File size: 10,584 Bytes
28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 5cad4cf 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 a89bdbd 28ef031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import copy
import dataclasses
import logging
from collections import defaultdict
from itertools import combinations
from typing import Any, Dict, List, Optional, Set, Tuple
import datasets
from pytorch_ie.annotations import BinaryRelation, Label, LabeledSpan, Span
from pytorch_ie.core import Annotation, AnnotationList, annotation_field
from pytorch_ie.documents import (
TextBasedDocument,
TextDocumentWithLabeledSpansAndBinaryRelations,
)
from pie_datasets import GeneratorBasedBuilder
log = logging.getLogger(__name__)
def dl2ld(dict_of_lists):
return [dict(zip(dict_of_lists, t)) for t in zip(*dict_of_lists.values())]
def ld2dl(list_of_dicts, keys: Optional[List[str]] = None):
return {k: [d[k] for d in list_of_dicts] for k in keys}
@dataclasses.dataclass(frozen=True)
class LabeledAnnotationCollection(Annotation):
annotations: Tuple[Annotation, ...]
label: str
@dataclasses.dataclass(frozen=True)
class MultiRelation(Annotation):
heads: Tuple[Annotation, ...] # sources == heads
tails: Tuple[Annotation, ...] # targets == tails
label: str
@dataclasses.dataclass
class ArgMicroDocument(TextBasedDocument):
topic_id: Optional[str] = None
stance: AnnotationList[Label] = annotation_field()
edus: AnnotationList[Span] = annotation_field(target="text")
adus: AnnotationList[LabeledAnnotationCollection] = annotation_field(target="edus")
relations: AnnotationList[MultiRelation] = annotation_field(target="adus")
def example_to_document(
example: Dict[str, Any],
adu_type_label: datasets.ClassLabel,
edge_type_label: datasets.ClassLabel,
stance_label: datasets.ClassLabel,
) -> ArgMicroDocument:
stance = stance_label.int2str(example["stance"])
document = ArgMicroDocument(
id=example["id"],
text=example["text"],
topic_id=example["topic_id"] if example["topic_id"] != "UNDEFINED" else None,
)
if stance != "UNDEFINED":
document.stance.append(Label(label=stance))
# build EDUs
edus_dict = {
edu["id"]: Span(start=edu["start"], end=edu["end"]) for edu in dl2ld(example["edus"])
}
# build ADUs
adu_id2edus = defaultdict(list)
edges_multi_source = defaultdict(dict)
for edge in dl2ld(example["edges"]):
edge_type = edge_type_label.int2str(edge["type"])
if edge_type == "seg":
adu_id2edus[edge["trg"]].append(edus_dict[edge["src"]])
elif edge_type == "add":
if "src" not in edges_multi_source[edge["trg"]]:
edges_multi_source[edge["trg"]]["src"] = []
edges_multi_source[edge["trg"]]["src"].append(edge["src"])
else:
edges_multi_source[edge["id"]]["type"] = edge_type
edges_multi_source[edge["id"]]["trg"] = edge["trg"]
if "src" not in edges_multi_source[edge["id"]]:
edges_multi_source[edge["id"]]["src"] = []
edges_multi_source[edge["id"]]["src"].append(edge["src"])
adus_dict = {}
for adu in dl2ld(example["adus"]):
adu_type = adu_type_label.int2str(adu["type"])
adu_edus = adu_id2edus[adu["id"]]
adus_dict[adu["id"]] = LabeledAnnotationCollection(
annotations=tuple(adu_edus), label=adu_type
)
# build relations
rels_dict = {}
for edge_id, edge in edges_multi_source.items():
edge_target = edge["trg"]
if edge_target in edges_multi_source:
targets = edges_multi_source[edge_target]["src"]
else:
targets = [edge_target]
if any(target in edges_multi_source for target in targets):
raise Exception("Multi-hop relations are not supported")
rel = MultiRelation(
heads=tuple(adus_dict[source] for source in edge["src"]),
tails=tuple(adus_dict[target] for target in targets),
label=edge["type"],
)
rels_dict[edge_id] = rel
document.edus.extend(edus_dict.values())
document.adus.extend(adus_dict.values())
document.relations.extend(rels_dict.values())
document.metadata["edu_ids"] = list(edus_dict.keys())
document.metadata["adu_ids"] = list(adus_dict.keys())
document.metadata["rel_ids"] = list(rels_dict.keys())
document.metadata["rel_seg_ids"] = {
edge["src"]: edge["id"]
for edge in dl2ld(example["edges"])
if edge_type_label.int2str(edge["type"]) == "seg"
}
document.metadata["rel_add_ids"] = {
edge["src"]: edge["id"]
for edge in dl2ld(example["edges"])
if edge_type_label.int2str(edge["type"]) == "add"
}
return document
def document_to_example(
document: ArgMicroDocument,
adu_type_label: datasets.ClassLabel,
edge_type_label: datasets.ClassLabel,
stance_label: datasets.ClassLabel,
) -> Dict[str, Any]:
stance = document.stance[0].label if len(document.stance) else "UNDEFINED"
result = {
"id": document.id,
"text": document.text,
"topic_id": document.topic_id or "UNDEFINED",
"stance": stance_label.str2int(stance),
}
# construct EDUs
edus = {
edu: {"id": edu_id, "start": edu.start, "end": edu.end}
for edu_id, edu in zip(document.metadata["edu_ids"], document.edus)
}
result["edus"] = ld2dl(
sorted(edus.values(), key=lambda x: x["id"]), keys=["id", "start", "end"]
)
# construct ADUs
adus = {
adu: {"id": adu_id, "type": adu_type_label.str2int(adu.label)}
for adu_id, adu in zip(document.metadata["adu_ids"], document.adus)
}
result["adus"] = ld2dl(sorted(adus.values(), key=lambda x: x["id"]), keys=["id", "type"])
# construct edges
rels_dict: Dict[str, MultiRelation] = {
rel_id: rel for rel_id, rel in zip(document.metadata["rel_ids"], document.relations)
}
heads2rel_id = {
rel.heads: red_id for red_id, rel in zip(document.metadata["rel_ids"], document.relations)
}
edges = []
for rel_id, rel in rels_dict.items():
# if it is an undercut attack, we need to change the target to the relation that connects the target
if rel.label == "und":
target_id = heads2rel_id[rel.tails]
else:
if len(rel.tails) > 1:
raise Exception("Multi-target relations are not supported")
target_id = adus[rel.tails[0]]["id"]
source_id = adus[rel.heads[0]]["id"]
edge = {
"id": rel_id,
"src": source_id,
"trg": target_id,
"type": edge_type_label.str2int(rel.label),
}
edges.append(edge)
# if it is an additional support, we need to change the source to the relation that connects the source
for head in rel.heads[1:]:
source_id = adus[head]["id"]
edge_id = document.metadata["rel_add_ids"][source_id]
edge = {
"id": edge_id,
"src": source_id,
"trg": rel_id,
"type": edge_type_label.str2int("add"),
}
edges.append(edge)
for adu_id, adu in zip(document.metadata["adu_ids"], document.adus):
for edu in adu.annotations:
source_id = edus[edu]["id"]
target_id = adus[adu]["id"]
edge_id = document.metadata["rel_seg_ids"][source_id]
edge = {
"id": edge_id,
"src": source_id,
"trg": target_id,
"type": edge_type_label.str2int("seg"),
}
edges.append(edge)
result["edges"] = ld2dl(
sorted(edges, key=lambda x: x["id"]), keys=["id", "src", "trg", "type"]
)
return result
def convert_to_text_document_with_labeled_spans_and_binary_relations(
doc: ArgMicroDocument,
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
# convert adus to entities
entities = []
adu2entity: Dict[LabeledAnnotationCollection, Span] = {}
for adu in doc.adus:
edus: Set[Span] = set(adu.annotations)
start = min(edu.start for edu in edus)
end = max(edu.end for edu in edus)
# assert there are no edus overlapping with the adu, but not part of it
for edu in doc.edus:
if (start <= edu.start < end or start < edu.end <= end) and edu not in edus:
raise Exception(f"edu {edu} is overlapping with adu {adu}, but is not part of it")
entity = LabeledSpan(start=start, end=end, label=adu.label)
entities.append(entity)
adu2entity[adu] = entity
relations = []
for relation in doc.relations:
# add all possible combinations of heads and tails
for head in relation.heads:
for tail in relation.tails:
rel = BinaryRelation(
label=relation.label, head=adu2entity[head], tail=adu2entity[tail]
)
relations.append(rel)
# also add the relations between the heads themselves
#for head1, head2 in combinations(relation.heads, 2):
# rel = BinaryRelation(label="joint", head=adu2entity[head1], tail=adu2entity[head2])
# relations.append(rel)
# # also add the reverse relation
# rel = BinaryRelation(label="joint", head=adu2entity[head2], tail=adu2entity[head1])
# relations.append(rel)
metadata = copy.deepcopy(doc.metadata)
if len(doc.stance) > 0:
metadata["stance"] = doc.stance[0].label
metadata["topic"] = doc.topic_id
result = TextDocumentWithLabeledSpansAndBinaryRelations(
text=doc.text, id=doc.id, metadata=doc.metadata
)
result.labeled_spans.extend(entities)
result.binary_relations.extend(relations)
return result
class ArgMicro(GeneratorBasedBuilder):
DOCUMENT_TYPE = ArgMicroDocument
DOCUMENT_CONVERTERS = {
TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
}
BASE_DATASET_PATH = "DFKI-SLT/argmicro"
BASE_DATASET_REVISION = "282733d6d57243f2a202d81143c4e31bb250e663"
BUILDER_CONFIGS = [datasets.BuilderConfig(name="en"), datasets.BuilderConfig(name="de")]
def _generate_document_kwargs(self, dataset):
return {
"adu_type_label": dataset.features["adus"].feature["type"],
"edge_type_label": dataset.features["edges"].feature["type"],
"stance_label": dataset.features["stance"],
}
def _generate_document(self, example, **kwargs):
return example_to_document(example, **kwargs)
|