Datasets:

Modalities:
Text
Formats:
json
Sub-tasks:
extractive-qa
Languages:
Catalan
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,443 Bytes
4effc5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
---

languages:

- ca

---

# VilaQuAD, An extractive QA dataset for catalan, from Vilaweb newswire text

## BibTeX  citation

If you use any of these resources (datasets or models) in your work, please cite our latest paper:

```bibtex

@inproceedings{armengol-estape-etal-2021-multilingual,

    title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",

    author = "Armengol-Estap{\'e}, Jordi  and

      Carrino, Casimiro Pio  and

      Rodriguez-Penagos, Carlos  and

      de Gibert Bonet, Ona  and

      Armentano-Oller, Carme  and

      Gonzalez-Agirre, Aitor  and

      Melero, Maite  and

      Villegas, Marta",

    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",

    month = aug,

    year = "2021",

    address = "Online",

    publisher = "Association for Computational Linguistics",

    url = "https://aclanthology.org/2021.findings-acl.437",

    doi = "10.18653/v1/2021.findings-acl.437",

    pages = "4933--4946",

}

```

## Digital Object Identifier (DOI) and access to dataset files

https://doi.org/10.5281/zenodo.4562337


## Introduction

This dataset contains 2095 of Catalan language news articles along with 1 to 5 questions referring to each fragment (or context).
VilaQuad articles are extracted from the daily Vilaweb (www.vilaweb.cat) and used under CC-by-nc-sa-nd (https://creativecommons.org/licenses/by-nc-nd/3.0/deed.ca) licence. 
This dataset can be used to build extractive-QA and Language Models.

### Supported Tasks and Leaderboards

Extractive-QA, Language Model

### Languages

CA- Catalan

### Directory structure

* README.md
* dev.json
* test.json
* train.json
* vilaquad.py

## Dataset Structure

### Data Instances

Three json files

### Data Fields

Follows ((Rajpurkar, Pranav et al., 2016) for squad v1 datasets. (see below for full reference)

### Example:
<pre>
{
  "data": [
    {
      "title": "Com celebrar el Cap d'Any 2020? Deu propostes per a acomiadar-se del 2019",
      "paragraphs": [
        {
          "context": "Hi ha moltes propostes per a acomiadar-se d'aquest 2019. Els uns es queden a casa, els altres volen anar lluny o sortir al teatre. També s'organitzen festes o festivals a l'engròs, fins i tot hi ha propostes diürnes. Tot és possible per Cap d'Any. Encara no sabeu com celebrar l'entrada el 2020? Us oferim una llista amb deu propostes variades arreu dels Països Catalans: Festivern El Festivern enguany celebra quinze anys.",
          "qas": [
            
            {
              "answers": [
                {
                  "text": "festes o festivals",
                  "answer_start": 150
                }
              ],
              "id": "P_23_C_23_Q2",
              "question": "Què s'organitza a l'engròs per acomiadar el 2019?"
            },
            ...
          ]
        }
      ]
    }, 
    ...
   ]
} 

</pre>

### Data Splits

train.json: 1295 contexts, 3882 questions
dev.json: 400 contexts, 1200 questions
test.json: 400 contexts, 1200 questions

## Content analysis

### Number of articles, paragraphs and questions

* Number of contexts: 2095
* Number of questions: 6282
* Questions/context: 2.99
* Number of sentences in contexts: 11901
* Sentences/context: 5.6

### Number of tokens

* tokens in context: 422477
* tokens/context 201.66
* tokens in questons: 65849
* tokens/questions: 10.48
* tokens in answers: 27716
* tokens/answers: 4.41

### Question type 

| Question | Count | % |
|--------|-----|------|
| què | 1698 | 27.03 % |
| qui | 1161 | 18.48 % |
| com |  574 | 9.14 % |
| quan |  468  | 7.45 % |
| on |  559 | 8.9 % |
| quant |  601 | 9.57 % |
| quin |  1301 | 20.87 % |
| no question mark | 0 | 0.0 % |


### Question-answer relationships

From 100 randomly selected samples:

* Lexical variation: 32.0%
* World knowledge: 16.0%
* Syntactic variation: 22.0%
* Multiple sentence: 16.0%

## Dataset Creation

### Methodology
From a the online edition of the catalan newspaper Vilaweb (https://www.vilaweb.cat), 2095 articles were randomnly selected. These headlines were also used to create a Textual Entailment dataset. For the extractive QA dataset, creation of between 1 and 5 questions for each news context was commissioned, following an adaptation of the guidelines from SQUAD 1.0 (Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)), http://arxiv.org/abs/1606.05250. In total, 6282 pairs of a question and an extracted fragment that contains the answer were created.

### Curation Rationale

For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines. We also created another QA dataset with wikipedia to ensure thematic and stylistic variety.

### Source Data

- https://www.vilaweb.cat/

#### Initial Data Collection and Normalization

The source data are scraped articles from archives of Catalan newspaper website Vilaweb (https://www.vilaweb.cat). 

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

We comissioned the creation of 1 to 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 (Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)), http://arxiv.org/abs/1606.05250.

#### Who are the annotators?

Annotation was commissioned to an specialized company that hired a team of native language speakers.

### Dataset Curators

Carlos Rodríguez and Carme Armentano, from BSC-CNS

### Personal and Sensitive Information

No personal or sensitive information included.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]


## Contact

Carlos Rodríguez-Penagos ([email protected]) and Carme Armentano-Oller ([email protected])


## License

<a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/"><img alt="Attribution-ShareAlike 4.0 International License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/">Attribution-ShareAlike 4.0 International License</a>.