Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
json
Sub-tasks:
extractive-qa
Languages:
Catalan
Size:
1K - 10K
ArXiv:
License:
File size: 6,443 Bytes
4effc5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
languages:
- ca
---
# VilaQuAD, An extractive QA dataset for catalan, from Vilaweb newswire text
## BibTeX citation
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
## Digital Object Identifier (DOI) and access to dataset files
https://doi.org/10.5281/zenodo.4562337
## Introduction
This dataset contains 2095 of Catalan language news articles along with 1 to 5 questions referring to each fragment (or context).
VilaQuad articles are extracted from the daily Vilaweb (www.vilaweb.cat) and used under CC-by-nc-sa-nd (https://creativecommons.org/licenses/by-nc-nd/3.0/deed.ca) licence.
This dataset can be used to build extractive-QA and Language Models.
### Supported Tasks and Leaderboards
Extractive-QA, Language Model
### Languages
CA- Catalan
### Directory structure
* README.md
* dev.json
* test.json
* train.json
* vilaquad.py
## Dataset Structure
### Data Instances
Three json files
### Data Fields
Follows ((Rajpurkar, Pranav et al., 2016) for squad v1 datasets. (see below for full reference)
### Example:
<pre>
{
"data": [
{
"title": "Com celebrar el Cap d'Any 2020? Deu propostes per a acomiadar-se del 2019",
"paragraphs": [
{
"context": "Hi ha moltes propostes per a acomiadar-se d'aquest 2019. Els uns es queden a casa, els altres volen anar lluny o sortir al teatre. També s'organitzen festes o festivals a l'engròs, fins i tot hi ha propostes diürnes. Tot és possible per Cap d'Any. Encara no sabeu com celebrar l'entrada el 2020? Us oferim una llista amb deu propostes variades arreu dels Països Catalans: Festivern El Festivern enguany celebra quinze anys.",
"qas": [
{
"answers": [
{
"text": "festes o festivals",
"answer_start": 150
}
],
"id": "P_23_C_23_Q2",
"question": "Què s'organitza a l'engròs per acomiadar el 2019?"
},
...
]
}
]
},
...
]
}
</pre>
### Data Splits
train.json: 1295 contexts, 3882 questions
dev.json: 400 contexts, 1200 questions
test.json: 400 contexts, 1200 questions
## Content analysis
### Number of articles, paragraphs and questions
* Number of contexts: 2095
* Number of questions: 6282
* Questions/context: 2.99
* Number of sentences in contexts: 11901
* Sentences/context: 5.6
### Number of tokens
* tokens in context: 422477
* tokens/context 201.66
* tokens in questons: 65849
* tokens/questions: 10.48
* tokens in answers: 27716
* tokens/answers: 4.41
### Question type
| Question | Count | % |
|--------|-----|------|
| què | 1698 | 27.03 % |
| qui | 1161 | 18.48 % |
| com | 574 | 9.14 % |
| quan | 468 | 7.45 % |
| on | 559 | 8.9 % |
| quant | 601 | 9.57 % |
| quin | 1301 | 20.87 % |
| no question mark | 0 | 0.0 % |
### Question-answer relationships
From 100 randomly selected samples:
* Lexical variation: 32.0%
* World knowledge: 16.0%
* Syntactic variation: 22.0%
* Multiple sentence: 16.0%
## Dataset Creation
### Methodology
From a the online edition of the catalan newspaper Vilaweb (https://www.vilaweb.cat), 2095 articles were randomnly selected. These headlines were also used to create a Textual Entailment dataset. For the extractive QA dataset, creation of between 1 and 5 questions for each news context was commissioned, following an adaptation of the guidelines from SQUAD 1.0 (Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)), http://arxiv.org/abs/1606.05250. In total, 6282 pairs of a question and an extracted fragment that contains the answer were created.
### Curation Rationale
For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines. We also created another QA dataset with wikipedia to ensure thematic and stylistic variety.
### Source Data
- https://www.vilaweb.cat/
#### Initial Data Collection and Normalization
The source data are scraped articles from archives of Catalan newspaper website Vilaweb (https://www.vilaweb.cat).
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
We comissioned the creation of 1 to 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 (Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)), http://arxiv.org/abs/1606.05250.
#### Who are the annotators?
Annotation was commissioned to an specialized company that hired a team of native language speakers.
### Dataset Curators
Carlos Rodríguez and Carme Armentano, from BSC-CNS
### Personal and Sensitive Information
No personal or sensitive information included.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Contact
Carlos Rodríguez-Penagos ([email protected]) and Carme Armentano-Oller ([email protected])
## License
<a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/"><img alt="Attribution-ShareAlike 4.0 International License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/">Attribution-ShareAlike 4.0 International License</a>.
|