# Loading script for the PAWS-ca dataset import json import datasets _CITATION = """ """ _DESCRIPTION = """ The PAWS-ca dataset (Paraphrase Adversaries from Word Scrambling in Catalan) is a translation of the English PAWS dataset into Catalan, commissioned by BSC LangTech Unit. This dataset contains 4,000 human translated PAWS pairs and 49,000 machine translated pairs. """ _HOMEPAGE = "https://zenodo.org/record/" _URL = "https://huggingface.co/datasets/projecte-aina/paws-ca/resolve/main/" _TRAIN_FILE = "train.json" _DEV_FILE = "dev_2k.json" _TEST_FILE = "test_2k.json" class PAWSXConfig(datasets.BuilderConfig): """BuilderConfig for PAWSX-ca.""" def __init__(self, **kwargs): """Constructs a PAWSXConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(PAWSXConfig, self).__init__(version=datasets.Version("1.1.0", ""), **kwargs), class PAWSX(datasets.GeneratorBasedBuilder): """PAWS-ca, a Catalan version of PAWS.""" VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ PAWSXConfig( name="paws-ca", description="PAWS-ca dataset", ), ] def _info(self): features = datasets.Features( { "id": datasets.Value("int32"), "sentence1": datasets.Value("string"), "sentence2": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["0", "1"]), } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage=_HOMEPAGE, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAIN_FILE}", "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): with open(filepath, encoding='utf-8') as f: data = json.load(f) for i, row in enumerate(data): yield i, { 'id': row['id'], 'sentence1': row['sentence1'], 'sentence2': row['sentence2'], 'label': row['label'], }