## Overview Original dataset available [here](https://gluebenchmark.com/diagnostics). ## Dataset curation Filled in the empty rows of columns "lexical semantics", "predicate-argument structure", "logic", "knowledge" with empty string `""`. Labels are encoded as follows ``` {"entailment": 0, "neutral": 1, "contradiction": 2} ``` ## Code to create dataset ```python import pandas as pd from datasets import Features, Value, ClassLabel, Dataset df = pd.read_csv("/diagnostic-full.tsv", sep="\t") # column names to lower df.columns = df.columns.str.lower() # fill na assert df["label"].isna().sum() == 0 df = df.fillna("") # encode labels df["label"] = df["label"].map({"entailment": 0, "neutral": 1, "contradiction": 2}) # cast to dataset features = Features({ "lexical semantics": Value(dtype="string", id=None), "predicate-argument structure": Value(dtype="string", id=None), "logic": Value(dtype="string", id=None), "knowledge": Value(dtype="string", id=None), "domain": Value(dtype="string", id=None), "premise": Value(dtype="string", id=None), "hypothesis": Value(dtype="string", id=None), "label": ClassLabel(num_classes=3, names=["entailment", "neutral", "contradiction"]), }) dataset = Dataset.from_pandas(df, features=features) dataset.push_to_hub("glue_diagnostics", token="", split="test") ```