|
|
|
import json |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """""" |
|
|
|
_DESCRIPTION = """caBreu is a summarization dataset. |
|
It consists of 3,000 articles, each averaging about 700 words in length, along with extreme, abstractive and extractive summaries, |
|
manually generated by three annotators. |
|
|
|
The source material for the articles was gathered from various Catalan news sources, including the Catalan News Agency ([Agència Catalana de Notícies; ACN](https://www.acn.cat/)), |
|
[VilaWeb](https://www.vilaweb.cat/) and [NacióDigital](https://www.naciodigital.cat/). |
|
""" |
|
|
|
_HOMEPAGE = """https://github.com/TeMU-BSC/seq-to-seq-catalan""" |
|
|
|
_URL = "https://huggingface.co/datasets/projecte-aina/caBreu/resolve/main/" |
|
_TRAIN_FILE = "train.json" |
|
_VAL_FILE = "dev.json" |
|
_TEST_FILE = "test.json" |
|
|
|
class caBreuConfig(datasets.BuilderConfig): |
|
""" Builder config for the caBreu dataset """ |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for caBreu. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(caBreuConfig, self).__init__(**kwargs) |
|
|
|
|
|
class caBreu(datasets.GeneratorBasedBuilder): |
|
"""caBreu Dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
caBreuConfig( |
|
name="caBreu", |
|
version=datasets.Version("1.0.0"), |
|
description="caBreu dataset" |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"subtitle": datasets.Value("string"), |
|
"content": datasets.Value("string"), |
|
"category": datasets.Sequence(datasets.Value("string")), |
|
"source": datasets.Value("string"), |
|
"summaries": |
|
{ |
|
"extreme": |
|
{ |
|
"a1": datasets.Value("string"), |
|
"a2": datasets.Value("string"), |
|
"a3": datasets.Value("string") |
|
}, |
|
"abstractive": |
|
{ |
|
"a1": datasets.Value("string"), |
|
"a2": datasets.Value("string"), |
|
"a3": datasets.Value("string") |
|
}, |
|
"extractive": |
|
{ |
|
"a1": datasets.Value("string"), |
|
"a2": datasets.Value("string"), |
|
"a3": datasets.Value("string") |
|
} |
|
} |
|
} |
|
|
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAIN_FILE}", |
|
"dev": f"{_URL}{_VAL_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}" |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath) as f: |
|
data = json.load(f) |
|
for article in data: |
|
id_ = article['id'] |
|
title = article['title'] |
|
subtitle = article['subtitle'] |
|
content = article['content'] |
|
category = article['category'] |
|
if isinstance(category, str): |
|
category = [] |
|
source = article['source'] |
|
a1_extreme = article['summaries']['extreme']['a1'] |
|
a2_extreme = article['summaries']['extreme']['a2'] |
|
a3_extreme = article['summaries']['extreme']['a3'] |
|
a1_abstractive = article['summaries']['abstractive']['a1'] |
|
a2_abstractive = article['summaries']['abstractive']['a2'] |
|
a3_abstractive = article['summaries']['abstractive']['a3'] |
|
a1_extractive = article['summaries']['extractive']['a1'] |
|
a2_extractive = article['summaries']['extractive']['a2'] |
|
a3_extractive = article['summaries']['extractive']['a3'] |
|
yield id_, { |
|
"id": id_, |
|
"title": title, |
|
"subtitle": subtitle, |
|
"content": content, |
|
"category": category, |
|
"source": source, |
|
"summaries": |
|
{ |
|
"extreme": { "a1": a1_extreme,"a2": a2_extreme,"a3": a3_extreme }, |
|
"abstractive": { "a1": a1_abstractive,"a2": a2_abstractive,"a3": a3_abstractive }, |
|
"extractive": { "a1": a1_extractive,"a2": a2_extractive,"a3": a3_extractive } |
|
} |
|
} |