|
import dataclasses
|
|
import logging
|
|
from typing import Any, Dict, List, Tuple
|
|
|
|
import datasets
|
|
from pie_modules.document.processing import token_based_document_to_text_based
|
|
from pytorch_ie.annotations import BinaryRelation, LabeledSpan
|
|
from pytorch_ie.core import AnnotationList, annotation_field
|
|
from pytorch_ie.documents import (
|
|
TextDocumentWithLabeledSpansAndBinaryRelations,
|
|
TokenBasedDocument,
|
|
)
|
|
from pytorch_ie.utils.span import bio_tags_to_spans
|
|
|
|
from pie_datasets import GeneratorBasedBuilder
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def labels_and_spans_to_bio_tags(
|
|
labels: List[str], spans: List[Tuple[int, int]], sequence_length: int
|
|
) -> List[str]:
|
|
bio_tags = ["O"] * sequence_length
|
|
for label, (start, end) in zip(labels, spans):
|
|
bio_tags[start] = f"B-{label}"
|
|
for i in range(start + 1, end):
|
|
bio_tags[i] = f"I-{label}"
|
|
return bio_tags
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class SciDTBArgminDocument(TokenBasedDocument):
|
|
units: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
|
|
relations: AnnotationList[BinaryRelation] = annotation_field(target="units")
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class SimplifiedSciDTBArgminDocument(TokenBasedDocument):
|
|
labeled_spans: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
|
|
binary_relations: AnnotationList[BinaryRelation] = annotation_field(target="labeled_spans")
|
|
|
|
|
|
def example_to_document(
|
|
example: Dict[str, Any],
|
|
unit_bio: datasets.ClassLabel,
|
|
unit_label: datasets.ClassLabel,
|
|
relation: datasets.ClassLabel,
|
|
):
|
|
document = SciDTBArgminDocument(id=example["id"], tokens=tuple(example["data"]["token"]))
|
|
bio_tags = unit_bio.int2str(example["data"]["unit-bio"])
|
|
unit_labels = unit_label.int2str(example["data"]["unit-label"])
|
|
roles = relation.int2str(example["data"]["role"])
|
|
tag_sequence = [
|
|
f"{bio}-{label}|{role}|{parent_offset}"
|
|
for bio, label, role, parent_offset in zip(
|
|
bio_tags, unit_labels, roles, example["data"]["parent-offset"]
|
|
)
|
|
]
|
|
spans_with_label = sorted(
|
|
bio_tags_to_spans(tag_sequence), key=lambda label_and_span: label_and_span[1][0]
|
|
)
|
|
labels, spans = zip(*spans_with_label)
|
|
span_unit_labels, span_roles, span_parent_offsets = zip(
|
|
*[label.split("|") for label in labels]
|
|
)
|
|
|
|
units = [
|
|
LabeledSpan(start=start, end=end + 1, label=label)
|
|
for (start, end), label in zip(spans, span_unit_labels)
|
|
]
|
|
document.units.extend(units)
|
|
|
|
|
|
relations = []
|
|
for idx, parent_offset in enumerate(span_parent_offsets):
|
|
if span_roles[idx] != "none":
|
|
relations.append(
|
|
BinaryRelation(
|
|
head=units[idx], tail=units[idx + int(parent_offset)], label=span_roles[idx]
|
|
)
|
|
)
|
|
|
|
document.relations.extend(relations)
|
|
|
|
return document
|
|
|
|
|
|
def document_to_example(
|
|
document: SciDTBArgminDocument,
|
|
unit_bio: datasets.ClassLabel,
|
|
unit_label: datasets.ClassLabel,
|
|
relation: datasets.ClassLabel,
|
|
) -> Dict[str, Any]:
|
|
unit2idx = {unit: idx for idx, unit in enumerate(document.units)}
|
|
unit2parent_relation = {relation.head: relation for relation in document.relations}
|
|
|
|
unit_labels = [unit.label for unit in document.units]
|
|
roles = [
|
|
unit2parent_relation[unit].label if unit in unit2parent_relation else "none"
|
|
for unit in document.units
|
|
]
|
|
parent_offsets = [
|
|
unit2idx[unit2parent_relation[unit].tail] - idx if unit in unit2parent_relation else 0
|
|
for idx, unit in enumerate(document.units)
|
|
]
|
|
labels = [
|
|
f"{unit_label}-{role}-{parent_offset}"
|
|
for unit_label, role, parent_offset in zip(unit_labels, roles, parent_offsets)
|
|
]
|
|
|
|
tag_sequence = labels_and_spans_to_bio_tags(
|
|
labels=labels,
|
|
spans=[(unit.start, unit.end) for unit in document.units],
|
|
sequence_length=len(document.tokens),
|
|
)
|
|
bio_tags, unit_labels, roles, parent_offsets = zip(
|
|
*[tag.split("-", maxsplit=3) for tag in tag_sequence]
|
|
)
|
|
|
|
data = {
|
|
"token": list(document.tokens),
|
|
"unit-bio": unit_bio.str2int(bio_tags),
|
|
"unit-label": unit_label.str2int(unit_labels),
|
|
"role": relation.str2int(roles),
|
|
"parent-offset": [int(idx_str) for idx_str in parent_offsets],
|
|
}
|
|
result = {"id": document.id, "data": data}
|
|
return result
|
|
|
|
|
|
def convert_to_text_document_with_labeled_spans_and_binary_relations(
|
|
document: SciDTBArgminDocument,
|
|
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
|
|
doc_simplified = document.as_type(
|
|
SimplifiedSciDTBArgminDocument,
|
|
field_mapping={"units": "labeled_spans", "relations": "binary_relations"},
|
|
)
|
|
result = token_based_document_to_text_based(
|
|
doc_simplified,
|
|
result_document_type=TextDocumentWithLabeledSpansAndBinaryRelations,
|
|
join_tokens_with=" ",
|
|
)
|
|
return result
|
|
|
|
|
|
class SciDTBArgmin(GeneratorBasedBuilder):
|
|
DOCUMENT_TYPE = SciDTBArgminDocument
|
|
|
|
DOCUMENT_CONVERTERS = {
|
|
TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
|
|
}
|
|
|
|
BASE_DATASET_PATH = "DFKI-SLT/scidtb_argmin"
|
|
BASE_DATASET_REVISION = "8c02587edcb47ab5b102692bd10bfffd1844a09b"
|
|
|
|
BUILDER_CONFIGS = [datasets.BuilderConfig(name="default")]
|
|
|
|
DEFAULT_CONFIG_NAME = "default"
|
|
|
|
def _generate_document_kwargs(self, dataset):
|
|
return {
|
|
"unit_bio": dataset.features["data"].feature["unit-bio"],
|
|
"unit_label": dataset.features["data"].feature["unit-label"],
|
|
"relation": dataset.features["data"].feature["role"],
|
|
}
|
|
|
|
def _generate_document(self, example, unit_bio, unit_label, relation):
|
|
return example_to_document(
|
|
example,
|
|
unit_bio=unit_bio,
|
|
unit_label=unit_label,
|
|
relation=relation,
|
|
)
|
|
|