTY # from omni.isaac.core.utils.stage import add_reference_to_stage from .schemaHelpers import addPhysxParticleSystem, addPhysxParticlesSimple, PhysxParticleInstancePrototype from .utils import generate_cylinder_y, generate_inside_point_cloud, get_quat_from_extrinsic_xyz_rotation from .cup_data import CUP_PARTICLE_INFO def setGridFilteringPass(gridFilteringFlags: int, passIndex: int, operation: int, numRepetitions: int = 1): numRepetitions = max(0, numRepetitions - 1) shift = passIndex * 4 gridFilteringFlags &= ~(3 << shift) gridFilteringFlags |= (((operation) << 2) | numRepetitions) << shift return gridFilteringFlags class CupFluidHelper(): def __init__(self, use_isosurface = USE_ISO_SURFACE, cup_id = 0, r = 0.1, g = 0.4, b =0.6, material = None, height = None) -> None: self.stage = omni.usd.get_context().get_stage() self.cup_id = cup_id self.rgb =[r,g,b] self.material = material self.height = height self.use_isosurface = use_isosurface def create(self): # needs to be called first: set_up_fluid_physical_scene self.set_up_fluid_physical_scene() self.set_cup() self.set_up_particle_system() self.set_color() self.set_particle_offset() def modify_cup_scene(self, cup_prim, add_liquid = True, set_physics=True): """ Modify cup scene given the cup_prim, 1. setup physical scene and fluid scene 2. add particles :param:: : cup_prim """ print("modify cup at path: ", cup_prim.GetPath().pathString) game_prim = cup_prim.GetParent() # set up physical self.set_up_fluid_physical_scene() carb.log_warn("APP_VERION 1: " + APP_VERION) # modify particleSystemStr if add_liquid: particleSystemStr = "/World/Fluid" # game_prim.GetPath().AppendPath("Fluid").pathString self.particleSystemPath = pxr.Sdf.Path(particleSystemStr) self.particleInstanceStr = game_prim.GetPath().AppendPath("Particles").pathString # modify cup cup_shape_prim_path = cup_prim.GetPath().AppendPath("cupShape").pathString cup_shape_prim = self.stage.GetPrimAtPath(cup_shape_prim_path) cup_volume_prim_path = cup_prim.GetPath().AppendPath("cup_volume").pathString cup_volume_prim = self.stage.GetPrimAtPath(cup_volume_prim_path) if not cup_shape_prim: raise Exception(f"Cup shape must exist at path {cup_shape_prim_path}") # if IS_IN_ISAAC_SIM : # from omni.isaac.core.utils.semantics import add_update_semantics # add_update_semantics(cup_shape_prim, "Cup") # utils.setPhysics(prim=cup_shape_prim, kinematic=False) # utils.setCollider(prim=cup_shape_prim, approximationShape="convexDecomposition") # if not set_physics: # physicsAPI = UsdPhysics.RigidBodyAPI.Apply(cup_shape_prim) # physicsAPI.CreateRigidBodyEnabledAttr(False) physxCollisionAPI = pxr.PhysxSchema.PhysxCollisionAPI.Get(self.stage, cup_shape_prim.GetPath()) if not physxCollisionAPI: physxCollisionAPI = pxr.PhysxSchema.PhysxCollisionAPI.Apply(cup_shape_prim) self._setup_physics_material(cup_shape_prim.GetPath()) # Mug parameters restOffset = PARTICLE_PROPERTY._cup_rest_offset contactOffset = PARTICLE_PROPERTY._cup_contact_offset assert physxCollisionAPI.GetRestOffsetAttr().Set(restOffset) assert physxCollisionAPI.GetContactOffsetAttr().Set(contactOffset) assert cup_shape_prim.CreateAttribute("physxMeshCollision:minThickness", pxr.Sdf.ValueTypeNames.Float).Set(0.001) self._fluidPositionOffset = Gf.Vec3f(0,0,0) massAPI = UsdPhysics.MassAPI.Apply(cup_shape_prim) massAPI.GetMassAttr().Set(PARTICLE_PROPERTY._cup_mass) # utils.setPhysics(prim=cup_prim, kinematic=False) utils.removeRigidBody(cup_shape_prim) utils.setRigidBody(cup_prim, "convexDecomposition", False) utils.removeCollider(cup_volume_prim) # add material # create material 2 mtl_created_list = [] omni.kit.commands.execute( "CreateAndBindMdlMaterialFromLibrary", mdl_name="OmniGlass.mdl", mtl_name="OmniGlass", mtl_created_list=mtl_created_list, ) mtl_path = mtl_created_list[0] omni.kit.commands.execute( "BindMaterial", prim_path=pxr.Sdf.Path(cup_shape_prim_path), material_path=mtl_path, strength=pxr.UsdShade.Tokens.strongerThanDescendants ) if add_liquid: self.volume_mesh = pxr.UsdGeom.Mesh.Get(self.stage, cup_prim.GetPath().AppendPath(f"cup_volume")) self.set_up_particle_system() carb.log_warn("APP_VERION 1: " + APP_VERION) self.set_color() from omni.physx import acquire_physx_interface physx = acquire_physx_interface() physx.overwrite_gpu_setting(1) physx.reset_simulation() def set_up_fluid_physical_scene(self, gravityMagnitude = PARTICLE_PROPERTY._gravityMagnitude): """ Fluid / PhysicsScene """ default_prim_path = self.stage.GetDefaultPrim().GetPath() if default_prim_path.pathString == '': # default_prim_path = pxr.Sdf.Path('/World') root = UsdGeom.Xform.Define(self.stage, "/World").GetPrim() self.stage.SetDefaultPrim(root) default_prim_path = self.stage.GetDefaultPrim().GetPath() # if self.stage.GetPrimAtPath("/World/physicsScene"): # self.physicsScenePath = default_prim_path.AppendChild("physicsScene") # return particleSystemStr = default_prim_path.AppendPath("Fluid").pathString self.physicsScenePath = default_prim_path.AppendChild("physicsScene") self.particleSystemPath = pxr.Sdf.Path(particleSystemStr) self.particleInstanceStr = default_prim_path.AppendPath("Particles").pathString # Physics scene self._gravityMagnitude = gravityMagnitude # IN CM/s2 - use a lower gravity to avoid fluid compression at 60 FPS self._gravityDirection = Gf.Vec3f(0.0, -1.0, 0.0) physicsScenePath = default_prim_path.AppendChild("physicsScene") if self.stage.GetPrimAtPath("/World/physicsScene"): scene = UsdPhysics.Scene.Get(self.stage, physicsScenePath) else: scene = UsdPhysics.Scene.Define(self.stage, physicsScenePath) scene.CreateGravityDirectionAttr().Set(self._gravityDirection) scene.CreateGravityMagnitudeAttr().Set(self._gravityMagnitude) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(scene.GetPrim()) physxSceneAPI.CreateEnableCCDAttr().Set(True) physxSceneAPI.GetTimeStepsPerSecondAttr().Set(60) physxSceneAPI.CreateEnableGPUDynamicsAttr().Set(True) physxSceneAPI.CreateEnableEnhancedDeterminismAttr().Set(True) def set_up_particle_system(self): self._fluidSphereDiameter = PARTICLE_PROPERTY._fluidSphereDiameter self._particleSystemSchemaParameters = PARTICLE_PROPERTY._particleSystemSchemaParameters self._particleSystemAttributes = PARTICLE_PROPERTY._particleSystemAttributes if APP_VERION.startswith("2022"): self._particleSystem = particleUtils.add_physx_particle_system( self.stage, self.particleSystemPath, **self._particleSystemSchemaParameters, simulation_owner=Sdf.Path(self.physicsScenePath.pathString) ) # materialPathStr = "/World/Looks/OmniGlass" # particleUtils.add_pbd_particle_material(self.stage, materialPathStr, **PARTICLE_PROPERTY._particleMaterialAttributes) # physicsUtils.add_physics_material_to_prim(self.stage, self._particleSystem.GetPrim(), materialPathStr) else: addPhysxParticleSystem( self.stage, self.particleSystemPath, **self._particleSystemSchemaParameters, \ scenePath=pxr.Sdf.Path(self.physicsScenePath.pathString) ) particleSystem = self.stage.GetPrimAtPath(self.particleSystemPath) if APP_VERION.startswith("2022"): pass else: for key, value in self._particleSystemAttributes.items(): particleSystem.GetAttribute(key).Set(value) particleInstancePath = pxr.Sdf.Path(self.particleInstanceStr) proto = PhysxParticleInstancePrototype() proto.selfCollision = True proto.fluid = True proto.collisionGroup = 0 proto.mass = PARTICLE_PROPERTY._particle_mass protoArray = [proto] positions_list = [] velocities_list = [] protoIndices_list = [] lowerCenter = pxr.Gf.Vec3f(0, 0, 0) particle_rest_offset = self._particleSystemSchemaParameters["fluid_rest_offset"] #################################### if not hasattr(self, "volume_mesh") or self.volume_mesh is None: # not "volume_container" in CUP_PARTICLE_INFO[self.cup_id]: ################DATA#################### if self.height is None: cylinder_height = CUP_PARTICLE_INFO[self.cup_id]["cylinder_height"] else: cylinder_height = self.height cylinder_radius = CUP_PARTICLE_INFO[self.cup_id]["cylinder_radius"] positions_list = generate_cylinder_y(lowerCenter, h=cylinder_height, radius=cylinder_radius, sphereDiameter=particle_rest_offset * 2.0) # positions_list = generate_inside_mesh(lowerCenter, h=cylinder_height, radius=cylinder_radius, # sphereDiameter=particle_rest_offset * 2.0, mesh= self.mesh, scale=self.scale) else: self.cloud_points = np.array(self.volume_mesh.GetPointsAttr().Get()) # two crowded, add 0.08 positions_list = generate_inside_point_cloud(sphereDiameter=particle_rest_offset * (2.0 + 0.08), cloud_points = self.cloud_points, scale=1.0) for _ in range(len(positions_list)): # print("position:", positions_list[_]) velocities_list.append(pxr.Gf.Vec3f(0, 0, 0)) protoIndices_list.append(0) # print("positions_list", len(positions_list)) # positions_list -= np.array([228, 0, -231]) # positions_list = positions_list.tolist() self.positions_list = positions_list protoIndices = pxr.Vt.IntArray(protoIndices_list) positions = pxr.Vt.Vec3fArray(positions_list) velocities = pxr.Vt.Vec3fArray(velocities_list) # if APP_VERION.startswith("2022"): # particleUtils.add_physx_particleset_pointinstancer( # self.stage, # particleInstancePath, # positions, # velocities, # self.particleSystemPath, # self_collision=True, # fluid=True, # particle_group=0, # particle_mass=PARTICLE_PROPERTY._particle_mass, # density=0.0, # ) # else: # addPhysxParticlesSimple( # self.stage, particleInstancePath, protoArray, protoIndices, positions, velocities, self.particleSystemPath # ) if self.use_isosurface: print("isosurface settings") particle_system = self._particleSystem mtl_created = [] omni.kit.commands.execute( "CreateAndBindMdlMaterialFromLibrary", mdl_name="OmniSurfacePresets.mdl", mtl_name="OmniSurface_ClearWater", mtl_created_list=mtl_created, ) pbd_particle_material_path = mtl_created[0] omni.kit.commands.execute( "BindMaterial", prim_path=self.particleSystemPath, material_path=pbd_particle_material_path ) # Create a pbd particle material and set it on the particle system particleUtils.add_pbd_particle_material( self.stage, pbd_particle_material_path, cohesion=0.01, viscosity=0.0091, surface_tension=0.0074, friction=0.1, ) physicsUtils.add_physics_material_to_prim(self.stage, particle_system.GetPrim(), pbd_particle_material_path) particle_system.CreateMaxVelocityAttr().Set(20) # add particle anisotropy anisotropyAPI = PhysxSchema.PhysxParticleAnisotropyAPI.Apply(particle_system.GetPrim()) anisotropyAPI.CreateParticleAnisotropyEnabledAttr().Set(True) aniso_scale = 5.0 anisotropyAPI.CreateScaleAttr().Set(aniso_scale) anisotropyAPI.CreateMinAttr().Set(1.0) anisotropyAPI.CreateMaxAttr().Set(2.0) # add particle smoothing smoothingAPI = PhysxSchema.PhysxParticleSmoothingAPI.Apply(particle_system.GetPrim()) smoothingAPI.CreateParticleSmoothingEnabledAttr().Set(True) smoothingAPI.CreateStrengthAttr().Set(0.5) fluidRestOffset = self._particleSystemSchemaParameters["rest_offset"] # apply isosurface params isosurfaceAPI = PhysxSchema.PhysxParticleIsosurfaceAPI.Apply(particle_system.GetPrim()) isosurfaceAPI.CreateIsosurfaceEnabledAttr().Set(True) isosurfaceAPI.CreateMaxVerticesAttr().Set(1024 * 1024) isosurfaceAPI.CreateMaxTrianglesAttr().Set(2 * 1024 * 1024) isosurfaceAPI.CreateMaxSubgridsAttr().Set(1024 * 4) isosurfaceAPI.CreateGridSpacingAttr().Set(fluidRestOffset * 1.5) isosurfaceAPI.CreateSurfaceDistanceAttr().Set(fluidRestOffset * 1.6) isosurfaceAPI.CreateGridFilteringPassesAttr().Set("") isosurfaceAPI.CreateGridSmoothingRadiusAttr().Set(fluidRestOffset * 2) isosurfaceAPI.CreateNumMeshSmoothingPassesAttr().Set(1) primVarsApi = UsdGeom.PrimvarsAPI(particle_system) primVarsApi.CreatePrimvar("doNotCastShadows", Sdf.ValueTypeNames.Bool).Set(True) self.stage.SetInterpolationType(Usd.InterpolationTypeHeld) particleUtils.add_physx_particleset_pointinstancer( stage=self.stage, path= particleInstancePath, # positions=Vt.Vec3fArray(positions), velocities=Vt.Vec3fArray(velocities), particle_system_path=self.particleSystemPath, self_collision=True, fluid=True, particle_group=0, particle_mass=PARTICLE_PROPERTY._particle_mass, density=0.0, ) # if self.use_isosurface: # particle_instance_prim = self.stage.GetPrimAtPath(particleInstancePath.pathString) # # set partile up offset # particles = pxr.UsdGeom.Xformable(particle_instance_prim) # particles.AddTranslateOp() def set_color(self): # Set color color_rgb = self.rgb#[0.1, 0.4, 0.6] color = pxr.Vt.Vec3fArray([pxr.Gf.Vec3f(color_rgb[0], color_rgb[1], color_rgb[2])]) colorPathStr = self.particleInstanceStr + "/particlePrototype0" gprim = pxr.UsdGeom.Sphere.Define(self.stage, pxr.Sdf.Path(colorPathStr)) gprim.CreateDisplayColorAttr(color) # prototypePathStr = particleInstanceStr + "/particlePrototype0" # gprim = UsdGeom.Sphere.Define(stage, Sdf.Path(prototypePathStr)) # gprim.CreateVisibilityAttr("invisible") # TODO: debug transperency gprim.CreateDisplayOpacityAttr([float(0.1)]) if self.use_isosurface: gprim.GetPrim().GetAttribute('visibility').Set('invisible') # usdPrim = stage.GetPrimAtPath(particleInstancePath) usdPrim = self.stage.GetPrimAtPath(colorPathStr) usdPrim.CreateAttribute("enableAnisotropy", pxr.Sdf.ValueTypeNames.Bool, True).Set(True) usdPrim.CreateAttribute("radius", pxr.Sdf.ValueTypeNames.Double, True).Set(0.3) gprim.GetRadiusAttr().Set(self._fluidSphereDiameter) def set_cup(self): # get cup info from data abspath = CUP_PARTICLE_INFO[self.cup_id]["usd_path"] mesh_name = CUP_PARTICLE_INFO[self.cup_id]["mesh_name"] scale = CUP_PARTICLE_INFO[self.cup_id]["scale"] particle_offset = CUP_PARTICLE_INFO[self.cup_id]["particle_offset"] cup_offset = CUP_PARTICLE_INFO[self.cup_id]["cup_offset"] self.scale = scale default_prim_path = self.stage.GetDefaultPrim().GetPath() self.stage.DefinePrim(default_prim_path.AppendPath(f"Cup")).GetReferences().AddReference(abspath) mug = pxr.UsdGeom.Mesh.Get(self.stage, default_prim_path.AppendPath(f"Cup/{mesh_name}")) utils.setPhysics(prim=mug.GetPrim(), kinematic=False) utils.setCollider(prim=mug.GetPrim(), approximationShape="convexDecomposition") if "volume_container" in CUP_PARTICLE_INFO[self.cup_id]: volume_container = CUP_PARTICLE_INFO[self.cup_id]["volume_container"] self.volume_mesh = pxr.UsdGeom.Mesh.Get(self.stage, default_prim_path.AppendPath(f"Cup/{volume_container}")) prim = mug.GetPrim() self.mug = mug # self._setup_rb_collision_parameters(mug.GetPrim(), restOffset=self._mugRestOffset, contactOffset=self._mugContactOffset) physxCollisionAPI = pxr.PhysxSchema.PhysxCollisionAPI.Get(self.stage, prim.GetPath()) if not physxCollisionAPI: physxCollisionAPI = pxr.PhysxSchema.PhysxCollisionAPI.Apply(prim) self._setup_physics_material(prim.GetPath()) # Mug parameters restOffset = 0.0 contactOffset = 1.0 assert physxCollisionAPI.GetRestOffsetAttr().Set(restOffset) assert physxCollisionAPI.GetContactOffsetAttr().Set(contactOffset) assert prim.CreateAttribute("physxMeshCollision:minThickness", pxr.Sdf.ValueTypeNames.Float).Set(0.001) # assert ( # mug.GetPrim().CreateAttribute("physxMeshCollision:maxConvexHulls", Sdf.ValueTypeNames.Float).Set(32) # ) self._mugInitPos = Gf.Vec3f(cup_offset[0], cup_offset[1], cup_offset[2]) * scale self._mugInitRot = get_quat_from_extrinsic_xyz_rotation(angleYrad=-0.7 * math.pi) self._fluidPositionOffset = Gf.Vec3f(particle_offset[0], particle_offset[1], particle_offset[2]) self._mugScale = Gf.Vec3f(scale) self._mugOffset = Gf.Vec3f(0, 0, 0) * scale self.transform_mesh(mug, self._mugInitPos + self._mugOffset * 0, self._mugInitRot, self._mugScale) massAPI = UsdPhysics.MassAPI.Apply(prim) massAPI.GetMassAttr().Set(PARTICLE_PROPERTY._cup_mass) def transform_mesh(self, mesh, loc, orient=pxr.Gf.Quatf(1.0), scale=pxr.Gf.Vec3d(1.0, 1.0, 1.0)): for op in mesh.GetOrderedXformOps(): if op.GetOpType() == pxr.UsdGeom.XformOp.TypeTranslate: op.Set(loc) if op.GetOpType() == pxr.UsdGeom.XformOp.TypeOrient: op.Set(orient) if op.GetOpType() == pxr.UsdGeom.XformOp.TypeScale: op.Set(scale) def _setup_physics_material(self, path: pxr.Sdf.Path): # and ground plane self._material_static_friction = 10.0 self._material_dynamic_friction = 10.0 self._material_restitution = 0.0 self._physicsMaterialPath = None if self._physicsMaterialPath is None: self._physicsMaterialPath = self.stage.GetDefaultPrim().GetPath().AppendChild("physicsMaterial") pxr.UsdShade.Material.Define(self.stage, self._physicsMaterialPath) material = pxr.UsdPhysics.MaterialAPI.Apply(self.stage.GetPrimAtPath(self._physicsMaterialPath)) material.CreateStaticFrictionAttr().Set(self._material_static_friction) material.CreateDynamicFrictionAttr().Set(self._material_dynamic_friction) material.CreateRestitutionAttr().Set(self._material_restitution) collisionAPI = pxr.UsdPhysics.CollisionAPI.Get(self.stage, path) prim = self.stage.GetPrimAtPath(path) if not collisionAPI: collisionAPI = pxr.UsdPhysics.CollisionAPI.Apply(prim) # apply material physicsUtils.add_physics_material_to_prim(self.stage, prim, self._physicsMaterialPath)
21,056
Python
43.144654
154
0.645802
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/fluid/new_faucet.py
import carb import math from pathlib import Path import pxr from pxr import Usd, UsdLux, UsdGeom, Sdf, Gf, Vt, UsdPhysics, PhysxSchema import sys #put schemaHelpers.py into path from omni.kitchen.asset.layout.fluid.schemaHelpers import PhysxParticleInstancePrototype, \ addPhysxParticleSystem, addPhysxParticlesSimple import omni.timeline from typing import List from omni.kitchen.asset.task_check.newJointCheck import JointCheck import math from .utils import generate_cylinder_y, point_sphere from ...param import IS_IN_ISAAC_SIM from .constants import PARTICLE_PROPERTY, particel_scale from omni.physx.scripts import particleUtils def setGridFilteringPass(gridFilteringFlags: int, passIndex: int, operation: int, numRepetitions: int = 1): numRepetitions = max(0, numRepetitions - 1) shift = passIndex * 4 gridFilteringFlags &= ~(3 << shift) gridFilteringFlags |= (((operation) << 2) | numRepetitions) << shift return gridFilteringFlags class Faucet(): def __init__(self, liquid_material_path = "/World/Looks/OmniSurface_ClearWater", inflow_path:str = "/World/faucet/inflow", link_paths:List[str] = ["/World/faucet/link_0"] ): """! Faucet class @param particle_params : parameters for particles @param iso_surface_params: parameters for iso_surface @param liquid_material_path: parameters for liquid materials @param inflow_path: used to compute the location of water drops @param link_paths: used to compute the rotation of faucet handle and determine the speed and size of water drops @param particle_params: parameters related to particle systems @return an instance of Faucet class """ # particle Instance path # self.particleInstanceStr_tmp = "/particlesInstance" # self.particle_params = particle_params # self.iso_surface_params = iso_surface_params self.liquid_material_path = liquid_material_path # inflow position self.stage = omni.usd.get_context().get_stage() self.inflow_path = inflow_path self.inflow_prim = self.stage.GetPrimAtPath(inflow_path) mat = omni.usd.utils.get_world_transform_matrix(self.inflow_prim) # if IS_IN_ISAAC_SIM: # from omni.isaac.core.prims import XFormPrim # self.inflow_position, _ = XFormPrim(self.inflow_path).get_world_pose() # self.inflow_position = Gf.Vec3f(*self.inflow_position.tolist()) # else: self.inflow_position = Gf.Vec3f(*mat.ExtractTranslation()) self.link_paths = link_paths self.list_of_point_instancers = [] self.active_indexes_for_point_instancers = [] self.rate_checkers = [] for link in link_paths: path = Path(link) self.rate_checkers.append(JointCheck( str(path.parent), str(path.name) )) self.create() # print("particleSystemPath", self.particleSystemPath) def is_off(self): rate = self.rate_checkers[0].compute_distance()/100.0 return rate < 0.1 def point_sphere(self, samples, scale): """! create locations for each particles @param samples: the number of particles per sphere @param scale: the scale(radius) of the water drop """ indices = [x + 0.5 for x in range(0, samples)] phi = [math.acos(1 - 2 * x / samples) for x in indices] theta = [math.pi * (1 + 5**0.5) * x for x in indices] x = [math.cos(th) * math.sin(ph) * scale for (th, ph) in zip(theta, phi)] y = [math.sin(th) * math.sin(ph) * scale for (th, ph) in zip(theta, phi)] z = [math.cos(ph) * scale for ph in phi] points = [Gf.Vec3f(x, y, z) for (x, y, z) in zip(x, y, z)] return points def create_ball(self, rate = 1): """! create a water drop @param pos: the center of the water drop @param rate: the number of particles for each water drop """ # create sphere on points self.set_up_particle_system(rate) def set_up_particle_system(self, rate): self.particleInstanceStr_tmp = self.particleInstanceStr + "/particlesInstance" + str(self.it) particleInstancePath = omni.usd.get_stage_next_free_path(self.stage, self.particleInstanceStr_tmp, False) particleInstancePath = pxr.Sdf.Path(particleInstancePath) proto = PhysxParticleInstancePrototype() proto.selfCollision = True proto.fluid = True proto.collisionGroup = 0 proto.mass = PARTICLE_PROPERTY._particle_mass protoArray = [proto] positions_list = [] velocities_list = [] protoIndices_list = [] cylinder_height = 2 cylinder_radius = 1.5 lowerCenter = Gf.Vec3f(0, -cylinder_height, 0) # self.inflow_position # lowerCenter = self.inflow_position particle_rest_offset = self._particleSystemSchemaParameters["fluid_rest_offset"] positions_list = generate_cylinder_y(lowerCenter, h=cylinder_height, radius=cylinder_radius, sphereDiameter=particle_rest_offset * 4.0) for _ in range(len(positions_list)): velocities_list.append(pxr.Gf.Vec3f(0, 0, 0)) protoIndices_list.append(0) # print("positions_list", len(positions_list)) self.positions_list = positions_list protoIndices = pxr.Vt.IntArray(protoIndices_list) positions = pxr.Vt.Vec3fArray(positions_list) velocities = pxr.Vt.Vec3fArray(velocities_list) print("particleInstancePath", particleInstancePath.pathString) particleUtils.add_physx_particleset_pointinstancer( self.stage, particleInstancePath, positions, velocities, self.particleSystemPath, self_collision=True, fluid=True, particle_group=0, particle_mass=PARTICLE_PROPERTY._particle_mass, density=0.0, ) prototypePath = particleInstancePath.pathString + "/particlePrototype0" sphere = UsdGeom.Sphere.Define(self.stage, Sdf.Path(prototypePath)) spherePrim = sphere.GetPrim() # spherePrim.GetAttribute('visibility').Set('invisible') color_rgb = [207/255.0, 244/255.0, 254/255.0] color = pxr.Vt.Vec3fArray([pxr.Gf.Vec3f(color_rgb[0], color_rgb[1], color_rgb[2])]) sphere.CreateDisplayColorAttr(color) # spherePrim.CreateAttribute("enableAnisotropy", Sdf.ValueTypeNames.Bool, True).Set(True) def create(self): """! initialize the related parameters for faucet create physics scenes create particle systems create isosurface """ self._setup_callbacks() self.it = 0 self.counter = 10 self.set_up_fluid_physical_scene() def set_up_fluid_physical_scene(self, gravityMagnitude = 100.0): """ Fluid / PhysicsScene """ default_prim_path = self.stage.GetDefaultPrim().GetPath() if default_prim_path.pathString == '': # default_prim_path = pxr.Sdf.Path('/World') root = UsdGeom.Xform.Define(self.stage, "/World").GetPrim() self.stage.SetDefaultPrim(root) default_prim_path = self.stage.GetDefaultPrim().GetPath() self.stage = omni.usd.get_context().get_stage() particleSystemStr = default_prim_path.AppendPath("Fluid").pathString self.physicsScenePath = default_prim_path.AppendChild("physicsScene") self.particleSystemPath = Sdf.Path(particleSystemStr) self.particleInstanceStr = "/World/game/inflow" # print("particleInstanceStr", self.particleInstanceStr) # Physics scene self._gravityMagnitude = gravityMagnitude self._gravityDirection = Gf.Vec3f(0.0, -1.0, 0.0) physicsScenePath = default_prim_path.AppendChild("physicsScene") if self.stage.GetPrimAtPath('/World/physicsScene'): scene = UsdPhysics.Scene.Get(self.stage, physicsScenePath) else: scene = UsdPhysics.Scene.Define(self.stage, physicsScenePath) scene.CreateGravityDirectionAttr().Set(self._gravityDirection) scene.CreateGravityMagnitudeAttr().Set(self._gravityMagnitude) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(scene.GetPrim()) physxSceneAPI.CreateEnableCCDAttr().Set(True) physxSceneAPI.GetTimeStepsPerSecondAttr().Set(120) self._fluidSphereDiameter = PARTICLE_PROPERTY._fluidSphereDiameter #0.24 # solver parameters: # self._solverPositionIterations = 10 # self._solverVelocityIterations = 10 # self._particleSystemSchemaParameters = { # "contact_offset": 0.3, # "particle_contact_offset": 0.25, # "rest_offset": 0.25, # "solid_rest_offset": 0, # "fluid_rest_offset": 0.5 * self._fluidSphereDiameter + 0.03, # "solver_position_iterations": self._solverPositionIterations, # "solver_velocity_iterations": self._solverVelocityIterations, # "wind": Gf.Vec3f(0, 0, 0), # } self._particleSystemSchemaParameters = PARTICLE_PROPERTY._particleSystemSchemaParameters # self._particleSystemAttributes = { # "cohesion": 7.4, # "smoothing": 0.8, # "anisotropyScale": 1.0, # "anisotropyMin": 0.2, # "anisotropyMax": 2.0, # "surfaceTension": 2.0, #0.74, # "vorticityConfinement": 0.5, # "viscosity": 5.0, # "particleFriction": 0.34, # "maxParticles": 20000, # } self._particleSystemAttributes = PARTICLE_PROPERTY._particleSystemAttributes self._particleSystemAttributes["maxParticles"] = 2000 self._particleSystemAttributes["viscosity"] = 0.001 self._particleSystem = particleUtils.add_physx_particle_system( self.stage, self.particleSystemPath, **self._particleSystemSchemaParameters, simulation_owner=Sdf.Path(self.physicsScenePath.pathString) ) # addPhysxParticleSystem( # self.stage, self.particleSystemPath, **self._particleSystemSchemaParameters, \ # scenePath=pxr.Sdf.Path(self.physicsScenePath.pathString) # ) # particleSystem = self.stage.GetPrimAtPath(self.particleSystemPath) # for key, value in self._particleSystemAttributes.items(): # particleSystem.GetAttribute(key).Set(value) # filterSmooth = 1 # filtering = 0 # passIndex = 0 # filtering = setGridFilteringPass(filtering, passIndex, filterSmooth) # passIndex = passIndex + 1 # filtering = setGridFilteringPass(filtering, passIndex, filterSmooth) # passIndex = passIndex + 1 # self.iso_surface_params = { # "maxIsosurfaceVertices": [Sdf.ValueTypeNames.Int, True, 1024 * 1024], # "maxIsosurfaceTriangles": [Sdf.ValueTypeNames.Int, True, 2 * 1024 * 1024], # "maxNumIsosurfaceSubgrids": [Sdf.ValueTypeNames.Int, True, 1024 * 4], # "isosurfaceGridSpacing": [Sdf.ValueTypeNames.Float, True, 0.2], # "isosurfaceKernelRadius": [Sdf.ValueTypeNames.Float, True, 0.5 ], # "isosurfaceLevel": [ Sdf.ValueTypeNames.Float, True, -0.3 ], # "isosurfaceGridFilteringFlags": [Sdf.ValueTypeNames.Int, True, filtering ], # "isosurfaceGridSmoothingRadiusRelativeToCellSize": [Sdf.ValueTypeNames.Float, True, 0.3 ], # "isosurfaceEnableAnisotropy": [Sdf.ValueTypeNames.Bool, True, False ], # "isosurfaceAnisotropyMin": [ Sdf.ValueTypeNames.Float, True, 0.1 ], # "isosurfaceAnisotropyMax": [ Sdf.ValueTypeNames.Float, True, 2.0 ], # "isosurfaceAnisotropyRadius": [ Sdf.ValueTypeNames.Float, True, 0.5 ], # "numIsosurfaceMeshSmoothingPasses": [ Sdf.ValueTypeNames.Int, True, 5 ], # "numIsosurfaceMeshNormalSmoothingPasses": [ Sdf.ValueTypeNames.Int, True, 5 ], # "isosurfaceDoNotCastShadows": [Sdf.ValueTypeNames.Bool, True, True ] # } # particleSystem.CreateAttribute("enableIsosurface", Sdf.ValueTypeNames.Bool, True).Set(True) # for key,value in self.iso_surface_params.items(): # if isinstance(value, list): # particleSystem.CreateAttribute(key, value[0], value[1]).Set(value[2]) # else: # particleSystem.GetAttribute(key).Set(value) # self.stage.SetInterpolationType(Usd.InterpolationTypeHeld) def _setup_callbacks(self): """! callbacks registered with timeline and physics steps to drop water """ # callbacks self._timeline = omni.timeline.get_timeline_interface() stream = self._timeline.get_timeline_event_stream() self._timeline_subscription = stream.create_subscription_to_pop(self._on_timeline_event) # subscribe to Physics updates: self._physics_update_subscription = omni.physx.get_physx_interface().subscribe_physics_step_events( self.on_physics_step ) # events = omni.physx.get_physx_interface().get_simulation_event_stream() # self._simulation_event_sub = events.create_subscription_to_pop(self._on_simulation_event) def _on_timeline_event(self, e): if e.type == int(omni.timeline.TimelineEventType.STOP): self.it = 0 self._physics_update_subscription = None self._timeline_subscription = None def on_physics_step(self, dt): xformCache = UsdGeom.XformCache() # compute location to dispense water pose = xformCache.GetLocalToWorldTransform(self.stage.GetPrimAtPath(self.inflow_path)) pos_faucet = Gf.Vec3f(pose.ExtractTranslation()) ##TODO hangle multiple faucet handles rate = self.rate_checkers[0].compute_distance()/100.0 if rate > 1: rate = 1 # if self.it == 0: # iso2Prim = self.stage.GetPrimAtPath(self.particleSystemPath.pathString +"/Isosurface") # rel = iso2Prim.CreateRelationship("material:binding", False) # # rel.SetTargets([Sdf.Path(self.liquid_material_path)]) # rel.SetTargets([Sdf.Path("/World/game/other_Basin_1/Looks/OmniSurface_ClearWater")]) #TODO we can have the water keep running, but we should delete some particles that are too old and not in containers. #this implementation will stop after 200 balls if self.it > 200: return if rate < 0.1: return # emit a ball based on rate rate = min(0.35, rate) if (self.counter < 100 - rate*200 ): self.counter = self.counter + 1 return self.counter = 0 self.it = self.it + 1 self.create_ball(rate) def __del__(self): self._physics_update_subscription = None self._timeline_subscription = None
15,294
Python
40.675749
152
0.628874
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/fluid/constants.py
from ...param import APP_VERION from pxr import Gf particel_scale = 2.5 if APP_VERION.startswith("2022"): class PARTICLE_PROPERTY: _fluidSphereDiameter = 0.24 * particel_scale _particleSystemSchemaParameters = { "contact_offset": 0.3 * particel_scale, "particle_contact_offset": 0.25 * particel_scale, "rest_offset": 0.25 * particel_scale, "solid_rest_offset": 0, "fluid_rest_offset": 0.5 * _fluidSphereDiameter + 0.03 * particel_scale, "solver_position_iterations": 10, "wind": Gf.Vec3f(0, 0, 0), "max_velocity": 40 , } _particleMaterialAttributes = { "friction": 0.34, "viscosity": 0.0, "vorticity_confinement": 0.5, "surface_tension": 0.74, "cohesion": 0.1, # "cfl_coefficient": 1.0, } _particleSystemAttributes = { "cohesion": 0.0, "smoothing": 0.8, "anisotropyScale": 1.0, "anisotropyMin": 0.2, "anisotropyMax": 2.0, "surfaceTension": 0.74, "vorticityConfinement": 0.5, "viscosity": 0.0, "particleFriction": 0.34, "maxVelocity": 40, } _particle_mass = 1e-6 * particel_scale*particel_scale _particle_scale = (0.5, 0.5, 0.5) _cup_rest_offset = 0.0 _cup_contact_offset = 1.0 _cup_mass = 1 _gravityMagnitude = 100 else: class PARTICLE_PROPERTY: _fluidSphereDiameter = 0.24 * particel_scale _particleSystemSchemaParameters = { "contact_offset": 0.3 * particel_scale, "particle_contact_offset": 0.25 * particel_scale, "rest_offset": 0.25 * particel_scale, "solid_rest_offset": 0, "fluid_rest_offset": 0.5 * _fluidSphereDiameter + 0.03 * particel_scale, "solver_position_iterations": 10, "solver_velocity_iterations": 10, "wind": Gf.Vec3f(0, 0, 0), } _particleSystemAttributes = { "cohesion": 7.4, "smoothing": 0.8, "anisotropyScale": 1.0, "anisotropyMin": 0.2, "anisotropyMax": 2.0, "surfaceTension": 0.74, "vorticityConfinement": 0.5, "viscosity": 5.0, "particleFriction": 0.34, "maxVelocity": 40, } _particle_mass = 1e-6 * particel_scale _particle_scale = (0.5, 0.5, 0.5) _cup_rest_offset = 0.0 _cup_contact_offset = 1.0 _cup_mass = 1 _gravityMagnitude = 100
2,780
Python
32.506024
84
0.496403
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/fluid/cup_data.py
from ..param import ROOT CUP_ROOT = ROOT + "/3dmodels/cup/" NEW_CUP_ROOT = ROOT + "/sample/custom/Cup/" FAUCET_INFO = { "1028": { "inflow_pos": [-17.4121, 4.63152, 0], "joints":[ "link_2/joint_0", "link_2/joint_1", ] }, "148": { "inflow_pos": [-17.30, 4.10 , 0], "joints":[ "link_1/joint_0", ] }, "149": { "inflow_pos": [-10.80, 7.0 , 0], "joints":[ "link_3/joint_0", "link_3/joint_1", ] }, "153": { "inflow_pos": [-13.4587, 7.00 , -2.5], "joints":[ "link_1/joint_0", ] }, "154": { "inflow_pos": [-7.0, 19.00 , 0.0], "joints":[ "link_2/joint_0", "link_2/joint_1", ] }, "156": { "inflow_pos": [-17.00, 6.00 , 0.0], "joints":[ "link_1/joint_0", ] }, "693": { "inflow_pos": [-14.3453, -6.21179, -0.20894], "joints":[ "link_2/joint_1", ] }, "1034": { "inflow_pos": [-17.967, 4.04622, 4.11386], "joints":[ "link_1/joint_0", ] }, "1052": { "inflow_pos": [-14.8737, 4.21977, 1.06383], "joints":[ "link_2/joint_0", ] }, "1053": { "inflow_pos": [-9.99254, 1.0, 0], "joints":[ "link_1/joint_0", ] } } CUP_PARTICLE_INFO = [ { "usd_path": NEW_CUP_ROOT + "0/cup.usd", "mesh_name": "cupShape", #"volume_container": "cup_volume", "cylinder_height": 15.0, "cylinder_radius": 4.5, "particle_offset": [0, 1.05, 0], "cup_offset": [0, 0, 0], "scale": 1.0 }, { "usd_path": NEW_CUP_ROOT + "1/cup.usd", "mesh_name": "cupShape", "volume_container": "cup_volume", "cylinder_height": 15.0, "cylinder_radius": 4.5, "particle_offset": [0, 1.05, 0], "cup_offset": [0, 0, 0], "scale": 1.0 }, { "usd_path": CUP_ROOT + "bottle0.usd", "mesh_name": "D_printable_bottle", "cylinder_height": 15.0, "cylinder_radius": 4.5, "particle_offset": [2.0, 1.05, 0], "cup_offset": [0, 0, 0], "scale": 0.25 }, { "usd_path": CUP_ROOT + "bottle1.usd", "mesh_name": "bioshock_salts_bottle_final", "cylinder_height": 14.0, "cylinder_radius": 3.0, "particle_offset": [0.0, -10, -2.7], # "particle_offset": [0.0, 0, -5], "cup_offset": [0, 2.1, 0], # "cup_offset": [0, 0, 0], "scale": 5.0 }, { "usd_path": CUP_ROOT + "mug0.usd", "mesh_name": "geom", "cylinder_height": 15.0, "cylinder_radius": 3.0, "particle_offset": [0.0, 1.05, 0], "cup_offset": [0, 0, 0], "scale": 1.2 }, { "usd_path": CUP_ROOT + "mug1.usd", "mesh_name": "SM_mug_2_mesh", "cylinder_height": 15.0, "cylinder_radius": 3.0, "particle_offset": [0.0, 1.05, 0], "cup_offset": [0, 0, 0], "scale": 1.2 }, { "usd_path": CUP_ROOT + "jar0.usd", "mesh_name": "mesh", "cylinder_height": 18.0, "cylinder_radius": 5.0, "particle_offset": [0.0, 1.05, 0], "cup_offset": [0, 0, 0], "scale": 1.2 }, ]
3,753
Python
24.026667
55
0.375966
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/fluid/__init__.py
# from .faucet import Faucet, particle_params, iso_surface_params
65
Python
64.999935
65
0.8
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/fluid/utils.py
import math from pxr import Gf import numpy as np import copy def point_sphere(samples, scale): indices = [x + 0.5 for x in range(0, samples)] phi = [math.acos(1 - 2 * x / samples) for x in indices] theta = [math.pi * (1 + 5**0.5) * x for x in indices] x = [math.cos(th) * math.sin(ph) * scale for (th, ph) in zip(theta, phi)] y = [math.sin(th) * math.sin(ph) * scale for (th, ph) in zip(theta, phi)] z = [math.cos(ph) * scale for ph in phi] points = [Gf.Vec3f(x, y, z) for (x, y, z) in zip(x, y, z)] return points #generate inside mesh def swapPositions(list, pos1, pos2): list[pos1], list[pos2] = list[pos2], list[pos1] return list def generate_inside_mesh(lowerCenter: Gf.Vec3f, h: float, radius: float, sphereDiameter: float, mesh, scale): # print("bounds: ", mesh.bounds) # samples = generate_hcp_samples(Gf.Vec3f(-radius, 0, -radius), Gf.Vec3f(radius, h, radius), sphereDiameter) min_bound = list(mesh.bounds[0]) max_bound = list(mesh.bounds[1]) min_bound = [min_bound[0], min_bound[2], min_bound[1]] max_bound = [max_bound[0], max_bound[2], max_bound[1]] min_bound = (item * scale for item in min_bound) max_bound = (item * scale for item in max_bound) samples = generate_hcp_samples(Gf.Vec3f(*min_bound), Gf.Vec3f(*max_bound), sphereDiameter*2) finalSamples = [] import copy import trimesh samples_copy = copy.deepcopy(samples) samples_copy = [ [ sample_copy[0]/scale, sample_copy[1]/scale, sample_copy[2]/scale ] for sample_copy in samples_copy ] samples_copy = [ [ sample_copy[0], sample_copy[2], sample_copy[1] ] for sample_copy in samples_copy ] # print("num particles: ", len(samples_copy)) print("eva contains:") contains = mesh.contains(samples_copy) # signed_distance = trimesh.proximity.ProximityQuery(mesh).signed_distance(samples_copy) # contains = signed_distance >= 0 print("eva done:") for contain, sample in zip(contains, samples): if contain: finalSamples.append(sample) print("length: ", len(finalSamples) ) return finalSamples def in_hull(p, hull): """ Test if points in `p` are in `hull` `p` should be a `NxK` coordinates of `N` points in `K` dimensions `hull` is either a scipy.spatial.Delaunay object or the `MxK` array of the coordinates of `M` points in `K`dimensions for which Delaunay triangulation will be computed """ try: from scipy.spatial import Delaunay except: import omni omni.kit.pipapi.install("scipy") from scipy.spatial import Delaunay if not isinstance(hull,Delaunay): hull = Delaunay(hull) return hull.find_simplex(p)>=0 def generate_inside_point_cloud(sphereDiameter, cloud_points, scale = 1): """ Generate sphere packs inside a point cloud """ offset = 2 min_x = np.min(cloud_points[:, 0]) + offset min_y = np.min(cloud_points[:, 1]) + offset min_z = np.min(cloud_points[:, 2]) + offset max_x = np.max(cloud_points[:, 0]) max_y = np.max(cloud_points[:, 1]) max_z = np.max(cloud_points[:, 2]) min_bound = [min_x, min_y, min_z] max_bound = [max_x, max_y, max_z] min_bound = [item * scale for item in min_bound] max_bound = [item * scale for item in max_bound] samples = generate_hcp_samples(Gf.Vec3f(*min_bound), Gf.Vec3f(*max_bound), sphereDiameter) samples_copy = np.array(copy.deepcopy(samples)) print("samples_copy", samples_copy.shape) finalSamples = [] contains = in_hull(samples, cloud_points) max_particles = 2000 for contain, sample in zip(contains, samples): if contain and len(finalSamples) < max_particles: finalSamples.append(sample) print("length: ", len(finalSamples) ) return finalSamples # generate cylinder points def generate_cylinder_y(lowerCenter: Gf.Vec3f, h: float, radius: float, sphereDiameter: float): samples = generate_hcp_samples(Gf.Vec3f(-radius, 0, -radius), Gf.Vec3f(radius, h, radius), sphereDiameter) finalSamples = [] for p in samples: r2 = p[0] * p[0] + p[2] * p[2] if r2 <= radius * radius: finalSamples.append(p + lowerCenter) return finalSamples # Generates hexagonal close packed samples inside an axis aligned bounding box def generate_hcp_samples(boxMin: Gf.Vec3f, boxMax: Gf.Vec3f, sphereDiameter: float): layerDistance = math.sqrt(2.0 / 3.0) * sphereDiameter rowShift = math.sqrt(3.0) / 2.0 * sphereDiameter result = [] layer1Offset = (1.0 / 3.0) * ( Gf.Vec2f(0, 0) + Gf.Vec2f(0.5 * sphereDiameter, rowShift) + Gf.Vec2f(sphereDiameter, 0) ) zIndex = 0 while True: z = boxMin[2] + zIndex * layerDistance if z > boxMax[2]: break yOffset = layer1Offset[1] if zIndex % 2 == 1 else 0 yIndex = 0 while True: y = boxMin[1] + yIndex * rowShift + yOffset if y > boxMax[1]: break xOffset = 0 if zIndex % 2 == 1: xOffset += layer1Offset[0] if yIndex % 2 == 1: xOffset -= 0.5 * sphereDiameter elif yIndex % 2 == 1: xOffset += 0.5 * sphereDiameter xIndex = 0 while True: x = boxMin[0] + xIndex * sphereDiameter + xOffset if x > boxMax[0]: break result.append(Gf.Vec3f(x, y, z)) xIndex += 1 yIndex += 1 zIndex += 1 return result def get_quat_from_extrinsic_xyz_rotation(angleXrad: float = 0.0, angleYrad: float = 0.0, angleZrad: float = 0.0): def rotate_around_axis(x, y, z, angle): s = math.sin(0.5 * angle) return Gf.Quatf(math.cos(0.5 * angle), s * x, s * y, s * z) # angles are in radians rotX = rotate_around_axis(1, 0, 0, angleXrad) rotY = rotate_around_axis(0, 1, 0, angleYrad) rotZ = rotate_around_axis(0, 0, 1, angleZrad) return rotZ * rotY * rotX
6,155
Python
31.230366
123
0.59805
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/fluid/fluid_setup.py
import carb import math from pxr import Usd, UsdGeom, Sdf, Gf, Vt, UsdPhysics, PhysxSchema import omni.timeline import omni.physxdemos as demo from .schemaHelpers import PhysxParticleInstancePrototype, addPhysxParticleSystem ASYNC_SIMULATION = "/persistent/physics/asyncSimRender" def setGridFilteringPass(gridFilteringFlags: int, passIndex: int, operation: int, numRepetitions: int = 1): numRepetitions = max(0, numRepetitions - 1) shift = passIndex * 4 gridFilteringFlags &= ~(3 << shift) gridFilteringFlags |= (((operation) << 2) | numRepetitions) << shift return gridFilteringFlags class FluidFill(demo.Base): def __init__(self, pos = Gf.Vec3f(0 , 20, 0.0)): self.stage = omni.usd.get_context().get_stage() self.pos = pos xformCache = UsdGeom.XformCache() pose = xformCache.GetLocalToWorldTransform(self.stage.GetPrimAtPath("/World/mobility/link_0")) pos_link = Gf.Vec3f(pose.ExtractTranslation()) self.rot_link_init = Gf.Quatf(pose.ExtractRotationQuat()) # print("attributes: ", self.stage.GetPrimAtPath("/World/faucet/link_0").GetAttributes()) self.init_orient = self.stage.GetPrimAtPath("/World/mobility/link_0").GetAttribute("xformOp:orient").Get() def point_sphere(self, samples, scale): indices = [x + 0.5 for x in range(0, samples)] phi = [math.acos(1 - 2 * x / samples) for x in indices] theta = [math.pi * (1 + 5**0.5) * x for x in indices] x = [math.cos(th) * math.sin(ph) * scale for (th, ph) in zip(theta, phi)] y = [math.sin(th) * math.sin(ph) * scale for (th, ph) in zip(theta, phi)] z = [math.cos(ph) * scale for ph in phi] points = [Gf.Vec3f(x, y, z) for (x, y, z) in zip(x, y, z)] return points def create_ball(self, stage, pos, rate = 1): # create sphere on points # print("scale: ", rate) points = self.point_sphere( 10+int(90 * rate), 1) # points = self.point_sphere( int(80 * rate), 1) # basePos = Gf.Vec3f(11.0, 12.0, 35.0) + pos basePos = pos positions = [Gf.Vec3f(x) + Gf.Vec3f(basePos) for x in points] radius = 0.1 # particleSpacing = 2.0 * radius * 0.6 particleSpacing = 2.0 * radius * 0.6 positions_list = positions velocities_list = [Gf.Vec3f(0.0, 0.0, 0.0)] * len(positions) protoIndices_list = [0] * len(positions) protoIndices = Vt.IntArray(protoIndices_list) positions = Vt.Vec3fArray(positions_list) velocities = Vt.Vec3fArray(velocities_list) particleInstanceStr = "/particlesInstance" + str(self.it) particleInstancePath = Sdf.Path(particleInstanceStr) # Create point instancer pointInstancer = UsdGeom.PointInstancer.Define(stage, particleInstancePath) prototypeRel = pointInstancer.GetPrototypesRel() # Create particle instance prototypes particlePrototype = PhysxParticleInstancePrototype() particlePrototype.selfCollision = True particlePrototype.fluid = True particlePrototype.collisionGroup = 0 particlePrototype.mass = 0.001 prototypePath = particleInstancePath.pathString + "/particlePrototype" sphere = UsdGeom.Sphere.Define(stage, Sdf.Path(prototypePath)) spherePrim = sphere.GetPrim() sphere.GetRadiusAttr().Set(particleSpacing) # color_rgb = [0.0, 0.08, 0.30] # color = Vt.Vec3fArray([Gf.Vec3f(color_rgb[0], color_rgb[1], color_rgb[2])]) # sphere.CreateDisplayColorAttr(color) spherePrim = sphere.GetPrim() spherePrim.GetAttribute('visibility').Set('invisible') # spherePrim.GetVisibilityAttr().Set(False) spherePrim.CreateAttribute("enableAnisotropy", Sdf.ValueTypeNames.Bool, True).Set(True) particleInstanceApi = PhysxSchema.PhysxParticleAPI.Apply(spherePrim) particleInstanceApi.CreateSelfCollisionAttr().Set(particlePrototype.selfCollision) particleInstanceApi.CreateFluidAttr().Set(particlePrototype.fluid) particleInstanceApi.CreateParticleGroupAttr().Set(particlePrototype.collisionGroup) particleInstanceApi.CreateMassAttr().Set(particlePrototype.mass) # Reference simulation owner using PhysxPhysicsAPI physicsApi = PhysxSchema.PhysxPhysicsAPI.Apply(spherePrim) physicsApi.CreateSimulationOwnerRel().SetTargets([self.particleSystemPath]) # add prototype references to point instancer prototypeRel.AddTarget(Sdf.Path(prototypePath)) # Set active particle indices activeIndices = [] for i in range(len(positions)): activeIndices.append(protoIndices[i]) orientations = [Gf.Quath(1.0, Gf.Vec3h(0.0, 0.0, 0.0))] * len(positions) angular_velocities = [Gf.Vec3f(0.0, 0.0, 0.0)] * len(positions) pointInstancer.GetProtoIndicesAttr().Set(activeIndices) pointInstancer.GetPositionsAttr().Set(positions) pointInstancer.GetOrientationsAttr().Set(orientations) pointInstancer.GetVelocitiesAttr().Set(velocities) pointInstancer.GetAngularVelocitiesAttr().Set(angular_velocities) def create(self, stage): self._setup_callbacks() self.stage = stage self.it = 0 self.counter = 10 # set up axis to z UsdGeom.SetStageUpAxis(stage, UsdGeom.Tokens.y) UsdGeom.SetStageMetersPerUnit(stage, 0.01) # light # sphereLight = UsdLux.SphereLight.Define(stage, Sdf.Path("/SphereLight")) # sphereLight.CreateRadiusAttr(150) # sphereLight.CreateIntensityAttr(30000) # sphereLight.AddTranslateOp().Set(Gf.Vec3f(650.0, 0.0, 1150.0)) # Physics scene scenePath = Sdf.Path("/physicsScene") scene = UsdPhysics.Scene.Define(stage, scenePath) scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, -1.0, 0.0)) scene.CreateGravityMagnitudeAttr().Set(9.81) # Particle System particleSystemPath = Sdf.Path("/particleSystem0") self.particleSystemPath = particleSystemPath particleSpacing = 0.2 restOffset = particleSpacing * 0.9 solidRestOffset = restOffset fluidRestOffset = restOffset * 0.6 particleContactOffset = max(solidRestOffset + 0.001, fluidRestOffset / 0.6) contactOffset = restOffset + 0.001 addPhysxParticleSystem( stage, particleSystemPath, contactOffset, restOffset, particleContactOffset, solidRestOffset, fluidRestOffset, 4, 1, Gf.Vec3f(0, 0, 0), scenePath ) particleSystem = stage.GetPrimAtPath(particleSystemPath) # particle system settings particleSystem.GetAttribute("cohesion").Set(0.002) particleSystem.GetAttribute("smoothing").Set(0.8) particleSystem.GetAttribute("anisotropyScale").Set(1.0) particleSystem.GetAttribute("anisotropyMin").Set(0.2) particleSystem.GetAttribute("anisotropyMax").Set(2.0) particleSystem.GetAttribute("viscosity").Set(0.0091) particleSystem.GetAttribute("surfaceTension").Set(0.0074) particleSystem.GetAttribute("particleFriction").Set(0.1) particleSystem.CreateAttribute("maxParticleNeighborhood", Sdf.ValueTypeNames.Int, True).Set(64) particleSystem.GetAttribute("maxParticles").Set(20000) # apply isoSurface params particleSystem.CreateAttribute("enableIsosurface", Sdf.ValueTypeNames.Bool, True).Set(True) particleSystem.CreateAttribute("maxIsosurfaceVertices", Sdf.ValueTypeNames.Int, True).Set(1024 * 1024) particleSystem.CreateAttribute("maxIsosurfaceTriangles", Sdf.ValueTypeNames.Int, True).Set(2 * 1024 * 1024) particleSystem.CreateAttribute("maxNumIsosurfaceSubgrids", Sdf.ValueTypeNames.Int, True).Set(1024 * 4) particleSystem.CreateAttribute("isosurfaceGridSpacing", Sdf.ValueTypeNames.Float, True).Set(0.2) filterSmooth = 1 filtering = 0 passIndex = 0 filtering = setGridFilteringPass(filtering, passIndex, filterSmooth) passIndex = passIndex + 1 filtering = setGridFilteringPass(filtering, passIndex, filterSmooth) passIndex = passIndex + 1 particleSystem.CreateAttribute("isosurfaceKernelRadius", Sdf.ValueTypeNames.Float, True).Set(0.5) particleSystem.CreateAttribute("isosurfaceLevel", Sdf.ValueTypeNames.Float, True).Set(-0.3) particleSystem.CreateAttribute("isosurfaceGridFilteringFlags", Sdf.ValueTypeNames.Int, True).Set(filtering) particleSystem.CreateAttribute( "isosurfaceGridSmoothingRadiusRelativeToCellSize", Sdf.ValueTypeNames.Float, True ).Set(0.3) particleSystem.CreateAttribute("isosurfaceEnableAnisotropy", Sdf.ValueTypeNames.Bool, True).Set(False) particleSystem.CreateAttribute("isosurfaceAnisotropyMin", Sdf.ValueTypeNames.Float, True).Set(0.1) particleSystem.CreateAttribute("isosurfaceAnisotropyMax", Sdf.ValueTypeNames.Float, True).Set(2.0) particleSystem.CreateAttribute("isosurfaceAnisotropyRadius", Sdf.ValueTypeNames.Float, True).Set(0.5) particleSystem.CreateAttribute("numIsosurfaceMeshSmoothingPasses", Sdf.ValueTypeNames.Int, True).Set(5) particleSystem.CreateAttribute("numIsosurfaceMeshNormalSmoothingPasses", Sdf.ValueTypeNames.Int, True).Set(5) particleSystem.CreateAttribute("isosurfaceDoNotCastShadows", Sdf.ValueTypeNames.Bool, True).Set(True) stage.SetInterpolationType(Usd.InterpolationTypeHeld) def _setup_callbacks(self): # callbacks self._timeline = omni.timeline.get_timeline_interface() stream = self._timeline.get_timeline_event_stream() self._timeline_subscription = stream.create_subscription_to_pop(self._on_timeline_event) # subscribe to Physics updates: self._physics_update_subscription = omni.physx.get_physx_interface().subscribe_physics_step_events( self.on_physics_step ) def _on_timeline_event(self, e): if e.type == int(omni.timeline.TimelineEventType.STOP): self.it = 0 self.on_shutdown() def step(self): self.on_physics_step(None) def on_physics_step(self, dt): # import transforms3d import math xformCache = UsdGeom.XformCache() # stop after 80 balls # if (self.it > 80): # return pose = xformCache.GetLocalToWorldTransform(self.stage.GetPrimAtPath("/World/faucet/inflow")) pos_faucet = Gf.Vec3f(pose.ExtractTranslation()) rot_faucet = Gf.Quatf(pose.ExtractRotationQuat()) pose = xformCache.GetLocalToWorldTransform(self.stage.GetPrimAtPath("/World/faucet/link_0")) pos_link = Gf.Vec3f(pose.ExtractTranslation()) rot_link = Gf.Quatf(pose.ExtractRotationQuat()) diff = rot_link * self.rot_link_init.GetInverse() real = diff.GetReal() img = [diff.GetImaginary()[0],diff.GetImaginary()[1], diff.GetImaginary()[2] ] #angle = transforms3d.euler.quat2euler([real, img[0], img[1], img[2]], axes='sxyz') #sum_angle = abs(math.degrees(angle[0])) + abs(math.degrees(angle[1])) + abs(math.degrees(angle[2])) rate = 1 #(sum_angle/30.0) # print("pre rate:", rate) if rate > 1: rate = 1 # print("rate: ", rate) # print("sum_angle", sum_angle) if self.it == 0: iso2Prim = self.stage.GetPrimAtPath("/particleSystem0/Isosurface") rel = iso2Prim.CreateRelationship("material:binding", False) rel.SetTargets([Sdf.Path("/World/Looks/OmniSurface_ClearWater")]) # rel.SetTargets([Sdf.Path("/World/Looks/OmniSurface_OrangeJuice")]) if self.it > 200: return # emit a ball every 10 physics steps if (self.counter < 20 - rate): self.counter = self.counter + 1 return self.counter = 0 self.it = self.it + 1 # print(faucet_prim.GetAttribute('xformOp:translate')) # openness = 0.6 + 0.5 * rate # print("openess", openness) if rate < 0.1: return self.create_ball(self.stage, pos_faucet, rate) def on_shutdown(self): self._physics_update_subscription = None self._timeline_subscription = None # restore settings # isregistry = carb.settings.acquire_settings_interface() # isregistry.set_bool(ASYNC_SIMULATION, self._async_simulation) def on_startup(self): isregistry = carb.settings.acquire_settings_interface() self._async_simulation = carb.settings.get_settings().get_as_bool(ASYNC_SIMULATION) isregistry.set_bool(ASYNC_SIMULATION, True) isregistry.set_int("persistent/simulation/minFrameRate", 60) from omni.physx import acquire_physx_interface physx = acquire_physx_interface() physx.overwrite_gpu_setting(1) physx.reset_simulation() fluid_fill = FluidFill() stage = omni.usd.get_context().get_stage() fluid_fill.create(stage) _timeline = omni.timeline.get_timeline_interface() stream = _timeline.get_timeline_event_stream() def _on_timeline_event(e): if e.type == int(omni.timeline.TimelineEventType.STOP): fluid_fill.on_shutdown() _timeline_subscription = stream.create_subscription_to_pop(_on_timeline_event) # for i in range(10): # fluid_fill.step()
13,709
Python
39.56213
117
0.6584