File size: 8,604 Bytes
ca57af9 cff1573 ca57af9 cff1573 ca57af9 280139a ca57af9 e857c18 ca57af9 e857c18 ca57af9 280139a ca57af9 280139a ca57af9 280139a ca57af9 280139a ca57af9 280139a ca57af9 280139a ca57af9 280139a ca57af9 280139a ca57af9 280139a ca57af9 280139a ca57af9 280139a ca57af9 280139a ca57af9 e857c18 ca57af9 280139a f8638ed 280139a f8638ed 280139a ca57af9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
annotations_creators:
- found
language_creators:
- found
language:
- ca
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: ParlamentParla
size_categories:
clean:
- 10K<n<100K
other:
- 100K<n<1M
source_datasets:
- original
task_categories:
- sequence-modeling
- speech-processing
task_ids:
- language-modeling
- automatic-speech-recognition
- speaker-identification
---
# Dataset Card for ParlamentParla
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://zenodo.org/record/5541827
- **Repository:** https://github.com/CollectivaT-dev/ParlamentParla
- **Paper:** ParlamentParla: [A Speech Corpus of Catalan Parliamentary Sessions.](http://www.lrec-conf.org/proceedings/lrec2022/workshops/ParlaCLARINIII/2022.parlaclariniii-1.0.pdf#page=135)
- **Point of Contact:** [Col·lectivaT](mailto:[email protected])
### Dataset Summary
This is the ParlamentParla speech corpus for Catalan prepared by Col·lectivaT. The audio segments were extracted from recordings the Catalan Parliament (Parlament de Catalunya) plenary sessions, which took place between 2007/07/11 - 2018/07/17. We aligned the transcriptions with the recordings and extracted the corpus. The content belongs to the Catalan Parliament and the data is released conforming their terms of use.
Preparation of this corpus was partly supported by the Department of Culture of the Catalan autonomous government, and the v2.0 was supported by the Barcelona Supercomputing Center, within the framework of Projecte AINA of the Departament de Polítiques Digitals.
As of v2.0 the corpus is separated into 211 hours of clean and 400 hours of other quality segments. Furthermore, each speech segment is tagged with its speaker and each speaker with their gender. The statistics are detailed in the readme file.
### Supported Tasks and Leaderboards
The dataset can be used for:
- Language Modeling.
- Automatic Speech Recognition (ASR) transcribes utterances into words.
- Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class classification, where speakers are in the same predefined set for both training and testing.
### Languages
The dataset is in Catalan (`ca-CA`).
## Dataset Structure
### Data Instances
```
{
'path': 'clean_train/c/c/ccca4790a55aba3e6bcf_63.88_74.06.wav'
'audio': {
'path': 'clean_train/c/c/ccca4790a55aba3e6bcf_63.88_74.06.wav',
'array': array([-6.10351562e-05, -6.10351562e-05, -1.22070312e-04, ...,
-1.22070312e-04, 0.00000000e+00, -3.05175781e-05]),
'sampling_rate': 16000
},
'speaker_id': 167,
'sentence': "alguns d'ells avui aquí presents un agraïment a aquells que mantenen viva la memòria aquest acte de reparació i dignitat és",
'gender': 0,
'duration': 10.18
}
```
### Data Fields
- `path` (str): The path to the audio file.
- `audio` (dict): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling
rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and
resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might
take a significant amount of time. Thus, it is important to first query the sample index before the `"audio"` column,
*i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
- `speaker_id` (int): The speaker ID.
- `sentence` (str): The sentence the user was prompted to speak.
- `gender` (ClassLabel): The gender of the speaker (0: 'F', 1: 'M').
- `duration` (float): Duration of the speech.
### Data Splits
The dataset is split in: "train", "validation" and "test".
## Dataset Creation
The dataset is created by aligning the parliamentary session transcripts
and the audiovisual content. For more detailed information please consult
this [paper](http://www.lrec-conf.org/proceedings/lrec2022/workshops/ParlaCLARINIII/2022.parlaclariniii-1.0.pdf#page=135).
### Curation Rationale
We created this corpus to contribute to the development of language models in Catalan, a low-resource language.
### Source Data
#### Initial Data Collection and Normalization
The audio segments were extracted from recordings the Catalan Parliament
(Parlament de Catalunya) plenary sessions, which took place between 2007/07/11 -
2018/07/17. The cleaning procedures are in the archived repository [Long Audio
Aligner](https://github.com/gullabi/long-audio-aligner)
#### Who are the source language producers?
The parliamentary members of the legislatures between 2007/07/11 -
2018/07/17
### Annotations
The dataset is unannotated.
#### Annotation process
[N/A]
#### Who are the annotators?
[N/A]
### Personal and Sensitive Information
The initial content is publicly available furthermore, the identities of
the parliamentary members are anonymized.
## Considerations for Using the Data
### Social Impact of Dataset
We hope this corpus contributes to the development of language models in
Catalan, a low-resource language.
### Discussion of Biases
This dataset has a gender bias, however since the speakers are tagged according to
their genders, creating a balanced subcorpus is possible.
| Subcorpus | Gender | Duration (h) |
|-------------|----------|------------|
| other_test | F | 2.516 |
| other_dev | F | 2.701 |
| other_train | F | 109.68 |
| other_test | M | 2.631 |
| other_dev | M | 2.513 |
| other_train | M | 280.196 |
|*other total*| | 400.239 |
| clean_test | F | 2.707 |
| clean_dev | F | 2.576 |
| clean_train | F | 77.905 |
| clean_test | M | 2.516 |
| clean_dev | M | 2.614 |
| clean_train | M | 123.162 |
|*clean total*| | 211.48 |
|*Total* | | 611.719 |
### Other Known Limitations
The text corpus belongs to the domain of Catalan politics
## Additional Information
### Dataset Curators
Baybars Külebi ([@gullabi](https://github.com/gullabi),
[@baybars](https://huggingface.co/baybars))
This work was funded by the [Catalan Ministry of the Vice-presidency, Digital Policies and Territory](https://politiquesdigitals.gencat.cat/en/inici/index.html) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/tic/aina-el-projecte-per-garantir-el-catala-en-lera-digital/).
### Licensing Information
[Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/).
### Citation Information
```
@dataset{kulebi_baybars_2021_5541827,
author = {Külebi, Baybars},
title = {{ParlamentParla - Speech corpus of Catalan
Parliamentary sessions}},
month = oct,
year = 2021,
publisher = {Zenodo},
version = {v2.0},
doi = {10.5281/zenodo.5541827},
url = {https://doi.org/10.5281/zenodo.5541827}
}
```
For the paper:
```
@inproceedings{kulebi2022parlamentparla,
title={ParlamentParla: A Speech Corpus of Catalan Parliamentary Sessions},
author={K{\"u}lebi, Baybars and Armentano-Oller, Carme and Rodr{\'\i}guez-Penagos, Carlos and Villegas, Marta},
booktitle={Workshop on Creating, Enriching and Using Parliamentary Corpora},
volume={125},
number={130},
pages={125},
year={2022}
}
```
### Contributions
Thanks to [@albertvillanova](https://github.com/albertvillanova) for adding this dataset.
|