File size: 6,025 Bytes
1de8e5a 8f8eea5 1de8e5a 194d2b4 8f8eea5 1de8e5a 8f8eea5 194d2b4 1de8e5a 8f8eea5 1de8e5a 194d2b4 8f8eea5 194d2b4 1de8e5a 8f8eea5 194d2b4 8f8eea5 194d2b4 8f8eea5 1de8e5a 194d2b4 8f8eea5 194d2b4 8f8eea5 31cf874 194d2b4 8f8eea5 1de8e5a 194d2b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import datasets
import textwrap
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
import pandas as pd
_NEWSGROUPS = [
"alt.atheism",
"comp.graphics",
"comp.os.ms-windows.misc",
"comp.sys.ibm.pc.hardware",
"comp.sys.mac.hardware",
"comp.windows.x",
"misc.forsale",
"rec.autos",
"rec.motorcycles",
"rec.sport.baseball",
"rec.sport.hockey",
"sci.crypt",
"sci.electronics",
"sci.med",
"sci.space",
"soc.religion.christian",
"talk.politics.guns",
"talk.politics.mideast",
"talk.politics.misc",
"talk.religion.misc",
]
_DESCRIPTION = textwrap.dedent(
"""\
The bydate version of the 20-newsgroup dataset fetched from scikit_learn and
split in stratified manner into train, validation and test sets. With and
without metadata is made available as individual config names. The test set
from the original 20 newsgroup dataset is retained while the original train
set is split 80:20 into train and validation sets in stratified manner based
on the newsgroup. The 20 different newsgroup are provided as the labels
instead of config names as specified in the official huggingface dataset.
Newsgroups are specified as labels to provide a simplified setup for text
classification task. The 20 different newsgroup functioning as labels are:
"""
)
_DESCRIPTION += "\n".join(f"({i+1}) {j}" for i, j in enumerate(_NEWSGROUPS))
_HOMEPAGE = "http://qwone.com/~jason/20Newsgroups/"
_CITATION = """
@inproceedings{Lang95,
author = {Ken Lang},
title = {Newsweeder: Learning to filter netnews}
year = {1995}
booktitle = {Proceedings of the Twelfth International Conference on Machine Learning}
pages = {331-339}
}
"""
_VERSION = datasets.utils.Version("2.0.0")
class NewsgroupsConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(NewsgroupsConfig, self).__init__(version=_VERSION, **kwargs)
class Newsgroups(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
NewsgroupsConfig(
name="with_metadata",
description=textwrap.dedent(
"""\
The original complete bydate 20-Newsgroups dataset with the headers,
footers, and quotes metadata as intact and just the continuous
whitespaces (including new-line) replaced by single whitespace
characters."""
),
),
NewsgroupsConfig(
name="without_metadata",
description=textwrap.dedent(
"""\
The bydate 20-Newsgroups dataset without the headers, footers,
and quotes metadata as well as the continuous whitespaces
(including new-line) replaced by single whitespace characters."""
),
),
]
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("large_string"),
"labels": datasets.features.ClassLabel(names=_NEWSGROUPS),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.name == "with_metadata":
train_data = fetch_20newsgroups(subset="train", random_state=42)
test_data = fetch_20newsgroups(subset="test", random_state=42)
else:
train_data = fetch_20newsgroups(
subset="train", random_state=42, remove=("headers", "footers", "quotes")
)
test_data = fetch_20newsgroups(
subset="test", random_state=42, remove=("headers", "footers", "quotes")
)
empty_data_idcs = set(
[i for i, j in enumerate(train_data.data) if j.strip() == ""]
)
train_data.data = [
j for i, j in enumerate(train_data.data) if i not in empty_data_idcs
]
train_data.target = [
j for i, j in enumerate(train_data.target) if i not in empty_data_idcs
]
empty_data_idcs = set(
[i for i, j in enumerate(test_data.data) if j.strip() == ""]
)
test_data.data = [
j for i, j in enumerate(test_data.data) if i not in empty_data_idcs
]
test_data.target = [
j for i, j in enumerate(test_data.target) if i not in empty_data_idcs
]
train_labels = [train_data.target_names[i] for i in train_data.target]
test_labels = [test_data.target_names[i] for i in test_data.target]
train_df = pd.DataFrame({"text": train_data.data, "labels": train_labels})
test_df = pd.DataFrame({"text": test_data.data, "labels": test_labels})
train_df["text"] = train_df["text"].str.replace("\s+", " ", regex=True)
test_df["text"] = test_df["text"].str.replace("\s+", " ", regex=True)
# train_df = train_df[train_df["text"].str.strip()!=""]
# test_df = test_df[test_df["text"].str.strip()!=""]
train_df, val_df = train_test_split(
train_df, test_size=0.2, random_state=42, stratify=train_df["labels"]
)
train_df = train_df.reset_index(drop=True)
val_df = val_df.reset_index(drop=True)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"df": train_df}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"df": val_df}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"df": test_df}
),
]
def _generate_examples(self, df):
for idx, row in df.iterrows():
yield idx, row.to_dict()
|