|
|
|
|
|
""" |
|
CONCEPT: |
|
Load in a precalculated embeddings file of all the tokenids (0-49405) |
|
(see "generate-allid-embeddings[XL].py") |
|
|
|
For each dimension, calculate which tokenid has the highest value. |
|
Print out list, keyed by dimension. |
|
|
|
In theory, this should auto-adjust, whether the embeddings file |
|
is SD, or SDXL (clip_l or clip_g) |
|
|
|
""" |
|
|
|
|
|
import sys |
|
import json |
|
import torch |
|
from safetensors import safe_open |
|
|
|
file1=sys.argv[1] |
|
file2=sys.argv[2] |
|
|
|
print(f"reading in json from {file2} now",file=sys.stderr) |
|
with open(file2, "r") as file: |
|
json_data = json.load(file) |
|
|
|
token_names = {v: k for k, v in json_data.items()} |
|
|
|
|
|
|
|
device=torch.device("cuda") |
|
print(f"reading {file1} embeddings now",file=sys.stderr) |
|
model = safe_open(file1,framework="pt",device="cuda") |
|
embs1=model.get_tensor("embeddings") |
|
embs1.to(device) |
|
print("Shape of loaded embeds =",embs1.shape) |
|
|
|
|
|
print(f"calculating distances...",file=sys.stderr) |
|
|
|
indices = torch.argmax(embs1, dim=0) |
|
|
|
print("Shape of results=",indices.shape,file=sys.stderr) |
|
|
|
indices=indices.tolist() |
|
|
|
counter=0 |
|
for token_num in indices: |
|
|
|
print(counter,token_names.get(token_num)) |
|
counter+=1 |
|
|
|
|
|
|