ppbrown commited on
Commit
309d061
1 Parent(s): 23363fb

Update README.sd-embeddings.md

Browse files
Files changed (1) hide show
  1. README.sd-embeddings.md +14 -14
README.sd-embeddings.md CHANGED
@@ -12,14 +12,14 @@ Note that SD 1.5 has a different format for embeddings than SDXL. And within SD
12
  ### SD 1.5 pickletensor embed format
13
 
14
  I have observed that .pt embeddings have a dict-of-dicts type format. It looks something like this:
15
- [
16
- "string_to_token": {'doesntmatter': 265}, # I dont know why 265, but it usually is
17
- "string_to_param": {'doesntmatter': tensor([[][768])},
18
- "name": *string*,
19
- "step": *string*,
20
- "sd_checkpoint": *string*,
21
- "sd_checkpoint_name": *string*
22
- ]
23
 
24
  (Note that *string* can be None)
25
 
@@ -28,16 +28,16 @@ I have observed that .pt embeddings have a dict-of-dicts type format. It looks s
28
 
29
  The ones I have seen, have a much simpler format. It is a trivial format compared to SD 1.5:
30
 
31
- { "emb_params": Tensor([][768])}
32
 
33
- ### SDXL embed format (safetensor)
34
 
35
  This has an actual spec at:
36
  https://huggingface.co/docs/diffusers/using-diffusers/textual_inversion_inference
37
  But it's pretty simple:
38
 
39
  summary:
40
- {
41
- "clip_l": Tensor([][768]),
42
- "clip_g": Tensor([][1280])
43
- }
 
12
  ### SD 1.5 pickletensor embed format
13
 
14
  I have observed that .pt embeddings have a dict-of-dicts type format. It looks something like this:
15
+ [
16
+ "string_to_token": {'doesntmatter': 265}, # I dont know why 265, but it usually is
17
+ "string_to_param": {'doesntmatter': tensor([[][768])},
18
+ "name": *string*,
19
+ "step": *string*,
20
+ "sd_checkpoint": *string*,
21
+ "sd_checkpoint_name": *string*
22
+ ]
23
 
24
  (Note that *string* can be None)
25
 
 
28
 
29
  The ones I have seen, have a much simpler format. It is a trivial format compared to SD 1.5:
30
 
31
+ { "emb_params": Tensor([][768])}
32
 
33
+ ## SDXL embed format (safetensor)
34
 
35
  This has an actual spec at:
36
  https://huggingface.co/docs/diffusers/using-diffusers/textual_inversion_inference
37
  But it's pretty simple:
38
 
39
  summary:
40
+ {
41
+ "clip_l": Tensor([][768]),
42
+ "clip_g": Tensor([][1280])
43
+ }