File size: 3,873 Bytes
805d7ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a1142f
805d7ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a1142f
 
 
805d7ed
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/bin/env python

"""
    (SDXL counterpart of "cliptextmodel-generate-embeddings.py".
     Not following that name, because we dont use "cliptextmodel")

    Take filenames of an SDXL clip-g type text_encoder2 and config file
    Read in a wordlist from "dictionary"
    Generate the official "embedding" tensor for each one.
    Save the result set to "{outputfile}"

    Defaults to loading openai/clip-vit-large-patch14 from huggingface hub,
    for purposes of tokenizer, since thats what sdxl does anyway
    
    RULES of the loader:
    1. The text_encoder2 model file must appear to be either 
      in current directory or one down. So, do NOT use
        badpath1=some/directory/tree/file.here
        badpath2=/absolutepath
    2. Yes, you MUST have a matching config.json file
    3. if you have no safetensor alternative, you can get away with using pytorch_model.bin

    Sample location for such things that you can download:
        https://huggingface.co/stablediffusionapi/edge-of-realism/tree/main/text_encoder/
    If there is a .safetensors AND a .bin file, ignore the .bin file

    Alternatively, you can also convert a singlefile model, such as is downloaded from civitai,
    by using the utility at
        https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py
    Args should look like
        convert_original_stable_diffusion_to_diffusers.py \
                --checkpoint_file somemodel.safetensors \
                --dump_path extractdir --to_safetensors --from_safetensors
    
"""


outputfile="embeddingsXL.temp.safetensors"

import sys
import torch
from safetensors.torch import save_file
from transformers import CLIPProcessor, CLIPTextModel, CLIPTextModelWithProjection

processor=None


tmodel2=None
model_path2=None
model_config2=None

if len(sys.argv) == 3:
    model_path2=sys.argv[1]
    model_config2=sys.argv[2]
else:
    print("You have to give name of modelfile and config file")
    sys.exit(1)

device=torch.device("cuda")



def initXLCLIPmodel(model_path,model_config):
    global tmodel2,processor
    # yes, oddly they all uses the same one, basically
    processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")

    print("loading",model_path)
    tmodel2 = CLIPTextModelWithProjection.from_pretrained(model_path,config=model_config,local_files_only=True,use_safetensors=True)
    tmodel2.to(device)


def embed_from_text2(text):
    global processor,tmodel2
    inputs = processor(text=text, return_tensors="pt")
    inputs.to(device)

    with torch.no_grad():
        outputs = tmodel2(**inputs)
        embeddings = outputs.text_embeds
    return embeddings


# "inputs" == magic pre-embedding format
def embed_from_inputs(inputs):
    global processor,tmodel2
    with torch.no_grad():
        outputs = tmodel2(**inputs)
        embedding = outputs.text_embeds

    return embedding


initXLCLIPmodel(model_path2,model_config2)
inputs = processor(text="dummy", return_tensors="pt")
inputs.to(device)


with open("dictionary","r") as f:
    tokendict = f.readlines()
    tokendict = [token.strip() for token in tokendict]  # Remove trailing newlines


count=1
all_embeddings = []

for word in tokendict:
    emb = embed_from_text2(word)
    #emb=emb.unsqueeze(0) # stupid matrix magic to make torch.cat work
    all_embeddings.append(emb)
    count+=1
    if (count %100) ==0:
        print(count)



"""
for id in range(49405):
    inputs.input_ids[0][1]=id

    emb=embed_from_inputs(inputs)
    all_embeddings.append(emb)
    if (id %100) ==0:
        print(id)
"""

embs = torch.cat(all_embeddings,dim=0)
print("Shape of result = ",embs.shape)

if len(embs.shape) != 2:
    print("Sanity check: result is wrong shape: it wont work")

print(f"Saving the calculatiuons to {outputfile}...")
save_file({"embeddings": embs}, outputfile)