tokenspace / generate-embedding.py
ppbrown's picture
standalone "Make an embedding file for SD", but non-conventional
d1c7d8d verified
raw
history blame
1.76 kB
#!/bin/env python
""" Work in progress
NB: This is COMPLETELY DIFFERENT from "generate-embeddings.py"!!!
Plan:
Take input for a single word or phrase.
Generate a embedding file, "generated.safetensors"
Save it out, to "generated.safetensors"
Note that you can generate an embedding from two words, or even more
Note also that apparently there are multiple file formats for embeddings.
I only use the simplest of them, in the simplest way.
"""
import sys
import json
import torch
from safetensors.torch import save_file
from transformers import CLIPProcessor,CLIPModel
import logging
# Turn off stupid mesages from CLIPModel.load
logging.disable(logging.WARNING)
clipsrc="openai/clip-vit-large-patch14"
processor=None
model=None
device=torch.device("cuda")
def init():
global processor
global model
# Load the processor and model
print("loading processor from "+clipsrc,file=sys.stderr)
processor = CLIPProcessor.from_pretrained(clipsrc)
print("done",file=sys.stderr)
print("loading model from "+clipsrc,file=sys.stderr)
model = CLIPModel.from_pretrained(clipsrc)
print("done",file=sys.stderr)
model = model.to(device)
def standard_embed_calc(text):
inputs = processor(text=text, return_tensors="pt")
inputs.to(device)
with torch.no_grad():
text_features = model.get_text_features(**inputs)
embedding = text_features[0]
return embedding
init()
word = input("type a phrase to generate an embedding for: ")
emb = standard_embed_calc(word)
embs=emb.unsqueeze(0) # stupid matrix magic to make the cat work
print("Shape of result = ",embs.shape)
output = "generated.safetensors"
print(f"Saving to {output}...")
save_file({"emb_params": embs}, output)