Upload 7 files
Browse files- openclip/calculate-vitb.py +94 -0
- openclip/calculate-vitg.py +94 -0
- openclip/calculate-vith.py +94 -0
- openclip/embeddings.vith14-quickgelu.safetensors +3 -0
- openclip/embeddings.vith14.dictionary.safetensors +3 -0
- openclip/embeddings.vitl.dictionary.safetensors +3 -0
- openclip/generate-embeddings-open.py +34 -5
openclip/calculate-vitb.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/env python
|
2 |
+
|
3 |
+
"""
|
4 |
+
Plan:
|
5 |
+
Read in "dictionary" for list of words
|
6 |
+
Read in pre-calculated "proper" embedding for each word from safetensor file
|
7 |
+
Prompt user for a word from the list
|
8 |
+
Generate a tensor array of distance to all the other known words
|
9 |
+
Print out the 20 closest ones
|
10 |
+
"""
|
11 |
+
|
12 |
+
|
13 |
+
import sys
|
14 |
+
import torch
|
15 |
+
import open_clip
|
16 |
+
|
17 |
+
from safetensors import safe_open
|
18 |
+
|
19 |
+
#from transformers import CLIPProcessor,CLIPModel
|
20 |
+
|
21 |
+
device=torch.device("cuda")
|
22 |
+
|
23 |
+
mtype='ViT-B-32'
|
24 |
+
mname='laion2b_s34b_b79k'
|
25 |
+
|
26 |
+
print("Loading",mtype,mname)
|
27 |
+
|
28 |
+
cmodel, _, preprocess = open_clip.create_model_and_transforms(mtype,
|
29 |
+
pretrained=mname)
|
30 |
+
tokenizer = open_clip.get_tokenizer(mtype)
|
31 |
+
|
32 |
+
## model = model.to(device)
|
33 |
+
|
34 |
+
|
35 |
+
#embed_file="embeddings.safetensors"
|
36 |
+
embed_file=sys.argv[1]
|
37 |
+
dictionary=sys.argv[2]
|
38 |
+
|
39 |
+
|
40 |
+
print(f"read in words from {dictionary} now",file=sys.stderr)
|
41 |
+
with open(dictionary,"r") as f:
|
42 |
+
tokendict = f.readlines()
|
43 |
+
wordlist = [token.strip() for token in tokendict] # Remove trailing newlines
|
44 |
+
print(len(wordlist),"lines read")
|
45 |
+
|
46 |
+
print(f"read in {embed_file} now",file=sys.stderr)
|
47 |
+
emodel = safe_open(embed_file,framework="pt",device="cuda")
|
48 |
+
embs=emodel.get_tensor("embeddings")
|
49 |
+
embs.to(device)
|
50 |
+
print("Shape of loaded embeds =",embs.shape)
|
51 |
+
|
52 |
+
def standard_embed_calc(text):
|
53 |
+
with torch.no_grad():
|
54 |
+
ttext = tokenizer(text)
|
55 |
+
text_features = cmodel.encode_text(ttext)
|
56 |
+
embedding = text_features[0]
|
57 |
+
#print("shape of text is",ttext.shape)
|
58 |
+
return embedding
|
59 |
+
|
60 |
+
|
61 |
+
def print_distances(targetemb):
|
62 |
+
targetdistances = torch.cdist( targetemb.unsqueeze(0), embs, p=2)
|
63 |
+
|
64 |
+
print("shape of distances...",targetdistances.shape)
|
65 |
+
|
66 |
+
smallest_distances, smallest_indices = torch.topk(targetdistances[0], 20, largest=False)
|
67 |
+
|
68 |
+
smallest_distances=smallest_distances.tolist()
|
69 |
+
smallest_indices=smallest_indices.tolist()
|
70 |
+
for d,i in zip(smallest_distances,smallest_indices):
|
71 |
+
print(wordlist[i],"(",d,")")
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
# Find 10 closest tokens to targetword.
|
76 |
+
# Will include the word itself
|
77 |
+
def find_closest(targetword):
|
78 |
+
try:
|
79 |
+
targetindex=wordlist.index(targetword)
|
80 |
+
targetemb=embs[targetindex]
|
81 |
+
print_distances(targetemb)
|
82 |
+
return
|
83 |
+
except ValueError:
|
84 |
+
print(targetword,"not found in cache")
|
85 |
+
|
86 |
+
|
87 |
+
print("Now doing with full calc embed")
|
88 |
+
targetemb=standard_embed_calc(targetword)
|
89 |
+
print_distances(targetemb)
|
90 |
+
|
91 |
+
|
92 |
+
while True:
|
93 |
+
input_text=input("Input a word now:")
|
94 |
+
find_closest(input_text)
|
openclip/calculate-vitg.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/env python
|
2 |
+
|
3 |
+
"""
|
4 |
+
Plan:
|
5 |
+
Read in "dictionary" for list of words
|
6 |
+
Read in pre-calculated "proper" embedding for each word from safetensor file
|
7 |
+
Prompt user for a word from the list
|
8 |
+
Generate a tensor array of distance to all the other known words
|
9 |
+
Print out the 20 closest ones
|
10 |
+
"""
|
11 |
+
|
12 |
+
|
13 |
+
import sys
|
14 |
+
import torch
|
15 |
+
import open_clip
|
16 |
+
|
17 |
+
from safetensors import safe_open
|
18 |
+
|
19 |
+
#from transformers import CLIPProcessor,CLIPModel
|
20 |
+
|
21 |
+
device=torch.device("cuda")
|
22 |
+
|
23 |
+
mtype='ViT-g-14'
|
24 |
+
mname='laion2b_s12b_b42k'
|
25 |
+
|
26 |
+
print("Loading",mtype,mname)
|
27 |
+
|
28 |
+
cmodel, _, preprocess = open_clip.create_model_and_transforms(mtype,
|
29 |
+
pretrained=mname)
|
30 |
+
tokenizer = open_clip.get_tokenizer(mtype)
|
31 |
+
|
32 |
+
## model = model.to(device)
|
33 |
+
|
34 |
+
|
35 |
+
#embed_file="embeddings.safetensors"
|
36 |
+
embed_file=sys.argv[1]
|
37 |
+
dictionary=sys.argv[2]
|
38 |
+
|
39 |
+
|
40 |
+
print(f"read in words from {dictionary} now",file=sys.stderr)
|
41 |
+
with open(dictionary,"r") as f:
|
42 |
+
tokendict = f.readlines()
|
43 |
+
wordlist = [token.strip() for token in tokendict] # Remove trailing newlines
|
44 |
+
print(len(wordlist),"lines read")
|
45 |
+
|
46 |
+
print(f"read in {embed_file} now",file=sys.stderr)
|
47 |
+
emodel = safe_open(embed_file,framework="pt",device="cuda")
|
48 |
+
embs=emodel.get_tensor("embeddings")
|
49 |
+
embs.to(device)
|
50 |
+
print("Shape of loaded embeds =",embs.shape)
|
51 |
+
|
52 |
+
def standard_embed_calc(text):
|
53 |
+
with torch.no_grad():
|
54 |
+
ttext = tokenizer(text)
|
55 |
+
text_features = cmodel.encode_text(ttext)
|
56 |
+
embedding = text_features[0]
|
57 |
+
#print("shape of text is",ttext.shape)
|
58 |
+
return embedding
|
59 |
+
|
60 |
+
|
61 |
+
def print_distances(targetemb):
|
62 |
+
targetdistances = torch.cdist( targetemb.unsqueeze(0), embs, p=2)
|
63 |
+
|
64 |
+
print("shape of distances...",targetdistances.shape)
|
65 |
+
|
66 |
+
smallest_distances, smallest_indices = torch.topk(targetdistances[0], 20, largest=False)
|
67 |
+
|
68 |
+
smallest_distances=smallest_distances.tolist()
|
69 |
+
smallest_indices=smallest_indices.tolist()
|
70 |
+
for d,i in zip(smallest_distances,smallest_indices):
|
71 |
+
print(wordlist[i],"(",d,")")
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
# Find 10 closest tokens to targetword.
|
76 |
+
# Will include the word itself
|
77 |
+
def find_closest(targetword):
|
78 |
+
try:
|
79 |
+
targetindex=wordlist.index(targetword)
|
80 |
+
targetemb=embs[targetindex]
|
81 |
+
print_distances(targetemb)
|
82 |
+
return
|
83 |
+
except ValueError:
|
84 |
+
print(targetword,"not found in cache")
|
85 |
+
|
86 |
+
|
87 |
+
print("Now doing with full calc embed")
|
88 |
+
targetemb=standard_embed_calc(targetword)
|
89 |
+
print_distances(targetemb)
|
90 |
+
|
91 |
+
|
92 |
+
while True:
|
93 |
+
input_text=input("Input a word now:")
|
94 |
+
find_closest(input_text)
|
openclip/calculate-vith.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/env python
|
2 |
+
|
3 |
+
"""
|
4 |
+
Plan:
|
5 |
+
Read in "dictionary" for list of words
|
6 |
+
Read in pre-calculated "proper" embedding for each word from safetensor file
|
7 |
+
Prompt user for a word from the list
|
8 |
+
Generate a tensor array of distance to all the other known words
|
9 |
+
Print out the 20 closest ones
|
10 |
+
"""
|
11 |
+
|
12 |
+
|
13 |
+
import sys
|
14 |
+
import torch
|
15 |
+
import open_clip
|
16 |
+
|
17 |
+
from safetensors import safe_open
|
18 |
+
|
19 |
+
#from transformers import CLIPProcessor,CLIPModel
|
20 |
+
|
21 |
+
device=torch.device("cuda")
|
22 |
+
|
23 |
+
mtype='ViT-H-14'
|
24 |
+
mname='laion2b_s32b_b79k'
|
25 |
+
|
26 |
+
print("Loading",mtype,mname)
|
27 |
+
|
28 |
+
cmodel, _, preprocess = open_clip.create_model_and_transforms(mtype,
|
29 |
+
pretrained=mname)
|
30 |
+
tokenizer = open_clip.get_tokenizer(mtype)
|
31 |
+
|
32 |
+
## model = model.to(device)
|
33 |
+
|
34 |
+
|
35 |
+
#embed_file="embeddings.safetensors"
|
36 |
+
embed_file=sys.argv[1]
|
37 |
+
dictionary=sys.argv[2]
|
38 |
+
|
39 |
+
|
40 |
+
print(f"read in words from {dictionary} now",file=sys.stderr)
|
41 |
+
with open(dictionary,"r") as f:
|
42 |
+
tokendict = f.readlines()
|
43 |
+
wordlist = [token.strip() for token in tokendict] # Remove trailing newlines
|
44 |
+
print(len(wordlist),"lines read")
|
45 |
+
|
46 |
+
print(f"read in {embed_file} now",file=sys.stderr)
|
47 |
+
emodel = safe_open(embed_file,framework="pt",device="cuda")
|
48 |
+
embs=emodel.get_tensor("embeddings")
|
49 |
+
embs.to(device)
|
50 |
+
print("Shape of loaded embeds =",embs.shape)
|
51 |
+
|
52 |
+
def standard_embed_calc(text):
|
53 |
+
with torch.no_grad():
|
54 |
+
ttext = tokenizer(text)
|
55 |
+
text_features = cmodel.encode_text(ttext)
|
56 |
+
embedding = text_features[0]
|
57 |
+
#print("shape of text is",ttext.shape)
|
58 |
+
return embedding
|
59 |
+
|
60 |
+
|
61 |
+
def print_distances(targetemb):
|
62 |
+
targetdistances = torch.cdist( targetemb.unsqueeze(0), embs, p=2)
|
63 |
+
|
64 |
+
print("shape of distances...",targetdistances.shape)
|
65 |
+
|
66 |
+
smallest_distances, smallest_indices = torch.topk(targetdistances[0], 20, largest=False)
|
67 |
+
|
68 |
+
smallest_distances=smallest_distances.tolist()
|
69 |
+
smallest_indices=smallest_indices.tolist()
|
70 |
+
for d,i in zip(smallest_distances,smallest_indices):
|
71 |
+
print(wordlist[i],"(",d,")")
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
# Find 10 closest tokens to targetword.
|
76 |
+
# Will include the word itself
|
77 |
+
def find_closest(targetword):
|
78 |
+
try:
|
79 |
+
targetindex=wordlist.index(targetword)
|
80 |
+
targetemb=embs[targetindex]
|
81 |
+
print_distances(targetemb)
|
82 |
+
return
|
83 |
+
except ValueError:
|
84 |
+
print(targetword,"not found in cache")
|
85 |
+
|
86 |
+
|
87 |
+
print("Now doing with full calc embed")
|
88 |
+
targetemb=standard_embed_calc(targetword)
|
89 |
+
print_distances(targetemb)
|
90 |
+
|
91 |
+
|
92 |
+
while True:
|
93 |
+
input_text=input("Input a word now:")
|
94 |
+
find_closest(input_text)
|
openclip/embeddings.vith14-quickgelu.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8014c16a1b2b2a971c5d8d8aaf5662d7fa0269d32a46497f5769ae3718f02cc6
|
3 |
+
size 134885464
|
openclip/embeddings.vith14.dictionary.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c55fe6c6300500d9304343b19efb43cb1ccb170270dc8c854def0bedfa576413
|
3 |
+
size 134885464
|
openclip/embeddings.vitl.dictionary.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:240da92c0376aa71385c02b8edcb91ddc75c935d99ae42164ebf3fdab3d6499c
|
3 |
+
size 101164120
|
openclip/generate-embeddings-open.py
CHANGED
@@ -14,25 +14,54 @@ import torch
|
|
14 |
import open_clip
|
15 |
from safetensors.torch import save_file
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
#mtype='ViT-B-32'
|
18 |
#mname='laion2b_s34b_b79k'
|
19 |
#mtype='ViT-g-14'
|
20 |
#mname='laion2b_s12b_b42k'
|
21 |
-
mtype='ViT-H-14'
|
22 |
-
mname='laion2b_s32b_b79k'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
print("Loading",mtype,mname)
|
25 |
|
26 |
-
cmodel, _, preprocess = open_clip.create_model_and_transforms(
|
|
|
27 |
pretrained=mname)
|
28 |
tokenizer = open_clip.get_tokenizer(mtype)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
|
32 |
def standard_embed_calc(text):
|
33 |
with torch.no_grad():
|
34 |
-
ttext = tokenizer(text)
|
35 |
text_features = cmodel.encode_text(ttext)
|
|
|
36 |
#print("shape of text is",ttext.shape)
|
37 |
|
38 |
embedding = text_features[0]
|
@@ -60,7 +89,7 @@ for word in tokendict:
|
|
60 |
embs = torch.cat(all_embeddings,dim=0)
|
61 |
print("Shape of result = ",embs.shape)
|
62 |
print("Saving all the things...")
|
63 |
-
save_file({"embeddings": embs},
|
64 |
|
65 |
|
66 |
print("calculate distances now")
|
|
|
14 |
import open_clip
|
15 |
from safetensors.torch import save_file
|
16 |
|
17 |
+
outfile="out.safetensors"
|
18 |
+
|
19 |
+
|
20 |
+
"""
|
21 |
+
REMEMBER!!!
|
22 |
+
You MUST use the same settings when you READ from the output file as well!!
|
23 |
+
"""
|
24 |
+
|
25 |
#mtype='ViT-B-32'
|
26 |
#mname='laion2b_s34b_b79k'
|
27 |
#mtype='ViT-g-14'
|
28 |
#mname='laion2b_s12b_b42k'
|
29 |
+
#mtype='ViT-H-14'
|
30 |
+
#mname='laion2b_s32b_b79k'
|
31 |
+
mtype='ViT-L-14'
|
32 |
+
mname='laion2b_s32b_b82k'
|
33 |
+
#### Warning, this requires more than 4GB vram
|
34 |
+
#mtype='ViT-H-14-quickgelu'
|
35 |
+
#mname='dfn5b'
|
36 |
+
|
37 |
+
# May also be able to use syntax of
|
38 |
+
# hf-hub:hf-internal-testing/tiny-open-clip-model'
|
39 |
+
# for mname
|
40 |
|
41 |
print("Loading",mtype,mname)
|
42 |
|
43 |
+
cmodel, _, preprocess = open_clip.create_model_and_transforms(
|
44 |
+
mtype,
|
45 |
pretrained=mname)
|
46 |
tokenizer = open_clip.get_tokenizer(mtype)
|
47 |
|
48 |
+
device=torch.device("cuda")
|
49 |
+
|
50 |
+
try:
|
51 |
+
cmodel.to(device)
|
52 |
+
except torch.cuda.OutOfMemoryError as e:
|
53 |
+
print(f"FALLING BACK TO CPU!! \n {e}")
|
54 |
+
device=torch.device("cpu")
|
55 |
+
cmodel.to(device)
|
56 |
+
# This is very rare... unless you are trying to load the quickgelu sets
|
57 |
+
# on a 4GB card. Or maybe have 2 things running
|
58 |
|
59 |
|
60 |
def standard_embed_calc(text):
|
61 |
with torch.no_grad():
|
62 |
+
ttext = tokenizer(text).to(device)
|
63 |
text_features = cmodel.encode_text(ttext)
|
64 |
+
text_features.to(device)
|
65 |
#print("shape of text is",ttext.shape)
|
66 |
|
67 |
embedding = text_features[0]
|
|
|
89 |
embs = torch.cat(all_embeddings,dim=0)
|
90 |
print("Shape of result = ",embs.shape)
|
91 |
print("Saving all the things...")
|
92 |
+
save_file({"embeddings": embs}, outfile)
|
93 |
|
94 |
|
95 |
print("calculate distances now")
|