ArneBinder
commited on
Commit
•
1e5e4bd
1
Parent(s):
cd86023
Create scidtb_argmin.py
Browse files- scidtb_argmin.py +146 -0
scidtb_argmin.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
import logging
|
3 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
import pytorch_ie.data.builder
|
7 |
+
from pytorch_ie.annotations import BinaryRelation, LabeledSpan
|
8 |
+
from pytorch_ie.core import AnnotationList, Document, annotation_field
|
9 |
+
from pytorch_ie.utils.span import bio_tags_to_spans
|
10 |
+
|
11 |
+
log = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
def labels_and_spans_to_bio_tags(
|
15 |
+
labels: List[str], spans: List[Tuple[int, int]], sequence_length: int
|
16 |
+
) -> List[str]:
|
17 |
+
bio_tags = ["O"] * sequence_length
|
18 |
+
for label, (start, end) in zip(labels, spans):
|
19 |
+
bio_tags[start] = f"B-{label}"
|
20 |
+
for i in range(start + 1, end):
|
21 |
+
bio_tags[i] = f"I-{label}"
|
22 |
+
return bio_tags
|
23 |
+
|
24 |
+
|
25 |
+
@dataclasses.dataclass
|
26 |
+
class SciDTBArgminDocument(Document):
|
27 |
+
tokens: Tuple[str, ...]
|
28 |
+
id: Optional[str] = None
|
29 |
+
metadata: Dict[str, Any] = dataclasses.field(default_factory=dict)
|
30 |
+
units: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
|
31 |
+
relations: AnnotationList[BinaryRelation] = annotation_field(target="units")
|
32 |
+
|
33 |
+
|
34 |
+
def example_to_document(
|
35 |
+
example: Dict[str, Any],
|
36 |
+
unit_bio_int2str: Callable[[int], str],
|
37 |
+
unit_label_int2str: Callable[[int], str],
|
38 |
+
relation_int2str: Callable[[int], str],
|
39 |
+
):
|
40 |
+
|
41 |
+
document = SciDTBArgminDocument(id=example["id"], tokens=tuple(example["data"]["token"]))
|
42 |
+
bio_tags = unit_bio_int2str(example["data"]["unit-bio"])
|
43 |
+
unit_labels = unit_label_int2str(example["data"]["unit-label"])
|
44 |
+
roles = relation_int2str(example["data"]["role"])
|
45 |
+
tag_sequence = [
|
46 |
+
f"{bio}-{label}|{role}|{parent_offset}"
|
47 |
+
for bio, label, role, parent_offset in zip(
|
48 |
+
bio_tags, unit_labels, roles, example["data"]["parent-offset"]
|
49 |
+
)
|
50 |
+
]
|
51 |
+
spans_with_label = sorted(
|
52 |
+
bio_tags_to_spans(tag_sequence), key=lambda label_and_span: label_and_span[1][0]
|
53 |
+
)
|
54 |
+
labels, spans = zip(*spans_with_label)
|
55 |
+
span_unit_labels, span_roles, span_parent_offsets = zip(
|
56 |
+
*[label.split("|") for label in labels]
|
57 |
+
)
|
58 |
+
|
59 |
+
units = [
|
60 |
+
LabeledSpan(start=start, end=end + 1, label=label)
|
61 |
+
for (start, end), label in zip(spans, span_unit_labels)
|
62 |
+
]
|
63 |
+
document.units.extend(units)
|
64 |
+
|
65 |
+
# TODO: check if direction of the relation is correct (what is the head / tail of the relation?)
|
66 |
+
relations = []
|
67 |
+
for idx, parent_offset in enumerate(span_parent_offsets):
|
68 |
+
if span_roles[idx] != "none":
|
69 |
+
relations.append(
|
70 |
+
BinaryRelation(
|
71 |
+
head=units[idx], tail=units[idx + int(parent_offset)], label=span_roles[idx]
|
72 |
+
)
|
73 |
+
)
|
74 |
+
|
75 |
+
document.relations.extend(relations)
|
76 |
+
|
77 |
+
return document
|
78 |
+
|
79 |
+
|
80 |
+
def document_to_example(
|
81 |
+
document: SciDTBArgminDocument,
|
82 |
+
unit_bio_str2int: Callable[[str], int],
|
83 |
+
unit_label_str2int: Callable[[str], int],
|
84 |
+
relation_str2int: Callable[[str], int],
|
85 |
+
) -> Dict[str, Any]:
|
86 |
+
|
87 |
+
unit2idx = {unit: idx for idx, unit in enumerate(document.units)}
|
88 |
+
unit2parent_relation = {relation.head: relation for relation in document.relations}
|
89 |
+
|
90 |
+
unit_labels = [unit.label for unit in document.units]
|
91 |
+
roles = [
|
92 |
+
unit2parent_relation[unit].label if unit in unit2parent_relation else "none"
|
93 |
+
for unit in document.units
|
94 |
+
]
|
95 |
+
parent_offsets = [
|
96 |
+
unit2idx[unit2parent_relation[unit].tail] - idx if unit in unit2parent_relation else 0
|
97 |
+
for idx, unit in enumerate(document.units)
|
98 |
+
]
|
99 |
+
labels = [
|
100 |
+
f"{unit_label}-{role}-{parent_offset}"
|
101 |
+
for unit_label, role, parent_offset in zip(unit_labels, roles, parent_offsets)
|
102 |
+
]
|
103 |
+
|
104 |
+
tag_sequence = labels_and_spans_to_bio_tags(
|
105 |
+
labels=labels,
|
106 |
+
spans=[(unit.start, unit.end) for unit in document.units],
|
107 |
+
sequence_length=len(document.tokens),
|
108 |
+
)
|
109 |
+
bio_tags, unit_labels, roles, parent_offsets = zip(
|
110 |
+
*[tag.split("-", maxsplit=3) for tag in tag_sequence]
|
111 |
+
)
|
112 |
+
|
113 |
+
data = {
|
114 |
+
"token": list(document.tokens),
|
115 |
+
"unit-bio": unit_bio_str2int(bio_tags),
|
116 |
+
"unit-label": unit_label_str2int(unit_labels),
|
117 |
+
"role": relation_str2int(roles),
|
118 |
+
"parent-offset": [int(idx_str) for idx_str in parent_offsets],
|
119 |
+
}
|
120 |
+
result = {"id": document.id, "data": data}
|
121 |
+
return result
|
122 |
+
|
123 |
+
|
124 |
+
class SciDTBArgmin(pytorch_ie.data.builder.GeneratorBasedBuilder):
|
125 |
+
DOCUMENT_TYPE = SciDTBArgminDocument
|
126 |
+
|
127 |
+
BASE_DATASET_PATH = "DFKI-SLT/scidtb_argmin"
|
128 |
+
|
129 |
+
BUILDER_CONFIGS = [datasets.BuilderConfig(name="default")]
|
130 |
+
|
131 |
+
DEFAULT_CONFIG_NAME = "default"
|
132 |
+
|
133 |
+
def _generate_document_kwargs(self, dataset):
|
134 |
+
return {
|
135 |
+
"unit_bio_int2str": dataset.features["data"].feature["unit-bio"].int2str,
|
136 |
+
"unit_label_int2str": dataset.features["data"].feature["unit-label"].int2str,
|
137 |
+
"relation_int2str": dataset.features["data"].feature["role"].int2str,
|
138 |
+
}
|
139 |
+
|
140 |
+
def _generate_document(self, example, unit_bio_int2str, unit_label_int2str, relation_int2str):
|
141 |
+
return example_to_document(
|
142 |
+
example,
|
143 |
+
unit_bio_int2str=unit_bio_int2str,
|
144 |
+
unit_label_int2str=unit_label_int2str,
|
145 |
+
relation_int2str=relation_int2str,
|
146 |
+
)
|