#basic openclip usage | |
import torch | |
from PIL import Image | |
import open_clip | |
mtype='ViT-B-32' | |
mname='laion2b_s34b_b79k' | |
print("Loading",mtype,mname) | |
model, _, preprocess = open_clip.create_model_and_transforms(mtype, | |
pretrained=mname) | |
tokenizer = open_clip.get_tokenizer(mtype) | |
#image = preprocess(Image.open("CLIP.png")).unsqueeze(0) | |
text = tokenizer(["a diagram", "a dog", "a cat"]) | |
text = tokenizer("cat") | |
with torch.no_grad(), torch.cuda.amp.autocast(): | |
# image_features = model.encode_image(image) | |
text_features = model.encode_text(text) | |
embedding=text_features[0] | |