Upload 5 files
Browse filestools to gen a set of comparison embedding files
- openclip/calculate-distances-open.py +94 -0
- openclip/datafiles.txt +7 -0
- openclip/dictionary +0 -0
- openclip/generate-embeddings-open.py +68 -0
- openclip/modeltypes.txt +2 -0
openclip/calculate-distances-open.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/env python
|
2 |
+
|
3 |
+
"""
|
4 |
+
Plan:
|
5 |
+
Read in "dictionary" for list of words
|
6 |
+
Read in pre-calculated "proper" embedding for each word from safetensor file
|
7 |
+
Prompt user for a word from the list
|
8 |
+
Generate a tensor array of distance to all the other known words
|
9 |
+
Print out the 20 closest ones
|
10 |
+
"""
|
11 |
+
|
12 |
+
|
13 |
+
import sys
|
14 |
+
import torch
|
15 |
+
import open_clip
|
16 |
+
|
17 |
+
from safetensors import safe_open
|
18 |
+
|
19 |
+
#from transformers import CLIPProcessor,CLIPModel
|
20 |
+
|
21 |
+
device=torch.device("cuda")
|
22 |
+
|
23 |
+
mtype='ViT-B-32'
|
24 |
+
mname='laion2b_s34b_b79k'
|
25 |
+
|
26 |
+
print("Loading",mtype,mname)
|
27 |
+
|
28 |
+
cmodel, _, preprocess = open_clip.create_model_and_transforms(mtype,
|
29 |
+
pretrained=mname)
|
30 |
+
tokenizer = open_clip.get_tokenizer(mtype)
|
31 |
+
|
32 |
+
## model = model.to(device)
|
33 |
+
|
34 |
+
|
35 |
+
#embed_file="embeddings.safetensors"
|
36 |
+
embed_file=sys.argv[1]
|
37 |
+
dictionary=sys.argv[2]
|
38 |
+
|
39 |
+
|
40 |
+
print(f"read in words from {dictionary} now",file=sys.stderr)
|
41 |
+
with open(dictionary,"r") as f:
|
42 |
+
tokendict = f.readlines()
|
43 |
+
wordlist = [token.strip() for token in tokendict] # Remove trailing newlines
|
44 |
+
print(len(wordlist),"lines read")
|
45 |
+
|
46 |
+
print(f"read in {embed_file} now",file=sys.stderr)
|
47 |
+
emodel = safe_open(embed_file,framework="pt",device="cuda")
|
48 |
+
embs=emodel.get_tensor("embeddings")
|
49 |
+
embs.to(device)
|
50 |
+
print("Shape of loaded embeds =",embs.shape)
|
51 |
+
|
52 |
+
def standard_embed_calc(text):
|
53 |
+
with torch.no_grad():
|
54 |
+
ttext = tokenizer(text)
|
55 |
+
text_features = cmodel.encode_text(ttext)
|
56 |
+
embedding = text_features[0]
|
57 |
+
#print("shape of text is",ttext.shape)
|
58 |
+
return embedding
|
59 |
+
|
60 |
+
|
61 |
+
def print_distances(targetemb):
|
62 |
+
targetdistances = torch.cdist( targetemb.unsqueeze(0), embs, p=2)
|
63 |
+
|
64 |
+
print("shape of distances...",targetdistances.shape)
|
65 |
+
|
66 |
+
smallest_distances, smallest_indices = torch.topk(targetdistances[0], 20, largest=False)
|
67 |
+
|
68 |
+
smallest_distances=smallest_distances.tolist()
|
69 |
+
smallest_indices=smallest_indices.tolist()
|
70 |
+
for d,i in zip(smallest_distances,smallest_indices):
|
71 |
+
print(wordlist[i],"(",d,")")
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
# Find 10 closest tokens to targetword.
|
76 |
+
# Will include the word itself
|
77 |
+
def find_closest(targetword):
|
78 |
+
try:
|
79 |
+
targetindex=wordlist.index(targetword)
|
80 |
+
targetemb=embs[targetindex]
|
81 |
+
print_distances(targetemb)
|
82 |
+
return
|
83 |
+
except ValueError:
|
84 |
+
print(targetword,"not found in cache")
|
85 |
+
|
86 |
+
|
87 |
+
print("Now doing with full calc embed")
|
88 |
+
targetemb=standard_embed_calc(targetword)
|
89 |
+
print_distances(targetemb)
|
90 |
+
|
91 |
+
|
92 |
+
while True:
|
93 |
+
input_text=input("Input a word now:")
|
94 |
+
find_closest(input_text)
|
openclip/datafiles.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
laion/CLIP-ViT-B-32-laion2B-s34B-b79K
|
3 |
+
laion/CLIP-ViT-L-14-laion2B-s32B-b82K
|
4 |
+
laion/CLIP-ViT-H-14-laion2B-s32B-b79K
|
5 |
+
laion/CLIP-ViT-g-14-laion2B-s12B-b42K
|
6 |
+
laion/CLIP-ViT-bigG-14-laion2B-39B-b160k
|
7 |
+
|
openclip/dictionary
ADDED
The diff for this file is too large to render.
See raw diff
|
|
openclip/generate-embeddings-open.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/env python
|
2 |
+
|
3 |
+
""" Work in progress
|
4 |
+
Plan:
|
5 |
+
Read in "dictionary" for list of works and token
|
6 |
+
Generate "proper" embedding for each token, and store in tensor file
|
7 |
+
Generate a tensor array of distance to every other token/embedding
|
8 |
+
Save it out to "embeddings.safetensors"
|
9 |
+
"""
|
10 |
+
|
11 |
+
|
12 |
+
import sys
|
13 |
+
import torch
|
14 |
+
import open_clip
|
15 |
+
from safetensors.torch import save_file
|
16 |
+
|
17 |
+
#mtype='ViT-B-32'
|
18 |
+
#mname='laion2b_s34b_b79k'
|
19 |
+
#mtype='ViT-g-14'
|
20 |
+
#mname='laion2b_s12b_b42k'
|
21 |
+
mtype='ViT-H-14'
|
22 |
+
mname='laion2b_s32b_b79k'
|
23 |
+
|
24 |
+
print("Loading",mtype,mname)
|
25 |
+
|
26 |
+
cmodel, _, preprocess = open_clip.create_model_and_transforms(mtype,
|
27 |
+
pretrained=mname)
|
28 |
+
tokenizer = open_clip.get_tokenizer(mtype)
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def standard_embed_calc(text):
|
33 |
+
with torch.no_grad():
|
34 |
+
ttext = tokenizer(text)
|
35 |
+
text_features = cmodel.encode_text(ttext)
|
36 |
+
#print("shape of text is",ttext.shape)
|
37 |
+
|
38 |
+
embedding = text_features[0]
|
39 |
+
|
40 |
+
#print("shape of embedding is",embedding.shape)
|
41 |
+
# For VIT-B, expected is [512]
|
42 |
+
return embedding
|
43 |
+
|
44 |
+
|
45 |
+
with open("dictionary","r") as f:
|
46 |
+
tokendict = f.readlines()
|
47 |
+
tokendict = [token.strip() for token in tokendict] # Remove trailing newlines
|
48 |
+
|
49 |
+
print("generate embeddings for each now",file=sys.stderr)
|
50 |
+
count=1
|
51 |
+
all_embeddings = []
|
52 |
+
for word in tokendict:
|
53 |
+
emb = standard_embed_calc(word)
|
54 |
+
emb=emb.unsqueeze(0) # stupid matrix magic to make the cat work
|
55 |
+
all_embeddings.append(emb)
|
56 |
+
count+=1
|
57 |
+
if (count %100) ==0:
|
58 |
+
print(count)
|
59 |
+
|
60 |
+
embs = torch.cat(all_embeddings,dim=0)
|
61 |
+
print("Shape of result = ",embs.shape)
|
62 |
+
print("Saving all the things...")
|
63 |
+
save_file({"embeddings": embs}, "embeddings.safetensors")
|
64 |
+
|
65 |
+
|
66 |
+
print("calculate distances now")
|
67 |
+
|
68 |
+
|
openclip/modeltypes.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
['coca_base', 'coca_roberta-ViT-B-32', 'coca_ViT-B-32', 'coca_ViT-L-14', 'convnext_base', 'convnext_base_w', 'convnext_base_w_320', 'convnext_large', 'convnext_large_d', 'convnext_large_d_320', 'convnext_small', 'convnext_tiny', 'convnext_xlarge', 'convnext_xxlarge', 'convnext_xxlarge_320', 'EVA01-g-14', 'EVA01-g-14-plus', 'EVA02-B-16', 'EVA02-E-14', 'EVA02-E-14-plus', 'EVA02-L-14', 'EVA02-L-14-336', 'mt5-base-ViT-B-32', 'mt5-xl-ViT-H-14', 'nllb-clip-base', 'nllb-clip-base-siglip', 'nllb-clip-large', 'nllb-clip-large-siglip', 'RN50', 'RN50-quickgelu', 'RN50x4', 'RN50x16', 'RN50x64', 'RN101', 'RN101-quickgelu', 'roberta-ViT-B-32', 'swin_base_patch4_window7_224', 'ViT-B-16', 'ViT-B-16-plus', 'ViT-B-16-plus-240', 'ViT-B-16-quickgelu', 'ViT-B-16-SigLIP', 'ViT-B-16-SigLIP-256', 'ViT-B-16-SigLIP-384', 'ViT-B-16-SigLIP-512', 'ViT-B-16-SigLIP-i18n-256', 'ViT-B-32', 'ViT-B-32-256', 'ViT-B-32-plus-256', 'ViT-B-32-quickgelu', 'ViT-bigG-14', 'ViT-bigG-14-CLIPA', 'ViT-bigG-14-CLIPA-336', 'ViT-e-14', 'ViT-g-14', 'ViT-H-14', 'ViT-H-14-378-quickgelu', 'ViT-H-14-CLIPA', 'ViT-H-14-CLIPA-336', 'ViT-H-14-quickgelu', 'ViT-H-16', 'ViT-L-14', 'ViT-L-14-280', 'ViT-L-14-336', 'ViT-L-14-CLIPA', 'ViT-L-14-CLIPA-336', 'ViT-L-14-quickgelu', 'ViT-L-16', 'ViT-L-16-320', 'ViT-L-16-SigLIP-256', 'ViT-L-16-SigLIP-384', 'ViT-M-16', 'ViT-M-16-alt', 'ViT-M-32', 'ViT-M-32-alt', 'ViT-S-16', 'ViT-S-16-alt', 'ViT-S-32', 'ViT-S-32-alt', 'ViT-SO400M-14-SigLIP', 'ViT-SO400M-14-SigLIP-384', 'vit_medium_patch16_gap_256', 'vit_relpos_medium_patch16_cls_224', 'xlm-roberta-base-ViT-B-32', 'xlm-roberta-large-ViT-H-14'].
|
2 |
+
|