import datasets logger = datasets.logging.get_logger(__name__) _LICENSE = "Creative Commons Attribution 4.0 International" _VERSION = "1.1.0" _URL = "https://huggingface.co/datasets/plncmm/wl-medication/resolve/main/" _TRAINING_FILE = "train.conll" _DEV_FILE = "dev.conll" _TEST_FILE = "test.conll" class MedicationConfig(datasets.BuilderConfig): """BuilderConfig for Disease dataset.""" def __init__(self, **kwargs): super(MedicationConfig, self).__init__(**kwargs) class Medication(datasets.GeneratorBasedBuilder): """Medication dataset.""" BUILDER_CONFIGS = [ MedicationConfig( name="Medication", version=datasets.Version(_VERSION), description="Medication dataset"), ] def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-Medication", "I-Medication", ] ) ), } ), supervised_keys=None, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] pos_tags = [] ner_tags = [] for line in f: if line == "\n": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, } guid += 1 tokens = [] ner_tags = [] else: splits = line.split(" ") tokens.append(splits[0]) ner_tags.append(splits[-1].rstrip()) # last example yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, }