Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Catalan
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 3,450 Bytes
4e34142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a37c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e34142
 
 
 
 
 
 
4e0ee1e
4e34142
c7d92d4
4e34142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8fd213
 
 
4e34142
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Catalan General Crawling."""

import os

import datasets


_CITATION = """\
@inproceedings{armengol-estape-etal-2021-multilingual,
    title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
    author = "Armengol-Estap{\'e}, Jordi  and
      Carrino, Casimiro Pio  and
      Rodriguez-Penagos, Carlos  and
      de Gibert Bonet, Ona  and
      Armentano-Oller, Carme  and
      Gonzalez-Agirre, Aitor  and
      Melero, Maite  and
      Villegas, Marta",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.437",
    doi = "10.18653/v1/2021.findings-acl.437",
    pages = "4933--4946",
    eprint={2107.07903},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
The Catalan General Crawling Corpus is a 435-million-token web corpus of Catalan built from the web. It has been obtained by crawling the 500 most popular .cat and .ad domains during July 2020. It consists of 434.817.705 tokens, 19.451.691 sentences and 1.016.114 documents. Documents are separated by single new lines. It is a subcorpus of the Catalan Textual Corpus.
"""

_HOMEPAGE = "https://zenodo.org/record/5483031"

_LICENSE = "Creative Commons Attribution 4.0 International"

_URL = "https://zenodo.org/record/5483031/files/catalan_general_crawling.zip?download=1"


class CatalanGeneralCrawling(datasets.GeneratorBasedBuilder):
    """Catalan General Crawling."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({"text": datasets.Value("string")}),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(
                        data_dir, "catalan_general_crawling", "corpus", "catalan_general_crawling.txt"
                    ),
                },
            ),
        ]

    def _generate_examples(self, filepath):
        with open(filepath, encoding="utf-8") as f:
            text = ""
            for id_, line in enumerate(f):
                if line == "\n":
                    yield id_, {"text": text.strip()}
                    text = ""
                else:
                    text += line