File size: 12,899 Bytes
3bd77c9 3e3cb7a 3bd77c9 3e3cb7a 3bd77c9 9b04778 3bd77c9 9b04778 3bd77c9 9b04778 3bd77c9 3e3cb7a 3bd77c9 3e3cb7a 3bd77c9 3e3cb7a 3bd77c9 3e3cb7a 3bd77c9 3e3cb7a 3bd77c9 3e3cb7a 3bd77c9 3e3cb7a 3bd77c9 3e3cb7a 3bd77c9 3e3cb7a 3bd77c9 3e3cb7a 3bd77c9 3e3cb7a 3bd77c9 3e3cb7a 3bd77c9 3e3cb7a 3bd77c9 9b04778 3bd77c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
# -*- coding: utf-8 -*-
"""Los_Angeles_MIDI_Dataset_Metadata_Maker.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/github/asigalov61/Los-Angeles-MIDI-Dataset/blob/main/META-DATA/Los_Angeles_MIDI_Dataset_Metadata_Maker.ipynb
# Los Angeles MIDI Dataset Metadata Maker (ver. 3.0)
***
Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
***
#### Project Los Angeles
#### Tegridy Code 2023
***
# (SETUP ENVIRONMENT)
"""
#@title Install all dependencies (run only once per session)
!git clone https://github.com/asigalov61/tegridy-tools
!pip install tqdm
#@title Import all needed modules
print('Loading needed modules. Please wait...')
import os
import math
import statistics
import random
from collections import Counter
import pickle
from tqdm import tqdm
if not os.path.exists('/content/Dataset'):
os.makedirs('/content/Dataset')
print('Loading TMIDIX module...')
os.chdir('/content/tegridy-tools/tegridy-tools')
import TMIDIX
print('Done!')
os.chdir('/content/')
print('Enjoy! :)')
"""# (DOWNLOAD SOURCE MIDI DATASET)"""
# Commented out IPython magic to ensure Python compatibility.
#@title Download original LAKH MIDI Dataset
# %cd /content/Dataset/
!wget 'http://hog.ee.columbia.edu/craffel/lmd/lmd_full.tar.gz'
!tar -xvf 'lmd_full.tar.gz'
!rm 'lmd_full.tar.gz'
# %cd /content/
#@title Mount Google Drive
from google.colab import drive
drive.mount('/content/drive')
"""# (FILE LIST)"""
#@title Save file list
###########
print('Loading MIDI files...')
print('This may take a while on a large dataset in particular.')
dataset_addr = "/content/Dataset"
# os.chdir(dataset_addr)
filez = list()
for (dirpath, dirnames, filenames) in os.walk(dataset_addr):
filez += [os.path.join(dirpath, file) for file in filenames]
print('=' * 70)
if filez == []:
print('Could not find any MIDI files. Please check Dataset dir...')
print('=' * 70)
print('Randomizing file list...')
random.shuffle(filez)
TMIDIX.Tegridy_Any_Pickle_File_Writer(filez, '/content/filez')
#@title Load file list
filez = TMIDIX.Tegridy_Any_Pickle_File_Reader('/content/filez')
print('Done!')
"""# (PROCESS)"""
#@title Process MIDIs with TMIDIX MIDI processor
print('=' * 70)
print('TMIDIX MIDI Processor')
print('=' * 70)
print('Starting up...')
print('=' * 70)
###########
START_FILE_NUMBER = 0
LAST_SAVED_BATCH_COUNT = 0
input_files_count = START_FILE_NUMBER
files_count = LAST_SAVED_BATCH_COUNT
melody_chords_f = []
stats = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print('Processing MIDI files. Please wait...')
print('=' * 70)
for f in tqdm(filez[START_FILE_NUMBER:]):
try:
input_files_count += 1
fn = os.path.basename(f)
fn1 = fn.split('.mid')[0]
#=======================================================
# START PROCESSING
opus = TMIDIX.midi2opus(open(f, 'rb').read())
opus_events_matrix = []
itrack0 = 1
while itrack0 < len(opus):
for event in opus[itrack0]:
opus_events_matrix.append(event)
itrack0 += 1
#=======================================================
ms_score = TMIDIX.opus2score(TMIDIX.to_millisecs(opus))
ms_events_matrix = []
itrack1 = 1
while itrack1 < len(ms_score):
for event in ms_score[itrack1]:
if event[0] == 'note':
ms_events_matrix.append(event)
itrack1 += 1
ms_events_matrix.sort(key=lambda x: x[1])
#=======================================================
# Convering MIDI to score with MIDI.py module
score = TMIDIX.opus2score(opus)
# INSTRUMENTS CONVERSION CYCLE
events_matrix = []
full_events_matrix = []
itrack = 1
patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
while itrack < len(score):
for event in score[itrack]:
if event[0] == 'note' or event[0] == 'patch_change':
events_matrix.append(event)
full_events_matrix.append(event)
itrack += 1
full_events_matrix.sort(key=lambda x: x[1])
events_matrix.sort(key=lambda x: x[1])
events_matrix1 = []
for event in events_matrix:
if event[0] == 'patch_change':
patches[event[2]] = event[3]
if event[0] == 'note':
event.extend([patches[event[3]]])
events_matrix1.append(event)
if len(events_matrix1) > 32:
events_matrix1.sort(key=lambda x: x[1])
for e in events_matrix1:
if e[0] == 'note':
if e[3] == 9:
e[4] = ((abs(e[4]) % 128) + 128)
else:
e[4] = (abs(e[4]) % 128)
pitches_counts = [[y[0],y[1]] for y in Counter([y[4] for y in events_matrix1]).most_common()]
pitches_counts.sort(key=lambda x: x[0], reverse=True)
patches = sorted([y[6] for y in events_matrix1])
patches_counts = [[y[0], y[1]] for y in Counter(patches).most_common()]
patches_counts.sort(key = lambda x: x[0])
midi_patches = sorted(list(set([y[3] for y in events_matrix if y[0] == 'patch_change'])))
if len(midi_patches) == 0:
midi_patches = [0]
times = []
pt = ms_events_matrix[0][1]
start = True
for e in ms_events_matrix:
if (e[1]-pt) != 0 or start == True:
times.append((e[1]-pt))
start = False
pt = e[1]
times_sum = min(10000000, sum(times))
durs = [e[2] for e in ms_events_matrix]
vels = [e[5] for e in ms_events_matrix]
avg_time = int(sum(times) / len(times))
avg_dur = int(sum(durs) / len(durs))
avg_vel = int(sum(vels) / len(vels))
mode_time = statistics.mode(times)
mode_dur = statistics.mode(durs)
mode_vel = statistics.mode(vels)
median_time = int(statistics.median(times))
median_dur = int(statistics.median(durs))
median_vel = int(statistics.median(vels))
text_events_list = ['text_event',
'text_event_08',
'text_event_09',
'text_event_0a',
'text_event_0b',
'text_event_0c',
'text_event_0d',
'text_event_0e',
'text_event_0f']
text_events_count = len([e for e in full_events_matrix if e[0] in text_events_list])
lyric_events_count = len([e for e in full_events_matrix if e[0] == 'lyric'])
chords = []
pe = ms_events_matrix[0]
cho = []
for e in ms_events_matrix:
if (e[1] - pe[1]) == 0:
if e[3] != 9:
if (e[4] % 12) not in cho:
cho.append(e[4] % 12)
else:
if len(cho) > 0:
chords.append(sorted(cho))
cho = []
if e[3] != 9:
if (e[4] % 12) not in cho:
cho.append(e[4] % 12)
pe = e
if len(cho) > 0:
chords.append(sorted(cho))
ms_chords_counts = sorted([[list(key), val] for key,val in Counter([tuple(c) for c in chords if len(c) > 1]).most_common()], reverse=True, key = lambda x: x[1])
if len(ms_chords_counts) == 0:
ms_chords_counts = [[[0, 0], 0]]
total_number_of_chords = len(set([y[1] for y in events_matrix1]))
tempo_change_count = len([f for f in full_events_matrix if f[0] == 'set_tempo'])
thirty_second_note = [e for e in events_matrix1][32]
thirty_second_note_idx = full_events_matrix.index(thirty_second_note)
data = []
data.append(['total_number_of_tracks', itrack])
data.append(['total_number_of_opus_midi_events', len(opus_events_matrix)])
data.append(['total_number_of_score_midi_events', len(full_events_matrix)])
data.append(['average_median_mode_time_ms', [avg_time, median_time, mode_time]])
data.append(['average_median_mode_dur_ms', [avg_dur, median_dur, mode_dur]])
data.append(['average_median_mode_vel', [avg_vel, median_vel, mode_vel]])
data.append(['total_number_of_chords', total_number_of_chords])
data.append(['total_number_of_chords_ms', len(times)])
data.append(['ms_chords_counts', ms_chords_counts])
data.append(['pitches_times_sum_ms', times_sum])
data.append(['total_pitches_counts', pitches_counts])
data.append(['midi_patches', midi_patches])
data.append(['total_patches_counts', patches_counts])
data.append(['tempo_change_count', tempo_change_count])
data.append(['text_events_count', text_events_count])
data.append(['lyric_events_count', lyric_events_count])
data.append(['midi_ticks', score[0]])
data.extend(full_events_matrix[:thirty_second_note_idx])
data.append(full_events_matrix[-1])
melody_chords_f.append([fn1, data])
#=======================================================
# Processed files counter
files_count += 1
# Saving every 5000 processed files
if files_count % 10000 == 0:
print('SAVING !!!')
print('=' * 70)
print('Saving processed files...')
print('=' * 70)
print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
print('=' * 70)
count = str(files_count)
TMIDIX.Tegridy_Any_Pickle_File_Writer(melody_chords_f, '/content/drive/MyDrive/LAMD_META_DATA_'+count)
melody_chords_f = []
print('=' * 70)
except KeyboardInterrupt:
print('Saving current progress and quitting...')
break
except Exception as ex:
print('WARNING !!!')
print('=' * 70)
print('Bad MIDI:', f)
print('Error detected:', ex)
print('=' * 70)
continue
# Saving last processed files...
print('=' * 70)
print('Saving processed files...')
print('=' * 70)
print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
print('=' * 70)
count = str(files_count)
TMIDIX.Tegridy_Any_Pickle_File_Writer(melody_chords_f, '/content/drive/MyDrive/LAMD_META_DATA_'+count)
# Displaying resulting processing stats...
print('=' * 70)
print('Done!')
print('=' * 70)
print('Resulting Stats:')
print('=' * 70)
print('Total good processed MIDI files:', files_count)
print('=' * 70)
"""# (BUILD FINAL METADATA FILE)"""
#@title Build final metadata file
full_path_to_metadata_pickle_files = "/content/drive/MyDrive" #@param {type:"string"}
print('=' * 70)
print('Los Angeles MIDI Dataset Metadata File Builder')
print('=' * 70)
print('Searching for files...')
filez = list()
for (dirpath, dirnames, filenames) in os.walk(full_path_to_metadata_pickle_files):
filez += [os.path.join(dirpath, file) for file in filenames if file.split('.')[-1] == 'pickle']
print('=' * 70)
filez.sort()
print('Loading metadata files... Please wait...')
print('=' * 70)
metadata = []
for f in tqdm(filez):
metadata.extend(pickle.load(open(f, 'rb')))
print('Done!')
print('=' * 70)
print('Loaded file:', f)
print('=' * 70)
print('Done!')
print('=' * 70)
print('Randomizing metadata entries order...')
random.shuffle(metadata)
print('=' * 70)
print('Writing final metadata pickle file...Please wait...')
with open('/content/LAMDa_META_DATA.pickle', 'wb') as handle:
pickle.dump(metadata, handle, protocol=pickle.HIGHEST_PROTOCOL)
print('=' * 70)
print('Done!')
print('=' * 70)
#@title Zip final metadata file
print('=' * 70)
print('Zipping... Please wait...')
print('=' * 70)
!zip LAMDa_META_DATA.zip LAMDa_META_DATA.pickle
print('=' * 70)
print('Done!')
print('=' * 70)
"""# Congrats! You did it! :)""" |