|
import copy
|
|
import dataclasses
|
|
import logging
|
|
from collections import defaultdict
|
|
from itertools import combinations
|
|
from typing import Any, Dict, List, Optional, Set, Tuple
|
|
|
|
import datasets
|
|
from pytorch_ie.annotations import BinaryRelation, Label, LabeledSpan, Span
|
|
from pytorch_ie.core import Annotation, AnnotationList, annotation_field
|
|
from pytorch_ie.documents import (
|
|
TextBasedDocument,
|
|
TextDocumentWithLabeledSpansAndBinaryRelations,
|
|
)
|
|
|
|
from pie_datasets import GeneratorBasedBuilder
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def dl2ld(dict_of_lists):
|
|
return [dict(zip(dict_of_lists, t)) for t in zip(*dict_of_lists.values())]
|
|
|
|
|
|
def ld2dl(list_of_dicts, keys: Optional[List[str]] = None):
|
|
return {k: [d[k] for d in list_of_dicts] for k in keys}
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class LabeledAnnotationCollection(Annotation):
|
|
annotations: Tuple[Annotation, ...]
|
|
label: str
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class MultiRelation(Annotation):
|
|
heads: Tuple[Annotation, ...]
|
|
tails: Tuple[Annotation, ...]
|
|
label: str
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class ArgMicroDocument(TextBasedDocument):
|
|
topic_id: Optional[str] = None
|
|
stance: AnnotationList[Label] = annotation_field()
|
|
edus: AnnotationList[Span] = annotation_field(target="text")
|
|
adus: AnnotationList[LabeledAnnotationCollection] = annotation_field(target="edus")
|
|
relations: AnnotationList[MultiRelation] = annotation_field(target="adus")
|
|
|
|
|
|
def example_to_document(
|
|
example: Dict[str, Any],
|
|
adu_type_label: datasets.ClassLabel,
|
|
edge_type_label: datasets.ClassLabel,
|
|
stance_label: datasets.ClassLabel,
|
|
) -> ArgMicroDocument:
|
|
stance = stance_label.int2str(example["stance"])
|
|
document = ArgMicroDocument(
|
|
id=example["id"],
|
|
text=example["text"],
|
|
topic_id=example["topic_id"] if example["topic_id"] != "UNDEFINED" else None,
|
|
)
|
|
if stance != "UNDEFINED":
|
|
document.stance.append(Label(label=stance))
|
|
|
|
|
|
edus_dict = {
|
|
edu["id"]: Span(start=edu["start"], end=edu["end"]) for edu in dl2ld(example["edus"])
|
|
}
|
|
|
|
adu_id2edus = defaultdict(list)
|
|
edges_multi_source = defaultdict(dict)
|
|
for edge in dl2ld(example["edges"]):
|
|
edge_type = edge_type_label.int2str(edge["type"])
|
|
if edge_type == "seg":
|
|
adu_id2edus[edge["trg"]].append(edus_dict[edge["src"]])
|
|
elif edge_type == "add":
|
|
if "src" not in edges_multi_source[edge["trg"]]:
|
|
edges_multi_source[edge["trg"]]["src"] = []
|
|
edges_multi_source[edge["trg"]]["src"].append(edge["src"])
|
|
else:
|
|
edges_multi_source[edge["id"]]["type"] = edge_type
|
|
edges_multi_source[edge["id"]]["trg"] = edge["trg"]
|
|
if "src" not in edges_multi_source[edge["id"]]:
|
|
edges_multi_source[edge["id"]]["src"] = []
|
|
edges_multi_source[edge["id"]]["src"].append(edge["src"])
|
|
adus_dict = {}
|
|
for adu in dl2ld(example["adus"]):
|
|
adu_type = adu_type_label.int2str(adu["type"])
|
|
adu_edus = adu_id2edus[adu["id"]]
|
|
adus_dict[adu["id"]] = LabeledAnnotationCollection(
|
|
annotations=tuple(adu_edus), label=adu_type
|
|
)
|
|
|
|
rels_dict = {}
|
|
for edge_id, edge in edges_multi_source.items():
|
|
edge_target = edge["trg"]
|
|
if edge_target in edges_multi_source:
|
|
targets = edges_multi_source[edge_target]["src"]
|
|
else:
|
|
targets = [edge_target]
|
|
if any(target in edges_multi_source for target in targets):
|
|
raise Exception("Multi-hop relations are not supported")
|
|
rel = MultiRelation(
|
|
heads=tuple(adus_dict[source] for source in edge["src"]),
|
|
tails=tuple(adus_dict[target] for target in targets),
|
|
label=edge["type"],
|
|
)
|
|
rels_dict[edge_id] = rel
|
|
|
|
document.edus.extend(edus_dict.values())
|
|
document.adus.extend(adus_dict.values())
|
|
document.relations.extend(rels_dict.values())
|
|
document.metadata["edu_ids"] = list(edus_dict.keys())
|
|
document.metadata["adu_ids"] = list(adus_dict.keys())
|
|
document.metadata["rel_ids"] = list(rels_dict.keys())
|
|
|
|
document.metadata["rel_seg_ids"] = {
|
|
edge["src"]: edge["id"]
|
|
for edge in dl2ld(example["edges"])
|
|
if edge_type_label.int2str(edge["type"]) == "seg"
|
|
}
|
|
document.metadata["rel_add_ids"] = {
|
|
edge["src"]: edge["id"]
|
|
for edge in dl2ld(example["edges"])
|
|
if edge_type_label.int2str(edge["type"]) == "add"
|
|
}
|
|
return document
|
|
|
|
|
|
def document_to_example(
|
|
document: ArgMicroDocument,
|
|
adu_type_label: datasets.ClassLabel,
|
|
edge_type_label: datasets.ClassLabel,
|
|
stance_label: datasets.ClassLabel,
|
|
) -> Dict[str, Any]:
|
|
stance = document.stance[0].label if len(document.stance) else "UNDEFINED"
|
|
result = {
|
|
"id": document.id,
|
|
"text": document.text,
|
|
"topic_id": document.topic_id or "UNDEFINED",
|
|
"stance": stance_label.str2int(stance),
|
|
}
|
|
|
|
|
|
edus = {
|
|
edu: {"id": edu_id, "start": edu.start, "end": edu.end}
|
|
for edu_id, edu in zip(document.metadata["edu_ids"], document.edus)
|
|
}
|
|
result["edus"] = ld2dl(
|
|
sorted(edus.values(), key=lambda x: x["id"]), keys=["id", "start", "end"]
|
|
)
|
|
|
|
|
|
adus = {
|
|
adu: {"id": adu_id, "type": adu_type_label.str2int(adu.label)}
|
|
for adu_id, adu in zip(document.metadata["adu_ids"], document.adus)
|
|
}
|
|
result["adus"] = ld2dl(sorted(adus.values(), key=lambda x: x["id"]), keys=["id", "type"])
|
|
|
|
|
|
rels_dict: Dict[str, MultiRelation] = {
|
|
rel_id: rel for rel_id, rel in zip(document.metadata["rel_ids"], document.relations)
|
|
}
|
|
heads2rel_id = {
|
|
rel.heads: red_id for red_id, rel in zip(document.metadata["rel_ids"], document.relations)
|
|
}
|
|
edges = []
|
|
for rel_id, rel in rels_dict.items():
|
|
|
|
if rel.label == "und":
|
|
target_id = heads2rel_id[rel.tails]
|
|
else:
|
|
if len(rel.tails) > 1:
|
|
raise Exception("Multi-target relations are not supported")
|
|
target_id = adus[rel.tails[0]]["id"]
|
|
source_id = adus[rel.heads[0]]["id"]
|
|
edge = {
|
|
"id": rel_id,
|
|
"src": source_id,
|
|
"trg": target_id,
|
|
"type": edge_type_label.str2int(rel.label),
|
|
}
|
|
edges.append(edge)
|
|
|
|
for head in rel.heads[1:]:
|
|
source_id = adus[head]["id"]
|
|
edge_id = document.metadata["rel_add_ids"][source_id]
|
|
edge = {
|
|
"id": edge_id,
|
|
"src": source_id,
|
|
"trg": rel_id,
|
|
"type": edge_type_label.str2int("add"),
|
|
}
|
|
edges.append(edge)
|
|
|
|
for adu_id, adu in zip(document.metadata["adu_ids"], document.adus):
|
|
for edu in adu.annotations:
|
|
source_id = edus[edu]["id"]
|
|
target_id = adus[adu]["id"]
|
|
edge_id = document.metadata["rel_seg_ids"][source_id]
|
|
edge = {
|
|
"id": edge_id,
|
|
"src": source_id,
|
|
"trg": target_id,
|
|
"type": edge_type_label.str2int("seg"),
|
|
}
|
|
edges.append(edge)
|
|
|
|
result["edges"] = ld2dl(
|
|
sorted(edges, key=lambda x: x["id"]), keys=["id", "src", "trg", "type"]
|
|
)
|
|
return result
|
|
|
|
|
|
def convert_to_text_document_with_labeled_spans_and_binary_relations(
|
|
doc: ArgMicroDocument,
|
|
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
|
|
|
|
entities = []
|
|
adu2entity: Dict[LabeledAnnotationCollection, Span] = {}
|
|
for adu in doc.adus:
|
|
edus: Set[Span] = set(adu.annotations)
|
|
start = min(edu.start for edu in edus)
|
|
end = max(edu.end for edu in edus)
|
|
|
|
for edu in doc.edus:
|
|
if (start <= edu.start < end or start < edu.end <= end) and edu not in edus:
|
|
raise Exception(f"edu {edu} is overlapping with adu {adu}, but is not part of it")
|
|
entity = LabeledSpan(start=start, end=end, label=adu.label)
|
|
entities.append(entity)
|
|
adu2entity[adu] = entity
|
|
relations = []
|
|
for relation in doc.relations:
|
|
|
|
for head in relation.heads:
|
|
for tail in relation.tails:
|
|
rel = BinaryRelation(
|
|
label=relation.label, head=adu2entity[head], tail=adu2entity[tail]
|
|
)
|
|
relations.append(rel)
|
|
|
|
for head1, head2 in combinations(relation.heads, 2):
|
|
rel = BinaryRelation(label="joint", head=adu2entity[head1], tail=adu2entity[head2])
|
|
relations.append(rel)
|
|
|
|
rel = BinaryRelation(label="joint", head=adu2entity[head2], tail=adu2entity[head1])
|
|
relations.append(rel)
|
|
|
|
metadata = copy.deepcopy(doc.metadata)
|
|
if len(doc.stance) > 0:
|
|
metadata["stance"] = doc.stance[0].label
|
|
metadata["topic"] = doc.topic_id
|
|
result = TextDocumentWithLabeledSpansAndBinaryRelations(
|
|
text=doc.text, id=doc.id, metadata=doc.metadata
|
|
)
|
|
result.labeled_spans.extend(entities)
|
|
result.binary_relations.extend(relations)
|
|
|
|
return result
|
|
|
|
|
|
class ArgMicro(GeneratorBasedBuilder):
|
|
DOCUMENT_TYPE = ArgMicroDocument
|
|
|
|
DOCUMENT_CONVERTERS = {
|
|
TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
|
|
}
|
|
|
|
BASE_DATASET_PATH = "DFKI-SLT/argmicro"
|
|
BASE_DATASET_REVISION = "282733d6d57243f2a202d81143c4e31bb250e663"
|
|
|
|
BUILDER_CONFIGS = [datasets.BuilderConfig(name="en"), datasets.BuilderConfig(name="de")]
|
|
|
|
def _generate_document_kwargs(self, dataset):
|
|
return {
|
|
"adu_type_label": dataset.features["adus"].feature["type"],
|
|
"edge_type_label": dataset.features["edges"].feature["type"],
|
|
"stance_label": dataset.features["stance"],
|
|
}
|
|
|
|
def _generate_document(self, example, **kwargs):
|
|
return example_to_document(example, **kwargs)
|
|
|