ArneBinder
commited on
Commit
•
a8730dc
1
Parent(s):
1e5e4bd
update to pie-datasets 0.3.3
Browse files- README.md +28 -0
- requirements.txt +2 -0
- scidtb_argmin.py +55 -28
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# PIE Dataset Card for "SciDTB Argmin"
|
2 |
+
|
3 |
+
This is a [PyTorch-IE](https://github.com/ChristophAlt/pytorch-ie) wrapper for the
|
4 |
+
[SciDTB ArgMin Huggingface dataset loading script](https://huggingface.co/datasets/DFKI-SLT/scidtb_argmin).
|
5 |
+
|
6 |
+
## Data Schema
|
7 |
+
|
8 |
+
The document type for this dataset is `SciDTBArgminDocument` which defines the following data fields:
|
9 |
+
|
10 |
+
- `tokens` (Tuple of string)
|
11 |
+
- `id` (str, optional)
|
12 |
+
- `metadata` (dictionary, optional)
|
13 |
+
|
14 |
+
and the following annotation layers:
|
15 |
+
|
16 |
+
- `units` (annotation type: `LabeledSpan`, target: `tokens`)
|
17 |
+
- `relations` (annotation type: `BinaryRelation`, target: `units`)
|
18 |
+
|
19 |
+
See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/annotations.py) for the annotation type definitions.
|
20 |
+
|
21 |
+
## Document Converters
|
22 |
+
|
23 |
+
The dataset provides document converters for the following target document types:
|
24 |
+
|
25 |
+
- `pytorch_ie.documents.TextDocumentWithLabeledSpansAndBinaryRelations`
|
26 |
+
|
27 |
+
See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py) for the document type
|
28 |
+
definitions.
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pie-datasets>=0.3.3
|
2 |
+
pytorch-ie>=0.29.1
|
scidtb_argmin.py
CHANGED
@@ -3,11 +3,17 @@ import logging
|
|
3 |
from typing import Any, Callable, Dict, List, Optional, Tuple
|
4 |
|
5 |
import datasets
|
6 |
-
import pytorch_ie.data.builder
|
7 |
from pytorch_ie.annotations import BinaryRelation, LabeledSpan
|
8 |
from pytorch_ie.core import AnnotationList, Document, annotation_field
|
|
|
|
|
|
|
|
|
9 |
from pytorch_ie.utils.span import bio_tags_to_spans
|
10 |
|
|
|
|
|
|
|
11 |
log = logging.getLogger(__name__)
|
12 |
|
13 |
|
@@ -23,25 +29,27 @@ def labels_and_spans_to_bio_tags(
|
|
23 |
|
24 |
|
25 |
@dataclasses.dataclass
|
26 |
-
class SciDTBArgminDocument(
|
27 |
-
tokens: Tuple[str, ...]
|
28 |
-
id: Optional[str] = None
|
29 |
-
metadata: Dict[str, Any] = dataclasses.field(default_factory=dict)
|
30 |
units: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
|
31 |
relations: AnnotationList[BinaryRelation] = annotation_field(target="units")
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def example_to_document(
|
35 |
example: Dict[str, Any],
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
):
|
40 |
-
|
41 |
document = SciDTBArgminDocument(id=example["id"], tokens=tuple(example["data"]["token"]))
|
42 |
-
bio_tags =
|
43 |
-
unit_labels =
|
44 |
-
roles =
|
45 |
tag_sequence = [
|
46 |
f"{bio}-{label}|{role}|{parent_offset}"
|
47 |
for bio, label, role, parent_offset in zip(
|
@@ -62,7 +70,7 @@ def example_to_document(
|
|
62 |
]
|
63 |
document.units.extend(units)
|
64 |
|
65 |
-
#
|
66 |
relations = []
|
67 |
for idx, parent_offset in enumerate(span_parent_offsets):
|
68 |
if span_roles[idx] != "none":
|
@@ -79,11 +87,10 @@ def example_to_document(
|
|
79 |
|
80 |
def document_to_example(
|
81 |
document: SciDTBArgminDocument,
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
) -> Dict[str, Any]:
|
86 |
-
|
87 |
unit2idx = {unit: idx for idx, unit in enumerate(document.units)}
|
88 |
unit2parent_relation = {relation.head: relation for relation in document.relations}
|
89 |
|
@@ -112,19 +119,39 @@ def document_to_example(
|
|
112 |
|
113 |
data = {
|
114 |
"token": list(document.tokens),
|
115 |
-
"unit-bio":
|
116 |
-
"unit-label":
|
117 |
-
"role":
|
118 |
"parent-offset": [int(idx_str) for idx_str in parent_offsets],
|
119 |
}
|
120 |
result = {"id": document.id, "data": data}
|
121 |
return result
|
122 |
|
123 |
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
DOCUMENT_TYPE = SciDTBArgminDocument
|
126 |
|
|
|
|
|
|
|
|
|
127 |
BASE_DATASET_PATH = "DFKI-SLT/scidtb_argmin"
|
|
|
128 |
|
129 |
BUILDER_CONFIGS = [datasets.BuilderConfig(name="default")]
|
130 |
|
@@ -132,15 +159,15 @@ class SciDTBArgmin(pytorch_ie.data.builder.GeneratorBasedBuilder):
|
|
132 |
|
133 |
def _generate_document_kwargs(self, dataset):
|
134 |
return {
|
135 |
-
"
|
136 |
-
"
|
137 |
-
"
|
138 |
}
|
139 |
|
140 |
-
def _generate_document(self, example,
|
141 |
return example_to_document(
|
142 |
example,
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
)
|
|
|
3 |
from typing import Any, Callable, Dict, List, Optional, Tuple
|
4 |
|
5 |
import datasets
|
|
|
6 |
from pytorch_ie.annotations import BinaryRelation, LabeledSpan
|
7 |
from pytorch_ie.core import AnnotationList, Document, annotation_field
|
8 |
+
from pytorch_ie.documents import (
|
9 |
+
TextDocumentWithLabeledSpansAndBinaryRelations,
|
10 |
+
TokenBasedDocument,
|
11 |
+
)
|
12 |
from pytorch_ie.utils.span import bio_tags_to_spans
|
13 |
|
14 |
+
from pie_datasets import GeneratorBasedBuilder
|
15 |
+
from pie_datasets.document.conversion import token_based_document_to_text_based
|
16 |
+
|
17 |
log = logging.getLogger(__name__)
|
18 |
|
19 |
|
|
|
29 |
|
30 |
|
31 |
@dataclasses.dataclass
|
32 |
+
class SciDTBArgminDocument(TokenBasedDocument):
|
|
|
|
|
|
|
33 |
units: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
|
34 |
relations: AnnotationList[BinaryRelation] = annotation_field(target="units")
|
35 |
|
36 |
|
37 |
+
@dataclasses.dataclass
|
38 |
+
class SimplifiedSciDTBArgminDocument(TokenBasedDocument):
|
39 |
+
labeled_spans: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
|
40 |
+
binary_relations: AnnotationList[BinaryRelation] = annotation_field(target="labeled_spans")
|
41 |
+
|
42 |
+
|
43 |
def example_to_document(
|
44 |
example: Dict[str, Any],
|
45 |
+
unit_bio: datasets.ClassLabel,
|
46 |
+
unit_label: datasets.ClassLabel,
|
47 |
+
relation: datasets.ClassLabel,
|
48 |
):
|
|
|
49 |
document = SciDTBArgminDocument(id=example["id"], tokens=tuple(example["data"]["token"]))
|
50 |
+
bio_tags = unit_bio.int2str(example["data"]["unit-bio"])
|
51 |
+
unit_labels = unit_label.int2str(example["data"]["unit-label"])
|
52 |
+
roles = relation.int2str(example["data"]["role"])
|
53 |
tag_sequence = [
|
54 |
f"{bio}-{label}|{role}|{parent_offset}"
|
55 |
for bio, label, role, parent_offset in zip(
|
|
|
70 |
]
|
71 |
document.units.extend(units)
|
72 |
|
73 |
+
# The relation direction is as in "f{head} {relation_label} {tail}"
|
74 |
relations = []
|
75 |
for idx, parent_offset in enumerate(span_parent_offsets):
|
76 |
if span_roles[idx] != "none":
|
|
|
87 |
|
88 |
def document_to_example(
|
89 |
document: SciDTBArgminDocument,
|
90 |
+
unit_bio: datasets.ClassLabel,
|
91 |
+
unit_label: datasets.ClassLabel,
|
92 |
+
relation: datasets.ClassLabel,
|
93 |
) -> Dict[str, Any]:
|
|
|
94 |
unit2idx = {unit: idx for idx, unit in enumerate(document.units)}
|
95 |
unit2parent_relation = {relation.head: relation for relation in document.relations}
|
96 |
|
|
|
119 |
|
120 |
data = {
|
121 |
"token": list(document.tokens),
|
122 |
+
"unit-bio": unit_bio.str2int(bio_tags),
|
123 |
+
"unit-label": unit_label.str2int(unit_labels),
|
124 |
+
"role": relation.str2int(roles),
|
125 |
"parent-offset": [int(idx_str) for idx_str in parent_offsets],
|
126 |
}
|
127 |
result = {"id": document.id, "data": data}
|
128 |
return result
|
129 |
|
130 |
|
131 |
+
def convert_to_text_document_with_labeled_spans_and_binary_relations(
|
132 |
+
document: SciDTBArgminDocument,
|
133 |
+
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
|
134 |
+
doc_simplified = document.as_type(
|
135 |
+
SimplifiedSciDTBArgminDocument,
|
136 |
+
field_mapping={"units": "labeled_spans", "relations": "binary_relations"},
|
137 |
+
)
|
138 |
+
result = token_based_document_to_text_based(
|
139 |
+
doc_simplified,
|
140 |
+
result_document_type=TextDocumentWithLabeledSpansAndBinaryRelations,
|
141 |
+
join_tokens_with=" ",
|
142 |
+
)
|
143 |
+
return result
|
144 |
+
|
145 |
+
|
146 |
+
class SciDTBArgmin(GeneratorBasedBuilder):
|
147 |
DOCUMENT_TYPE = SciDTBArgminDocument
|
148 |
|
149 |
+
DOCUMENT_CONVERTERS = {
|
150 |
+
TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
|
151 |
+
}
|
152 |
+
|
153 |
BASE_DATASET_PATH = "DFKI-SLT/scidtb_argmin"
|
154 |
+
BASE_DATASET_REVISION = "8c02587edcb47ab5b102692bd10bfffd1844a09b"
|
155 |
|
156 |
BUILDER_CONFIGS = [datasets.BuilderConfig(name="default")]
|
157 |
|
|
|
159 |
|
160 |
def _generate_document_kwargs(self, dataset):
|
161 |
return {
|
162 |
+
"unit_bio": dataset.features["data"].feature["unit-bio"],
|
163 |
+
"unit_label": dataset.features["data"].feature["unit-label"],
|
164 |
+
"relation": dataset.features["data"].feature["role"],
|
165 |
}
|
166 |
|
167 |
+
def _generate_document(self, example, unit_bio, unit_label, relation):
|
168 |
return example_to_document(
|
169 |
example,
|
170 |
+
unit_bio=unit_bio,
|
171 |
+
unit_label=unit_label,
|
172 |
+
relation=relation,
|
173 |
)
|