|
# PIE Dataset Card for "SciDTB Argmin" |
|
|
|
This is a [PyTorch-IE](https://github.com/ChristophAlt/pytorch-ie) wrapper for the |
|
[SciDTB ArgMin Huggingface dataset loading script](https://huggingface.co/datasets/DFKI-SLT/scidtb_argmin). |
|
|
|
## Usage |
|
|
|
```python |
|
from pie_datasets import load_dataset |
|
from pytorch_ie.documents import TextDocumentWithLabeledSpansAndBinaryRelations |
|
|
|
# load English variant |
|
dataset = load_dataset("pie/scidtb_argmin") |
|
|
|
# if required, normalize the document type (see section Document Converters below) |
|
dataset_converted = dataset.to_document_type(TextDocumentWithLabeledSpansAndBinaryRelations) |
|
assert isinstance(dataset_converted["train"][0], TextDocumentWithLabeledSpansAndBinaryRelations) |
|
|
|
# get first relation in the first document |
|
doc = dataset_converted["train"][0] |
|
print(doc.binary_relations[0]) |
|
# BinaryRelation(head=LabeledSpan(start=251, end=454, label='means', score=1.0), tail=LabeledSpan(start=455, end=712, label='proposal', score=1.0), label='detail', score=1.0) |
|
print(doc.binary_relations[0].resolve()) |
|
# ('detail', (('means', 'We observe , identify , and detect naturally occurring signals of interestingness in click transitions on the Web between source and target documents , which we collect from commercial Web browser logs .'), ('proposal', 'The DSSM is trained on millions of Web transitions , and maps source-target document pairs to feature vectors in a latent space in such a way that the distance between source documents and their corresponding interesting targets in that space is minimized .'))) |
|
``` |
|
|
|
## Data Schema |
|
|
|
The document type for this dataset is `SciDTBArgminDocument` which defines the following data fields: |
|
|
|
- `tokens` (tuple of string) |
|
- `id` (str, optional) |
|
- `metadata` (dictionary, optional) |
|
|
|
and the following annotation layers: |
|
|
|
- `units` (annotation type: `LabeledSpan`, target: `tokens`) |
|
- `relations` (annotation type: `BinaryRelation`, target: `units`) |
|
|
|
See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/annotations.py) for the annotation type definitions. |
|
|
|
## Document Converters |
|
|
|
The dataset provides document converters for the following target document types: |
|
|
|
- `pytorch_ie.documents.TextDocumentWithLabeledSpansAndBinaryRelations` |
|
- `labeled_spans`: `LabeledSpan` annotations, converted from`SciDTBArgminDocument`'s `units` |
|
- labels: `proposal`, `assertion`, `result`, `observation`, `means`, `description` |
|
- tuples of `tokens` are joined with a whitespace to create `text` for `LabeledSpans` |
|
- `binary_relations`: `BinaryRelation` annotations, converted from `SciDTBArgminDocument`'s `relations` |
|
- labels: `support`, `attack`, `additional`, `detail`, `sequence` |
|
|
|
See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py) for the document type |
|
definitions. |
|
|
|
### Collected Statistics after Document Conversion |
|
|
|
We use the script `evaluate_documents.py` from [PyTorch-IE-Hydra-Template](https://github.com/ArneBinder/pytorch-ie-hydra-template-1) to generate these statistics. |
|
After checking out that code, the statistics and plots can be generated by the command: |
|
|
|
```commandline |
|
python src/evaluate_documents.py dataset=scidtb_argmin_base metric=METRIC |
|
``` |
|
|
|
where a `METRIC` is called according to the available metric configs in `config/metric/METRIC` (see [metrics](https://github.com/ArneBinder/pytorch-ie-hydra-template-1/tree/main/configs/metric)). |
|
|
|
This also requires to have the following dataset config in `configs/dataset/scidtb_argmin_base.yaml` of this dataset within the repo directory: |
|
|
|
```commandline |
|
_target_: src.utils.execute_pipeline |
|
input: |
|
_target_: pie_datasets.DatasetDict.load_dataset |
|
path: pie/scidtb_argmin |
|
revision: 335a8e6168919d7f204c6920eceb96745dbd161b |
|
``` |
|
|
|
For token based metrics, this uses `bert-base-uncased` from `transformer.AutoTokenizer` (see [AutoTokenizer](https://huggingface.co/docs/transformers/v4.37.1/en/model_doc/auto#transformers.AutoTokenizer), and [bert-based-uncased](https://huggingface.co/bert-base-uncased) to tokenize `text` in `TextDocumentWithLabeledSpansAndBinaryRelations` (see [document type](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py)). |
|
|
|
#### Relation argument (outer) token distance per label |
|
|
|
The distance is measured from the first token of the first argumentative unit to the last token of the last unit, a.k.a. outer distance. |
|
|
|
We collect the following statistics: number of documents in the split (*no. doc*), no. of relations (*len*), mean of token distance (*mean*), standard deviation of the distance (*std*), minimum outer distance (*min*), and maximum outer distance (*max*). |
|
We also present histograms in the collapsible, showing the distribution of these relation distances (x-axis; and unit-counts in y-axis), accordingly. |
|
|
|
<details> |
|
<summary>Command</summary> |
|
|
|
``` |
|
python src/evaluate_documents.py dataset=scidtb_argmin_base metric=relation_argument_token_distances |
|
``` |
|
|
|
</details> |
|
|
|
| | len | max | mean | min | std | |
|
| :--------- | --: | --: | -----: | --: | -----: | |
|
| ALL | 586 | 277 | 75.239 | 21 | 40.312 | |
|
| additional | 54 | 180 | 59.593 | 36 | 29.306 | |
|
| detail | 258 | 163 | 65.62 | 22 | 29.21 | |
|
| sequence | 22 | 93 | 59.727 | 38 | 17.205 | |
|
| support | 252 | 277 | 89.794 | 21 | 48.118 | |
|
|
|
<details> |
|
<summary>Histogram (split: train, 60 documents)</summary> |
|
|
|
![rtd-label_scitdb-argmin.png](img%2Frtd-label_scitdb-argmin.png) |
|
|
|
</details> |
|
|
|
#### Span lengths (tokens) |
|
|
|
The span length is measured from the first token of the first argumentative unit to the last token of the particular unit. |
|
|
|
We collect the following statistics: number of documents in the split (*no. doc*), no. of spans (*len*), mean of number of tokens in a span (*mean*), standard deviation of the number of tokens (*std*), minimum tokens in a span (*min*), and maximum tokens in a span (*max*). |
|
We also present histograms in the collapsible, showing the distribution of these token-numbers (x-axis; and unit-counts in y-axis), accordingly. |
|
|
|
<details> |
|
<summary>Command</summary> |
|
|
|
``` |
|
python src/evaluate_documents.py dataset=scidtb_argmin_base metric=span_lengths_tokens |
|
``` |
|
|
|
</details> |
|
|
|
| statistics | train | |
|
| :--------- | -----: | |
|
| no. doc | 60 | |
|
| len | 353 | |
|
| mean | 27.946 | |
|
| std | 13.054 | |
|
| min | 7 | |
|
| max | 123 | |
|
|
|
<details> |
|
<summary>Histogram (split: train, 60 documents)</summary> |
|
|
|
![slt_scitdb-argmin.png](img%2Fslt_scitdb-argmin.png) |
|
|
|
</details> |
|
|
|
#### Token length (tokens) |
|
|
|
The token length is measured from the first token of the document to the last one. |
|
|
|
We collect the following statistics: number of documents in the split (*no. doc*), mean of document token-length (*mean*), standard deviation of the length (*std*), minimum number of tokens in a document (*min*), and maximum number of tokens in a document (*max*). |
|
We also present histograms in the collapsible, showing the distribution of these token lengths (x-axis; and unit-counts in y-axis), accordingly. |
|
|
|
<details> |
|
<summary>Command</summary> |
|
|
|
``` |
|
python src/evaluate_documents.py dataset=scidtb_argmin_base metric=count_text_tokens |
|
``` |
|
|
|
</details> |
|
|
|
| statistics | train | |
|
| :--------- | ------: | |
|
| no. doc | 60 | |
|
| mean | 164.417 | |
|
| std | 64.572 | |
|
| min | 80 | |
|
| max | 532 | |
|
|
|
<details> |
|
<summary>Histogram (split: train, 60 documents)</summary> |
|
|
|
![tl_scidtb-argmin.png](img%2Ftl_scidtb-argmin.png) |
|
|
|
</details> |
|
|