#!/usr/bin/python3 """ Work in progress Plan: Read in fullword.json for list of words and token Read in pre-calculated "proper" embedding for each token from safetensor file Generate a tensor array of distance for each token, to every other token/embedding Save it out """ import sys import json import torch from safetensors import safe_open embed_file="embeddings.safetensors" device=torch.device("cuda") print("read in words from json now",file=sys.stderr) with open("fullword.json","r") as f: tokendict = json.load(f) print("read in embeddingsnow",file=sys.stderr) model = safe_open(embed_file,framework="pt",device="cuda") embs=model.get_tensor("embeddings") embs.to(device) print("Shape of loaded embeds =",embs.shape) print("calculate distances now") distances = torch.cdist(embs, embs, p=2) print("distances shape is",distances.shape) """ import torch.nn.functional as F pos=0 for word in tokendict.keys(): print("Calculating distances from",word) home=embs[pos] #distances = torch.cdist(embs, home.unsqueeze(0), p=2) #distance = F.pairwise_distance(home, embs[,p=2).item() """