|
|
|
|
|
""" |
|
Plan: |
|
Read in "dictionary" for list of words |
|
Read in pre-calculated "proper" embedding for each word from safetensor file |
|
Prompt user for a word from the list |
|
Generate a tensor array of distance to all the other known words |
|
Print out the 20 closest ones |
|
""" |
|
|
|
|
|
import sys |
|
|
|
mtype='ViT-H-14' |
|
mname='laion2B-s32B-b79K' |
|
|
|
print(f"Configured for {mtype}, {mname}") |
|
|
|
if len(sys.argv) < 3: |
|
print("Error: need embeddings file and dictionary name") |
|
sys.exit(1) |
|
|
|
|
|
|
|
import torch |
|
import open_clip |
|
|
|
from safetensors import safe_open |
|
|
|
|
|
|
|
device=torch.device("cuda") |
|
|
|
print("Loading model") |
|
|
|
cmodel, _, preprocess = open_clip.create_model_and_transforms(mtype, |
|
pretrained=mname) |
|
tokenizer = open_clip.get_tokenizer(mtype) |
|
|
|
print("Moving model to cuda") |
|
cmodel.to(device) |
|
|
|
|
|
|
|
embed_file=sys.argv[1] |
|
dictionary=sys.argv[2] |
|
|
|
|
|
print(f"read in words from {dictionary} now",file=sys.stderr) |
|
with open(dictionary,"r") as f: |
|
tokendict = f.readlines() |
|
wordlist = [token.strip() for token in tokendict] |
|
print(len(wordlist),"lines read") |
|
|
|
print(f"read in {embed_file} now",file=sys.stderr) |
|
emodel = safe_open(embed_file,framework="pt",device="cuda") |
|
embs=emodel.get_tensor("embeddings") |
|
embs.to(device) |
|
print("Shape of loaded embeds =",embs.shape) |
|
|
|
def standard_embed_calc(text): |
|
with torch.no_grad(): |
|
ttext = tokenizer(text) |
|
text_features = cmodel.encode_text(ttext) |
|
embedding = text_features[0] |
|
|
|
return embedding |
|
|
|
|
|
def print_distances(targetemb): |
|
targetdistances = torch.cdist( targetemb.unsqueeze(0), embs, p=2) |
|
|
|
print("shape of distances...",targetdistances.shape) |
|
|
|
smallest_distances, smallest_indices = torch.topk(targetdistances[0], 20, largest=False) |
|
|
|
smallest_distances=smallest_distances.tolist() |
|
smallest_indices=smallest_indices.tolist() |
|
for d,i in zip(smallest_distances,smallest_indices): |
|
print(wordlist[i],"(",d,")") |
|
|
|
|
|
|
|
|
|
|
|
def find_closest(targetword): |
|
try: |
|
targetindex=wordlist.index(targetword) |
|
targetemb=embs[targetindex] |
|
print_distances(targetemb) |
|
return |
|
except ValueError: |
|
print(targetword,"not found in cache") |
|
|
|
|
|
print("Now doing with full calc embed") |
|
targetemb=standard_embed_calc(targetword) |
|
print_distances(targetemb) |
|
|
|
|
|
while True: |
|
input_text=input("Input a word now:") |
|
find_closest(input_text) |
|
|