File size: 10,584 Bytes
28ef031
a89bdbd
28ef031
a89bdbd
28ef031
 
a89bdbd
 
28ef031
a89bdbd
28ef031
 
 
 
a89bdbd
28ef031
a89bdbd
28ef031
a89bdbd
 
 
 
 
 
28ef031
 
a89bdbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28ef031
a89bdbd
 
 
 
 
 
 
28ef031
 
 
a89bdbd
28ef031
a89bdbd
 
 
 
 
28ef031
 
 
a89bdbd
 
 
 
 
 
 
 
28ef031
a89bdbd
 
 
 
 
 
 
 
 
 
 
 
 
 
28ef031
a89bdbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28ef031
a89bdbd
 
 
 
28ef031
a89bdbd
 
 
 
 
 
28ef031
 
 
a89bdbd
28ef031
a89bdbd
 
 
 
28ef031
a89bdbd
 
 
 
 
 
 
 
 
 
 
 
 
28ef031
a89bdbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28ef031
a89bdbd
 
 
 
 
 
 
 
 
 
28ef031
a89bdbd
 
 
 
 
 
 
 
 
 
 
 
28ef031
a89bdbd
 
 
 
 
 
 
 
 
28ef031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cad4cf
 
 
 
 
 
28ef031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a89bdbd
 
28ef031
 
 
 
a89bdbd
28ef031
a89bdbd
 
 
 
 
28ef031
 
 
a89bdbd
 
28ef031
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import copy
import dataclasses
import logging
from collections import defaultdict
from itertools import combinations
from typing import Any, Dict, List, Optional, Set, Tuple

import datasets
from pytorch_ie.annotations import BinaryRelation, Label, LabeledSpan, Span
from pytorch_ie.core import Annotation, AnnotationList, annotation_field
from pytorch_ie.documents import (
    TextBasedDocument,
    TextDocumentWithLabeledSpansAndBinaryRelations,
)

from pie_datasets import GeneratorBasedBuilder

log = logging.getLogger(__name__)


def dl2ld(dict_of_lists):
    return [dict(zip(dict_of_lists, t)) for t in zip(*dict_of_lists.values())]


def ld2dl(list_of_dicts, keys: Optional[List[str]] = None):
    return {k: [d[k] for d in list_of_dicts] for k in keys}


@dataclasses.dataclass(frozen=True)
class LabeledAnnotationCollection(Annotation):
    annotations: Tuple[Annotation, ...]
    label: str


@dataclasses.dataclass(frozen=True)
class MultiRelation(Annotation):
    heads: Tuple[Annotation, ...]  # sources == heads
    tails: Tuple[Annotation, ...]  # targets == tails
    label: str


@dataclasses.dataclass
class ArgMicroDocument(TextBasedDocument):
    topic_id: Optional[str] = None
    stance: AnnotationList[Label] = annotation_field()
    edus: AnnotationList[Span] = annotation_field(target="text")
    adus: AnnotationList[LabeledAnnotationCollection] = annotation_field(target="edus")
    relations: AnnotationList[MultiRelation] = annotation_field(target="adus")


def example_to_document(
    example: Dict[str, Any],
    adu_type_label: datasets.ClassLabel,
    edge_type_label: datasets.ClassLabel,
    stance_label: datasets.ClassLabel,
) -> ArgMicroDocument:
    stance = stance_label.int2str(example["stance"])
    document = ArgMicroDocument(
        id=example["id"],
        text=example["text"],
        topic_id=example["topic_id"] if example["topic_id"] != "UNDEFINED" else None,
    )
    if stance != "UNDEFINED":
        document.stance.append(Label(label=stance))

    # build EDUs
    edus_dict = {
        edu["id"]: Span(start=edu["start"], end=edu["end"]) for edu in dl2ld(example["edus"])
    }
    # build ADUs
    adu_id2edus = defaultdict(list)
    edges_multi_source = defaultdict(dict)
    for edge in dl2ld(example["edges"]):
        edge_type = edge_type_label.int2str(edge["type"])
        if edge_type == "seg":
            adu_id2edus[edge["trg"]].append(edus_dict[edge["src"]])
        elif edge_type == "add":
            if "src" not in edges_multi_source[edge["trg"]]:
                edges_multi_source[edge["trg"]]["src"] = []
            edges_multi_source[edge["trg"]]["src"].append(edge["src"])
        else:
            edges_multi_source[edge["id"]]["type"] = edge_type
            edges_multi_source[edge["id"]]["trg"] = edge["trg"]
            if "src" not in edges_multi_source[edge["id"]]:
                edges_multi_source[edge["id"]]["src"] = []
            edges_multi_source[edge["id"]]["src"].append(edge["src"])
    adus_dict = {}
    for adu in dl2ld(example["adus"]):
        adu_type = adu_type_label.int2str(adu["type"])
        adu_edus = adu_id2edus[adu["id"]]
        adus_dict[adu["id"]] = LabeledAnnotationCollection(
            annotations=tuple(adu_edus), label=adu_type
        )
    # build relations
    rels_dict = {}
    for edge_id, edge in edges_multi_source.items():
        edge_target = edge["trg"]
        if edge_target in edges_multi_source:
            targets = edges_multi_source[edge_target]["src"]
        else:
            targets = [edge_target]
        if any(target in edges_multi_source for target in targets):
            raise Exception("Multi-hop relations are not supported")
        rel = MultiRelation(
            heads=tuple(adus_dict[source] for source in edge["src"]),
            tails=tuple(adus_dict[target] for target in targets),
            label=edge["type"],
        )
        rels_dict[edge_id] = rel

    document.edus.extend(edus_dict.values())
    document.adus.extend(adus_dict.values())
    document.relations.extend(rels_dict.values())
    document.metadata["edu_ids"] = list(edus_dict.keys())
    document.metadata["adu_ids"] = list(adus_dict.keys())
    document.metadata["rel_ids"] = list(rels_dict.keys())

    document.metadata["rel_seg_ids"] = {
        edge["src"]: edge["id"]
        for edge in dl2ld(example["edges"])
        if edge_type_label.int2str(edge["type"]) == "seg"
    }
    document.metadata["rel_add_ids"] = {
        edge["src"]: edge["id"]
        for edge in dl2ld(example["edges"])
        if edge_type_label.int2str(edge["type"]) == "add"
    }
    return document


def document_to_example(
    document: ArgMicroDocument,
    adu_type_label: datasets.ClassLabel,
    edge_type_label: datasets.ClassLabel,
    stance_label: datasets.ClassLabel,
) -> Dict[str, Any]:
    stance = document.stance[0].label if len(document.stance) else "UNDEFINED"
    result = {
        "id": document.id,
        "text": document.text,
        "topic_id": document.topic_id or "UNDEFINED",
        "stance": stance_label.str2int(stance),
    }

    # construct EDUs
    edus = {
        edu: {"id": edu_id, "start": edu.start, "end": edu.end}
        for edu_id, edu in zip(document.metadata["edu_ids"], document.edus)
    }
    result["edus"] = ld2dl(
        sorted(edus.values(), key=lambda x: x["id"]), keys=["id", "start", "end"]
    )

    # construct ADUs
    adus = {
        adu: {"id": adu_id, "type": adu_type_label.str2int(adu.label)}
        for adu_id, adu in zip(document.metadata["adu_ids"], document.adus)
    }
    result["adus"] = ld2dl(sorted(adus.values(), key=lambda x: x["id"]), keys=["id", "type"])

    # construct edges
    rels_dict: Dict[str, MultiRelation] = {
        rel_id: rel for rel_id, rel in zip(document.metadata["rel_ids"], document.relations)
    }
    heads2rel_id = {
        rel.heads: red_id for red_id, rel in zip(document.metadata["rel_ids"], document.relations)
    }
    edges = []
    for rel_id, rel in rels_dict.items():
        # if it is an undercut attack, we need to change the target to the relation that connects the target
        if rel.label == "und":
            target_id = heads2rel_id[rel.tails]
        else:
            if len(rel.tails) > 1:
                raise Exception("Multi-target relations are not supported")
            target_id = adus[rel.tails[0]]["id"]
        source_id = adus[rel.heads[0]]["id"]
        edge = {
            "id": rel_id,
            "src": source_id,
            "trg": target_id,
            "type": edge_type_label.str2int(rel.label),
        }
        edges.append(edge)
        # if it is an additional support, we need to change the source to the relation that connects the source
        for head in rel.heads[1:]:
            source_id = adus[head]["id"]
            edge_id = document.metadata["rel_add_ids"][source_id]
            edge = {
                "id": edge_id,
                "src": source_id,
                "trg": rel_id,
                "type": edge_type_label.str2int("add"),
            }
            edges.append(edge)

    for adu_id, adu in zip(document.metadata["adu_ids"], document.adus):
        for edu in adu.annotations:
            source_id = edus[edu]["id"]
            target_id = adus[adu]["id"]
            edge_id = document.metadata["rel_seg_ids"][source_id]
            edge = {
                "id": edge_id,
                "src": source_id,
                "trg": target_id,
                "type": edge_type_label.str2int("seg"),
            }
            edges.append(edge)

    result["edges"] = ld2dl(
        sorted(edges, key=lambda x: x["id"]), keys=["id", "src", "trg", "type"]
    )
    return result


def convert_to_text_document_with_labeled_spans_and_binary_relations(
    doc: ArgMicroDocument,
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
    # convert adus to entities
    entities = []
    adu2entity: Dict[LabeledAnnotationCollection, Span] = {}
    for adu in doc.adus:
        edus: Set[Span] = set(adu.annotations)
        start = min(edu.start for edu in edus)
        end = max(edu.end for edu in edus)
        # assert there are no edus overlapping with the adu, but not part of it
        for edu in doc.edus:
            if (start <= edu.start < end or start < edu.end <= end) and edu not in edus:
                raise Exception(f"edu {edu} is overlapping with adu {adu}, but is not part of it")
        entity = LabeledSpan(start=start, end=end, label=adu.label)
        entities.append(entity)
        adu2entity[adu] = entity
    relations = []
    for relation in doc.relations:
        # add all possible combinations of heads and tails
        for head in relation.heads:
            for tail in relation.tails:
                rel = BinaryRelation(
                    label=relation.label, head=adu2entity[head], tail=adu2entity[tail]
                )
                relations.append(rel)
        # also add the relations between the heads themselves
        #for head1, head2 in combinations(relation.heads, 2):
        #    rel = BinaryRelation(label="joint", head=adu2entity[head1], tail=adu2entity[head2])
        #    relations.append(rel)
        #    # also add the reverse relation
        #    rel = BinaryRelation(label="joint", head=adu2entity[head2], tail=adu2entity[head1])
        #    relations.append(rel)

    metadata = copy.deepcopy(doc.metadata)
    if len(doc.stance) > 0:
        metadata["stance"] = doc.stance[0].label
    metadata["topic"] = doc.topic_id
    result = TextDocumentWithLabeledSpansAndBinaryRelations(
        text=doc.text, id=doc.id, metadata=doc.metadata
    )
    result.labeled_spans.extend(entities)
    result.binary_relations.extend(relations)

    return result


class ArgMicro(GeneratorBasedBuilder):
    DOCUMENT_TYPE = ArgMicroDocument

    DOCUMENT_CONVERTERS = {
        TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
    }

    BASE_DATASET_PATH = "DFKI-SLT/argmicro"
    BASE_DATASET_REVISION = "282733d6d57243f2a202d81143c4e31bb250e663"

    BUILDER_CONFIGS = [datasets.BuilderConfig(name="en"), datasets.BuilderConfig(name="de")]

    def _generate_document_kwargs(self, dataset):
        return {
            "adu_type_label": dataset.features["adus"].feature["type"],
            "edge_type_label": dataset.features["edges"].feature["type"],
            "stance_label": dataset.features["stance"],
        }

    def _generate_document(self, example, **kwargs):
        return example_to_document(example, **kwargs)