projectlosangeles
commited on
Commit
•
b6bf062
1
Parent(s):
1f97699
Upload 2 files
Browse files
Master_MIDI_Dataset_GPU_Search_and_Filter.ipynb
CHANGED
@@ -11,7 +11,7 @@
|
|
11 |
"id": "SiTIpPjArIyr"
|
12 |
},
|
13 |
"source": [
|
14 |
-
"# Master MIDI Dataset GPU Search and Filter (ver.
|
15 |
"\n",
|
16 |
"***\n",
|
17 |
"\n",
|
@@ -26,24 +26,10 @@
|
|
26 |
"***"
|
27 |
]
|
28 |
},
|
29 |
-
{
|
30 |
-
"cell_type": "markdown",
|
31 |
-
"metadata": {
|
32 |
-
"gradient": {
|
33 |
-
"editing": false,
|
34 |
-
"id": "fa0a611c-1803-42ae-bdf6-a49b5a4e781b",
|
35 |
-
"kernelId": ""
|
36 |
-
},
|
37 |
-
"id": "gOd93yV0sGd2"
|
38 |
-
},
|
39 |
-
"source": [
|
40 |
-
"# (SETUP ENVIRONMENT)"
|
41 |
-
]
|
42 |
-
},
|
43 |
{
|
44 |
"cell_type": "markdown",
|
45 |
"source": [
|
46 |
-
"# (
|
47 |
],
|
48 |
"metadata": {
|
49 |
"id": "0rMwKVc9FFRw"
|
@@ -161,7 +147,7 @@
|
|
161 |
"id": "ObPxlEutsQBj"
|
162 |
},
|
163 |
"source": [
|
164 |
-
"# (
|
165 |
]
|
166 |
},
|
167 |
{
|
@@ -210,6 +196,15 @@
|
|
210 |
"execution_count": null,
|
211 |
"outputs": []
|
212 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
{
|
214 |
"cell_type": "code",
|
215 |
"source": [
|
@@ -246,10 +241,19 @@
|
|
246 |
"execution_count": null,
|
247 |
"outputs": []
|
248 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
{
|
250 |
"cell_type": "code",
|
251 |
"source": [
|
252 |
-
"
|
253 |
"\n",
|
254 |
"print('=' * 70)\n",
|
255 |
"print('Loading LAMDa Signatures Data...')\n",
|
@@ -290,22 +294,13 @@
|
|
290 |
"execution_count": null,
|
291 |
"outputs": []
|
292 |
},
|
293 |
-
{
|
294 |
-
"cell_type": "markdown",
|
295 |
-
"source": [
|
296 |
-
"# (SEARCH AND FILTER)\n",
|
297 |
-
"\n",
|
298 |
-
"### DO NOT FORGET TO UPLOAD YOUR MASTER DATASET TO \"Master-MIDI-Dataset\" FOLDER"
|
299 |
-
],
|
300 |
-
"metadata": {
|
301 |
-
"id": "iaeqXuIHI0_T"
|
302 |
-
}
|
303 |
-
},
|
304 |
{
|
305 |
"cell_type": "code",
|
306 |
"source": [
|
307 |
"#@title Master MIDI Dataset Search and Filter\n",
|
308 |
"\n",
|
|
|
|
|
309 |
"#@markdown NOTE: You can stop the search at any time to render partial results\n",
|
310 |
"\n",
|
311 |
"number_of_top_matches_MIDIs_to_collect = 30 #@param {type:\"slider\", min:5, max:50, step:1}\n",
|
@@ -597,6 +592,338 @@
|
|
597 |
"execution_count": null,
|
598 |
"outputs": []
|
599 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
600 |
{
|
601 |
"cell_type": "markdown",
|
602 |
"source": [
|
|
|
11 |
"id": "SiTIpPjArIyr"
|
12 |
},
|
13 |
"source": [
|
14 |
+
"# Master MIDI Dataset GPU Search and Filter (ver. 6.0)\n",
|
15 |
"\n",
|
16 |
"***\n",
|
17 |
"\n",
|
|
|
26 |
"***"
|
27 |
]
|
28 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
{
|
30 |
"cell_type": "markdown",
|
31 |
"source": [
|
32 |
+
"# (GPU CHECK)"
|
33 |
],
|
34 |
"metadata": {
|
35 |
"id": "0rMwKVc9FFRw"
|
|
|
147 |
"id": "ObPxlEutsQBj"
|
148 |
},
|
149 |
"source": [
|
150 |
+
"# (DOWNLOAD AND UNZIP MAIN MIDI DATASET)"
|
151 |
]
|
152 |
},
|
153 |
{
|
|
|
196 |
"execution_count": null,
|
197 |
"outputs": []
|
198 |
},
|
199 |
+
{
|
200 |
+
"cell_type": "markdown",
|
201 |
+
"source": [
|
202 |
+
"# (CREATE MIDI DATASET FILES LIST)"
|
203 |
+
],
|
204 |
+
"metadata": {
|
205 |
+
"id": "GE0hPlAEjCrs"
|
206 |
+
}
|
207 |
+
},
|
208 |
{
|
209 |
"cell_type": "code",
|
210 |
"source": [
|
|
|
241 |
"execution_count": null,
|
242 |
"outputs": []
|
243 |
},
|
244 |
+
{
|
245 |
+
"cell_type": "markdown",
|
246 |
+
"source": [
|
247 |
+
"# (SIGNATURES SEARCH)"
|
248 |
+
],
|
249 |
+
"metadata": {
|
250 |
+
"id": "iaeqXuIHI0_T"
|
251 |
+
}
|
252 |
+
},
|
253 |
{
|
254 |
"cell_type": "code",
|
255 |
"source": [
|
256 |
+
"# @title Load Los Angeles MIDI Dataset Signatures Data\n",
|
257 |
"\n",
|
258 |
"print('=' * 70)\n",
|
259 |
"print('Loading LAMDa Signatures Data...')\n",
|
|
|
294 |
"execution_count": null,
|
295 |
"outputs": []
|
296 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
{
|
298 |
"cell_type": "code",
|
299 |
"source": [
|
300 |
"#@title Master MIDI Dataset Search and Filter\n",
|
301 |
"\n",
|
302 |
+
"#@markdown DO NOT FORGET TO UPLOAD YOUR MASTER DATASET TO \"Master-MIDI-Dataset\" FOLDER\n",
|
303 |
+
"\n",
|
304 |
"#@markdown NOTE: You can stop the search at any time to render partial results\n",
|
305 |
"\n",
|
306 |
"number_of_top_matches_MIDIs_to_collect = 30 #@param {type:\"slider\", min:5, max:50, step:1}\n",
|
|
|
592 |
"execution_count": null,
|
593 |
"outputs": []
|
594 |
},
|
595 |
+
{
|
596 |
+
"cell_type": "markdown",
|
597 |
+
"source": [
|
598 |
+
"# (KILO-CHORDS SEARCH)"
|
599 |
+
],
|
600 |
+
"metadata": {
|
601 |
+
"id": "ekjgrYRaiFE0"
|
602 |
+
}
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"cell_type": "code",
|
606 |
+
"source": [
|
607 |
+
"#@title Load Los Angeles MIDI Dataset Kilo-Chords Data\n",
|
608 |
+
"search_matching_type = \"Full-Kilo-Chords\" # @param [\"Full-Kilo-Chords\", \"Unique-Kilo-Chords\"]\n",
|
609 |
+
"\n",
|
610 |
+
"print('=' * 70)\n",
|
611 |
+
"print('Loading LAMDa Kilo-Chords Data...')\n",
|
612 |
+
"kilo_chords = pickle.load(open('/content/Main-MIDI-Dataset/KILO_CHORDS_DATA/LAMDa_KILO_CHORDS_DATA.pickle', 'rb'))\n",
|
613 |
+
"print('=' * 70)\n",
|
614 |
+
"\n",
|
615 |
+
"print('Prepping Kilo-Chords...')\n",
|
616 |
+
"print('=' * 70)\n",
|
617 |
+
"\n",
|
618 |
+
"random.shuffle(kilo_chords)\n",
|
619 |
+
"\n",
|
620 |
+
"if search_matching_type == 'Full-Kilo-Chords':\n",
|
621 |
+
"\n",
|
622 |
+
" kilo_chords_file_names = []\n",
|
623 |
+
"\n",
|
624 |
+
" for kc in tqdm(kilo_chords):\n",
|
625 |
+
"\n",
|
626 |
+
" kilo_chords_file_names.append(kc[0])\n",
|
627 |
+
"\n",
|
628 |
+
" kcho = kc[1]\n",
|
629 |
+
"\n",
|
630 |
+
" kcho += [0] * (1000 - len(kcho))\n",
|
631 |
+
"\n",
|
632 |
+
" print('=' * 70)\n",
|
633 |
+
" print('Loading Kilo-Chords...')\n",
|
634 |
+
" print('=' * 70)\n",
|
635 |
+
"\n",
|
636 |
+
" kilo_chords_data = cp.array([kc[1] for kc in kilo_chords])\n",
|
637 |
+
"\n",
|
638 |
+
"else:\n",
|
639 |
+
"\n",
|
640 |
+
" kilo_chords_file_names = []\n",
|
641 |
+
"\n",
|
642 |
+
" kilo_chords_matrixes = [ [0]*(len(TMIDIX.ALL_CHORDS)+128) for i in range(len(kilo_chords))]\n",
|
643 |
+
"\n",
|
644 |
+
" idx = 0\n",
|
645 |
+
" for kc in tqdm(kilo_chords):\n",
|
646 |
+
"\n",
|
647 |
+
" kilo_chords_file_names.append(kc[0])\n",
|
648 |
+
"\n",
|
649 |
+
" for c in kc[1]:\n",
|
650 |
+
" kilo_chords_matrixes[idx][c] += 1\n",
|
651 |
+
"\n",
|
652 |
+
" idx += 1\n",
|
653 |
+
"\n",
|
654 |
+
" print('=' * 70)\n",
|
655 |
+
" print('Loading Kilo-Chords...')\n",
|
656 |
+
" print('=' * 70)\n",
|
657 |
+
"\n",
|
658 |
+
" kilo_chords_data = cp.array(kilo_chords_matrixes)\n",
|
659 |
+
"\n",
|
660 |
+
"print('Done!')\n",
|
661 |
+
"print('=' * 70)"
|
662 |
+
],
|
663 |
+
"metadata": {
|
664 |
+
"cellView": "form",
|
665 |
+
"id": "YVyUHQiNiJcX"
|
666 |
+
},
|
667 |
+
"execution_count": null,
|
668 |
+
"outputs": []
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"cell_type": "code",
|
672 |
+
"source": [
|
673 |
+
"#@title Master MIDI Dataset Search and Filter\n",
|
674 |
+
"\n",
|
675 |
+
"#@markdown DO NOT FORGET TO UPLOAD YOUR MASTER DATASET TO \"Master-MIDI-Dataset\" FOLDER\n",
|
676 |
+
"\n",
|
677 |
+
"#@markdown NOTE: You can stop the search at any time to render partial results\n",
|
678 |
+
"\n",
|
679 |
+
"number_of_top_matches_MIDIs_to_collect = 30 #@param {type:\"slider\", min:5, max:50, step:1}\n",
|
680 |
+
"maximum_match_ratio_to_search_for = 1 #@param {type:\"slider\", min:0, max:1, step:0.001}\n",
|
681 |
+
"match_results_weight = 1 # @param {type:\"slider\", min:0.1, max:3, step:0.1}\n",
|
682 |
+
"match_lengths_weight = 0.5 # @param {type:\"slider\", min:0.1, max:3, step:0.1}\n",
|
683 |
+
"match_counts_weight = 0.5 # @param {type:\"slider\", min:0.1, max:3, step:0.1}\n",
|
684 |
+
"epsilon = 0.5 # @param {type:\"slider\", min:0.001, max:1, step:0.001}\n",
|
685 |
+
"\n",
|
686 |
+
"print('=' * 70)\n",
|
687 |
+
"print('Master MIDI Dataset GPU Search and Filter')\n",
|
688 |
+
"print('=' * 70)\n",
|
689 |
+
"\n",
|
690 |
+
"###########\n",
|
691 |
+
"\n",
|
692 |
+
"print('Loading MIDI files...')\n",
|
693 |
+
"print('This may take a while on a large dataset in particular.')\n",
|
694 |
+
"\n",
|
695 |
+
"dataset_addr = \"/content/Master-MIDI-Dataset\"\n",
|
696 |
+
"\n",
|
697 |
+
"filez = list()\n",
|
698 |
+
"\n",
|
699 |
+
"for (dirpath, dirnames, filenames) in os.walk(dataset_addr):\n",
|
700 |
+
" for file in filenames:\n",
|
701 |
+
" if file.endswith(('.mid', '.midi', '.kar')):\n",
|
702 |
+
" filez.append(os.path.join(dirpath, file))\n",
|
703 |
+
"\n",
|
704 |
+
"print('=' * 70)\n",
|
705 |
+
"\n",
|
706 |
+
"if filez:\n",
|
707 |
+
"\n",
|
708 |
+
" print('Randomizing file list...')\n",
|
709 |
+
" random.shuffle(filez)\n",
|
710 |
+
" print('=' * 70)\n",
|
711 |
+
"\n",
|
712 |
+
" ###################\n",
|
713 |
+
"\n",
|
714 |
+
" if not os.path.exists('/content/Output-MIDI-Dataset/'+search_matching_type):\n",
|
715 |
+
" os.makedirs('/content/Output-MIDI-Dataset/'+search_matching_type)\n",
|
716 |
+
"\n",
|
717 |
+
" ###################\n",
|
718 |
+
"\n",
|
719 |
+
" input_files_count = 0\n",
|
720 |
+
" files_count = 0\n",
|
721 |
+
"\n",
|
722 |
+
" for f in filez:\n",
|
723 |
+
"\n",
|
724 |
+
" try:\n",
|
725 |
+
"\n",
|
726 |
+
" input_files_count += 1\n",
|
727 |
+
"\n",
|
728 |
+
" fn = os.path.basename(f)\n",
|
729 |
+
" fn1 = os.path.splitext(fn)[0]\n",
|
730 |
+
" ext = os.path.splitext(f)[1]\n",
|
731 |
+
"\n",
|
732 |
+
" print('Processing MIDI File #', files_count+1, 'out of', len(filez))\n",
|
733 |
+
" print('MIDI file name', fn)\n",
|
734 |
+
" print('-' * 70)\n",
|
735 |
+
"\n",
|
736 |
+
" #=======================================================\n",
|
737 |
+
"\n",
|
738 |
+
" raw_score = TMIDIX.midi2single_track_ms_score(open(f, 'rb').read())\n",
|
739 |
+
" escore = TMIDIX.advanced_score_processor(raw_score, return_score_analysis=False, return_enhanced_score_notes=True)[0]\n",
|
740 |
+
"\n",
|
741 |
+
" for e in escore:\n",
|
742 |
+
" e[1] = int(e[1] / 16)\n",
|
743 |
+
" e[2] = int(e[2] / 16)\n",
|
744 |
+
"\n",
|
745 |
+
" src_kilo_chords = []\n",
|
746 |
+
"\n",
|
747 |
+
" for i in range(-6, 6):\n",
|
748 |
+
"\n",
|
749 |
+
" escore_copy = copy.deepcopy(escore)\n",
|
750 |
+
"\n",
|
751 |
+
" for e in escore_copy:\n",
|
752 |
+
" e[4] += i\n",
|
753 |
+
"\n",
|
754 |
+
" cscore = TMIDIX.chordify_score([1000, escore_copy])\n",
|
755 |
+
"\n",
|
756 |
+
" kilo_chord = []\n",
|
757 |
+
"\n",
|
758 |
+
" for c in cscore:\n",
|
759 |
+
"\n",
|
760 |
+
" pitches = sorted(set([p[4] for p in c if p[3] != 9]))\n",
|
761 |
+
"\n",
|
762 |
+
" if pitches:\n",
|
763 |
+
" if len(pitches) > 1:\n",
|
764 |
+
" tones_chord = sorted(set([p % 12 for p in pitches]))\n",
|
765 |
+
" checked_tones_chord = TMIDIX.check_and_fix_tones_chord(tones_chord)\n",
|
766 |
+
"\n",
|
767 |
+
" chord_token = TMIDIX.ALL_CHORDS.index(checked_tones_chord) + 128\n",
|
768 |
+
"\n",
|
769 |
+
" elif len(pitches) == 1:\n",
|
770 |
+
" chord_token = pitches[0]\n",
|
771 |
+
"\n",
|
772 |
+
" kilo_chord.append(chord_token)\n",
|
773 |
+
"\n",
|
774 |
+
" if search_matching_type == 'Full-Kilo-Chords':\n",
|
775 |
+
"\n",
|
776 |
+
" kilo_chord = kilo_chord[:1000]\n",
|
777 |
+
" kilo_chord_matrix = kilo_chord + [0] * (1000 - len(kilo_chord))\n",
|
778 |
+
"\n",
|
779 |
+
" else:\n",
|
780 |
+
"\n",
|
781 |
+
" kilo_chord_matrix = [0] * (len(TMIDIX.ALL_CHORDS)+128)\n",
|
782 |
+
"\n",
|
783 |
+
" for c in kilo_chord:\n",
|
784 |
+
" kilo_chord_matrix[c] += 1\n",
|
785 |
+
"\n",
|
786 |
+
" src_kilo_chords.append(kilo_chord_matrix)\n",
|
787 |
+
"\n",
|
788 |
+
" src_kilo_chords = cp.stack(cp.array(src_kilo_chords))\n",
|
789 |
+
"\n",
|
790 |
+
" #=======================================================\n",
|
791 |
+
"\n",
|
792 |
+
" print('Searching for matches...Please wait...')\n",
|
793 |
+
" print('-' * 70)\n",
|
794 |
+
"\n",
|
795 |
+
" lower_threshold = 0.0\n",
|
796 |
+
" upper_threshold = maximum_match_ratio_to_search_for\n",
|
797 |
+
" filter_size = number_of_top_matches_MIDIs_to_collect\n",
|
798 |
+
"\n",
|
799 |
+
" final_ratios = []\n",
|
800 |
+
"\n",
|
801 |
+
" avg_idxs = []\n",
|
802 |
+
"\n",
|
803 |
+
" all_filtered_means = []\n",
|
804 |
+
" all_filtered_idxs = []\n",
|
805 |
+
" all_filtered_tvs = []\n",
|
806 |
+
"\n",
|
807 |
+
" tv_idx = -6\n",
|
808 |
+
"\n",
|
809 |
+
" for target_kc in tqdm(src_kilo_chords):\n",
|
810 |
+
"\n",
|
811 |
+
" comps_lengths = cp.vstack((cp.repeat(cp.sum(target_kc != 0), kilo_chords_data.shape[0]), cp.sum(kilo_chords_data != 0, axis=1)))\n",
|
812 |
+
" comps_lengths_ratios = cp.divide(cp.min(comps_lengths, axis=0), cp.max(comps_lengths, axis=0))\n",
|
813 |
+
"\n",
|
814 |
+
" comps_counts_sums = cp.vstack((cp.repeat(cp.sum(target_kc), kilo_chords_data.shape[0]), cp.sum(kilo_chords_data, axis=1)))\n",
|
815 |
+
" comps_counts_sums_ratios = cp.divide(cp.min(comps_counts_sums, axis=0), cp.max(comps_counts_sums, axis=0))\n",
|
816 |
+
"\n",
|
817 |
+
" intersections = cp.where((kilo_chords_data == target_kc), kilo_chords_data, 0)\n",
|
818 |
+
" results = cp.mean(intersections != 0, axis=1)\n",
|
819 |
+
"\n",
|
820 |
+
" results_weight = match_results_weight\n",
|
821 |
+
" comp_lengths_weight = match_lengths_weight\n",
|
822 |
+
" comp_counts_sums_weight = match_counts_weight\n",
|
823 |
+
"\n",
|
824 |
+
" results = cp.divide(cp.add(cp.add(results_weight, comp_lengths_weight), comp_counts_sums_weight), cp.add(cp.add(cp.divide(results_weight, cp.where(results !=0, results, epsilon)), cp.divide(comp_lengths_weight, cp.where(comps_lengths_ratios !=0, comps_lengths_ratios, epsilon))), cp.divide(comp_counts_sums_weight, cp.where(comps_counts_sums_ratios !=0, comps_counts_sums_ratios, epsilon))))\n",
|
825 |
+
"\n",
|
826 |
+
" unique_means = cp.unique(results)\n",
|
827 |
+
" sorted_means = cp.sort(unique_means)[::-1]\n",
|
828 |
+
"\n",
|
829 |
+
" filtered_means = sorted_means[(sorted_means >= lower_threshold) & (sorted_means <= upper_threshold)][:filter_size]\n",
|
830 |
+
"\n",
|
831 |
+
" filtered_idxs = cp.where(cp.in1d(results, filtered_means))[0]\n",
|
832 |
+
"\n",
|
833 |
+
" all_filtered_means.extend(results[cp.in1d(results, filtered_means)].tolist())\n",
|
834 |
+
"\n",
|
835 |
+
" all_filtered_idxs.extend(filtered_idxs.tolist())\n",
|
836 |
+
"\n",
|
837 |
+
" filtered_tvs = [tv_idx] * filtered_idxs.shape[0]\n",
|
838 |
+
"\n",
|
839 |
+
" all_filtered_tvs.extend(filtered_tvs)\n",
|
840 |
+
"\n",
|
841 |
+
" tv_idx += 1\n",
|
842 |
+
"\n",
|
843 |
+
" f_results = sorted(zip(all_filtered_means, all_filtered_idxs, all_filtered_tvs), key=lambda x: x[0], reverse=True)\n",
|
844 |
+
"\n",
|
845 |
+
" triplet_dict = {}\n",
|
846 |
+
"\n",
|
847 |
+
" for triplet in f_results:\n",
|
848 |
+
"\n",
|
849 |
+
" if triplet[0] not in triplet_dict:\n",
|
850 |
+
" triplet_dict[triplet[0]] = triplet\n",
|
851 |
+
" else:\n",
|
852 |
+
" if triplet[2] == 0:\n",
|
853 |
+
" triplet_dict[triplet[0]] = triplet\n",
|
854 |
+
"\n",
|
855 |
+
" filtered_results = list(triplet_dict.values())[:filter_size]\n",
|
856 |
+
"\n",
|
857 |
+
" #=======================================================\n",
|
858 |
+
"\n",
|
859 |
+
" print('Done!')\n",
|
860 |
+
" print('-' * 70)\n",
|
861 |
+
" print('Max match ratio:', filtered_results[0][0])\n",
|
862 |
+
" print('Max match transpose value:', filtered_results[0][2])\n",
|
863 |
+
" print('Max match signature index:', filtered_results[0][1])\n",
|
864 |
+
" print('Max match file name:', kilo_chords_file_names[filtered_results[0][1]])\n",
|
865 |
+
" print('-' * 70)\n",
|
866 |
+
" print('Copying max ratios MIDIs...')\n",
|
867 |
+
"\n",
|
868 |
+
" for fr in filtered_results:\n",
|
869 |
+
"\n",
|
870 |
+
" max_ratio_index = fr[1]\n",
|
871 |
+
"\n",
|
872 |
+
" ffn = kilo_chords_file_names[fr[1]]\n",
|
873 |
+
" ffn_idx = [y[0] for y in LAMD_files_list].index(ffn)\n",
|
874 |
+
"\n",
|
875 |
+
" ff = LAMD_files_list[ffn_idx][1]\n",
|
876 |
+
"\n",
|
877 |
+
" #=======================================================\n",
|
878 |
+
"\n",
|
879 |
+
" dir_str = str(fn1)\n",
|
880 |
+
" copy_path = '/content/Output-MIDI-Dataset/'+search_matching_type+'/'+dir_str\n",
|
881 |
+
" if not os.path.exists(copy_path):\n",
|
882 |
+
" os.mkdir(copy_path)\n",
|
883 |
+
"\n",
|
884 |
+
" fff = str(fr[0] * 100) + '_' + str(fr[2]) + '_' + ffn + '.mid'\n",
|
885 |
+
"\n",
|
886 |
+
" shutil.copy2(ff, copy_path+'/'+fff)\n",
|
887 |
+
"\n",
|
888 |
+
" shutil.copy2(f, copy_path+'/'+fn)\n",
|
889 |
+
"\n",
|
890 |
+
" #======================================================='''\n",
|
891 |
+
" print('Done!')\n",
|
892 |
+
" print('=' * 70)\n",
|
893 |
+
"\n",
|
894 |
+
" #=======================================================\n",
|
895 |
+
"\n",
|
896 |
+
" # Processed files counter\n",
|
897 |
+
" files_count += 1\n",
|
898 |
+
"\n",
|
899 |
+
" except KeyboardInterrupt:\n",
|
900 |
+
" print('Quitting...')\n",
|
901 |
+
" print('Total number of processed MIDI files', files_count)\n",
|
902 |
+
" print('=' * 70)\n",
|
903 |
+
" break\n",
|
904 |
+
"\n",
|
905 |
+
" except Exception as ex:\n",
|
906 |
+
" print('WARNING !!!')\n",
|
907 |
+
" print('=' * 70)\n",
|
908 |
+
" print('Bad file:', f)\n",
|
909 |
+
" print('Error detected:', ex)\n",
|
910 |
+
" print('=' * 70)\n",
|
911 |
+
" continue\n",
|
912 |
+
"\n",
|
913 |
+
" print('Total number of processed MIDI files', files_count)\n",
|
914 |
+
" print('=' * 70)\n",
|
915 |
+
"\n",
|
916 |
+
"else:\n",
|
917 |
+
" print('Could not find any MIDI files. Please check Dataset dir...')\n",
|
918 |
+
" print('=' * 70)"
|
919 |
+
],
|
920 |
+
"metadata": {
|
921 |
+
"cellView": "form",
|
922 |
+
"id": "fhgpI31piWiX"
|
923 |
+
},
|
924 |
+
"execution_count": null,
|
925 |
+
"outputs": []
|
926 |
+
},
|
927 |
{
|
928 |
"cell_type": "markdown",
|
929 |
"source": [
|
master_midi_dataset_gpu_search_and_filter.py
CHANGED
@@ -6,7 +6,7 @@ Automatically generated by Colaboratory.
|
|
6 |
Original file is located at
|
7 |
https://colab.research.google.com/github/asigalov61/Los-Angeles-MIDI-Dataset/blob/main/Extras/Master_MIDI_Dataset_GPU_Search_and_Filter.ipynb
|
8 |
|
9 |
-
# Master MIDI Dataset GPU Search and Filter (ver.
|
10 |
|
11 |
***
|
12 |
|
@@ -20,9 +20,7 @@ Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
|
|
20 |
|
21 |
***
|
22 |
|
23 |
-
# (
|
24 |
-
|
25 |
-
# ( GPU CHECK)
|
26 |
"""
|
27 |
|
28 |
# @title NVIDIA GPU Check
|
@@ -79,7 +77,7 @@ if not os.path.exists('/content/Output-MIDI-Dataset'):
|
|
79 |
print('Done!')
|
80 |
print('Enjoy! :)')
|
81 |
|
82 |
-
"""# (
|
83 |
|
84 |
#@title Download Los Angeles MIDI Dataset
|
85 |
print('=' * 70)
|
@@ -108,6 +106,8 @@ print('Done! Enjoy! :)')
|
|
108 |
print('=' * 70)
|
109 |
# %cd /content/
|
110 |
|
|
|
|
|
111 |
#@title Create Los Angeles MIDI Dataset files list
|
112 |
print('=' * 70)
|
113 |
print('Creating dataset files list...')
|
@@ -134,7 +134,9 @@ for f in tqdm(filez):
|
|
134 |
print('Done!')
|
135 |
print('=' * 70)
|
136 |
|
137 |
-
|
|
|
|
|
138 |
|
139 |
print('=' * 70)
|
140 |
print('Loading LAMDa Signatures Data...')
|
@@ -168,13 +170,10 @@ signatures_data = cp.array(sigs_matrixes)
|
|
168 |
print('Done!')
|
169 |
print('=' * 70)
|
170 |
|
171 |
-
"""# (SEARCH AND FILTER)
|
172 |
-
|
173 |
-
### DO NOT FORGET TO UPLOAD YOUR MASTER DATASET TO "Master-MIDI-Dataset" FOLDER
|
174 |
-
"""
|
175 |
-
|
176 |
#@title Master MIDI Dataset Search and Filter
|
177 |
|
|
|
|
|
178 |
#@markdown NOTE: You can stop the search at any time to render partial results
|
179 |
|
180 |
number_of_top_matches_MIDIs_to_collect = 30 #@param {type:"slider", min:5, max:50, step:1}
|
@@ -459,6 +458,311 @@ else:
|
|
459 |
print('Could not find any MIDI files. Please check Dataset dir...')
|
460 |
print('=' * 70)
|
461 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
"""# (DOWNLOAD RESULTS)"""
|
463 |
|
464 |
# Commented out IPython magic to ensure Python compatibility.
|
|
|
6 |
Original file is located at
|
7 |
https://colab.research.google.com/github/asigalov61/Los-Angeles-MIDI-Dataset/blob/main/Extras/Master_MIDI_Dataset_GPU_Search_and_Filter.ipynb
|
8 |
|
9 |
+
# Master MIDI Dataset GPU Search and Filter (ver. 6.0)
|
10 |
|
11 |
***
|
12 |
|
|
|
20 |
|
21 |
***
|
22 |
|
23 |
+
# (GPU CHECK)
|
|
|
|
|
24 |
"""
|
25 |
|
26 |
# @title NVIDIA GPU Check
|
|
|
77 |
print('Done!')
|
78 |
print('Enjoy! :)')
|
79 |
|
80 |
+
"""# (DOWNLOAD AND UNZIP MAIN MIDI DATASET)"""
|
81 |
|
82 |
#@title Download Los Angeles MIDI Dataset
|
83 |
print('=' * 70)
|
|
|
106 |
print('=' * 70)
|
107 |
# %cd /content/
|
108 |
|
109 |
+
"""# (CREATE MIDI DATASET FILES LIST)"""
|
110 |
+
|
111 |
#@title Create Los Angeles MIDI Dataset files list
|
112 |
print('=' * 70)
|
113 |
print('Creating dataset files list...')
|
|
|
134 |
print('Done!')
|
135 |
print('=' * 70)
|
136 |
|
137 |
+
"""# (SIGNATURES SEARCH)"""
|
138 |
+
|
139 |
+
# @title Load Los Angeles MIDI Dataset Signatures Data
|
140 |
|
141 |
print('=' * 70)
|
142 |
print('Loading LAMDa Signatures Data...')
|
|
|
170 |
print('Done!')
|
171 |
print('=' * 70)
|
172 |
|
|
|
|
|
|
|
|
|
|
|
173 |
#@title Master MIDI Dataset Search and Filter
|
174 |
|
175 |
+
#@markdown DO NOT FORGET TO UPLOAD YOUR MASTER DATASET TO "Master-MIDI-Dataset" FOLDER
|
176 |
+
|
177 |
#@markdown NOTE: You can stop the search at any time to render partial results
|
178 |
|
179 |
number_of_top_matches_MIDIs_to_collect = 30 #@param {type:"slider", min:5, max:50, step:1}
|
|
|
458 |
print('Could not find any MIDI files. Please check Dataset dir...')
|
459 |
print('=' * 70)
|
460 |
|
461 |
+
"""# (KILO-CHORDS SEARCH)"""
|
462 |
+
|
463 |
+
#@title Load Los Angeles MIDI Dataset Kilo-Chords Data
|
464 |
+
search_matching_type = "Full-Kilo-Chords" # @param ["Full-Kilo-Chords", "Unique-Kilo-Chords"]
|
465 |
+
|
466 |
+
print('=' * 70)
|
467 |
+
print('Loading LAMDa Kilo-Chords Data...')
|
468 |
+
kilo_chords = pickle.load(open('/content/Main-MIDI-Dataset/KILO_CHORDS_DATA/LAMDa_KILO_CHORDS_DATA.pickle', 'rb'))
|
469 |
+
print('=' * 70)
|
470 |
+
|
471 |
+
print('Prepping Kilo-Chords...')
|
472 |
+
print('=' * 70)
|
473 |
+
|
474 |
+
random.shuffle(kilo_chords)
|
475 |
+
|
476 |
+
if search_matching_type == 'Full-Kilo-Chords':
|
477 |
+
|
478 |
+
kilo_chords_file_names = []
|
479 |
+
|
480 |
+
for kc in tqdm(kilo_chords):
|
481 |
+
|
482 |
+
kilo_chords_file_names.append(kc[0])
|
483 |
+
|
484 |
+
kcho = kc[1]
|
485 |
+
|
486 |
+
kcho += [0] * (1000 - len(kcho))
|
487 |
+
|
488 |
+
print('=' * 70)
|
489 |
+
print('Loading Kilo-Chords...')
|
490 |
+
print('=' * 70)
|
491 |
+
|
492 |
+
kilo_chords_data = cp.array([kc[1] for kc in kilo_chords])
|
493 |
+
|
494 |
+
else:
|
495 |
+
|
496 |
+
kilo_chords_file_names = []
|
497 |
+
|
498 |
+
kilo_chords_matrixes = [ [0]*(len(TMIDIX.ALL_CHORDS)+128) for i in range(len(kilo_chords))]
|
499 |
+
|
500 |
+
idx = 0
|
501 |
+
for kc in tqdm(kilo_chords):
|
502 |
+
|
503 |
+
kilo_chords_file_names.append(kc[0])
|
504 |
+
|
505 |
+
for c in kc[1]:
|
506 |
+
kilo_chords_matrixes[idx][c] += 1
|
507 |
+
|
508 |
+
idx += 1
|
509 |
+
|
510 |
+
print('=' * 70)
|
511 |
+
print('Loading Kilo-Chords...')
|
512 |
+
print('=' * 70)
|
513 |
+
|
514 |
+
kilo_chords_data = cp.array(kilo_chords_matrixes)
|
515 |
+
|
516 |
+
print('Done!')
|
517 |
+
print('=' * 70)
|
518 |
+
|
519 |
+
#@title Master MIDI Dataset Search and Filter
|
520 |
+
|
521 |
+
#@markdown DO NOT FORGET TO UPLOAD YOUR MASTER DATASET TO "Master-MIDI-Dataset" FOLDER
|
522 |
+
|
523 |
+
#@markdown NOTE: You can stop the search at any time to render partial results
|
524 |
+
|
525 |
+
number_of_top_matches_MIDIs_to_collect = 30 #@param {type:"slider", min:5, max:50, step:1}
|
526 |
+
maximum_match_ratio_to_search_for = 1 #@param {type:"slider", min:0, max:1, step:0.001}
|
527 |
+
match_results_weight = 1 # @param {type:"slider", min:0.1, max:3, step:0.1}
|
528 |
+
match_lengths_weight = 0.5 # @param {type:"slider", min:0.1, max:3, step:0.1}
|
529 |
+
match_counts_weight = 0.5 # @param {type:"slider", min:0.1, max:3, step:0.1}
|
530 |
+
epsilon = 0.5 # @param {type:"slider", min:0.001, max:1, step:0.001}
|
531 |
+
|
532 |
+
print('=' * 70)
|
533 |
+
print('Master MIDI Dataset GPU Search and Filter')
|
534 |
+
print('=' * 70)
|
535 |
+
|
536 |
+
###########
|
537 |
+
|
538 |
+
print('Loading MIDI files...')
|
539 |
+
print('This may take a while on a large dataset in particular.')
|
540 |
+
|
541 |
+
dataset_addr = "/content/Master-MIDI-Dataset"
|
542 |
+
|
543 |
+
filez = list()
|
544 |
+
|
545 |
+
for (dirpath, dirnames, filenames) in os.walk(dataset_addr):
|
546 |
+
for file in filenames:
|
547 |
+
if file.endswith(('.mid', '.midi', '.kar')):
|
548 |
+
filez.append(os.path.join(dirpath, file))
|
549 |
+
|
550 |
+
print('=' * 70)
|
551 |
+
|
552 |
+
if filez:
|
553 |
+
|
554 |
+
print('Randomizing file list...')
|
555 |
+
random.shuffle(filez)
|
556 |
+
print('=' * 70)
|
557 |
+
|
558 |
+
###################
|
559 |
+
|
560 |
+
if not os.path.exists('/content/Output-MIDI-Dataset/'+search_matching_type):
|
561 |
+
os.makedirs('/content/Output-MIDI-Dataset/'+search_matching_type)
|
562 |
+
|
563 |
+
###################
|
564 |
+
|
565 |
+
input_files_count = 0
|
566 |
+
files_count = 0
|
567 |
+
|
568 |
+
for f in filez:
|
569 |
+
|
570 |
+
try:
|
571 |
+
|
572 |
+
input_files_count += 1
|
573 |
+
|
574 |
+
fn = os.path.basename(f)
|
575 |
+
fn1 = os.path.splitext(fn)[0]
|
576 |
+
ext = os.path.splitext(f)[1]
|
577 |
+
|
578 |
+
print('Processing MIDI File #', files_count+1, 'out of', len(filez))
|
579 |
+
print('MIDI file name', fn)
|
580 |
+
print('-' * 70)
|
581 |
+
|
582 |
+
#=======================================================
|
583 |
+
|
584 |
+
raw_score = TMIDIX.midi2single_track_ms_score(open(f, 'rb').read())
|
585 |
+
escore = TMIDIX.advanced_score_processor(raw_score, return_score_analysis=False, return_enhanced_score_notes=True)[0]
|
586 |
+
|
587 |
+
for e in escore:
|
588 |
+
e[1] = int(e[1] / 16)
|
589 |
+
e[2] = int(e[2] / 16)
|
590 |
+
|
591 |
+
src_kilo_chords = []
|
592 |
+
|
593 |
+
for i in range(-6, 6):
|
594 |
+
|
595 |
+
escore_copy = copy.deepcopy(escore)
|
596 |
+
|
597 |
+
for e in escore_copy:
|
598 |
+
e[4] += i
|
599 |
+
|
600 |
+
cscore = TMIDIX.chordify_score([1000, escore_copy])
|
601 |
+
|
602 |
+
kilo_chord = []
|
603 |
+
|
604 |
+
for c in cscore:
|
605 |
+
|
606 |
+
pitches = sorted(set([p[4] for p in c if p[3] != 9]))
|
607 |
+
|
608 |
+
if pitches:
|
609 |
+
if len(pitches) > 1:
|
610 |
+
tones_chord = sorted(set([p % 12 for p in pitches]))
|
611 |
+
checked_tones_chord = TMIDIX.check_and_fix_tones_chord(tones_chord)
|
612 |
+
|
613 |
+
chord_token = TMIDIX.ALL_CHORDS.index(checked_tones_chord) + 128
|
614 |
+
|
615 |
+
elif len(pitches) == 1:
|
616 |
+
chord_token = pitches[0]
|
617 |
+
|
618 |
+
kilo_chord.append(chord_token)
|
619 |
+
|
620 |
+
if search_matching_type == 'Full-Kilo-Chords':
|
621 |
+
|
622 |
+
kilo_chord = kilo_chord[:1000]
|
623 |
+
kilo_chord_matrix = kilo_chord + [0] * (1000 - len(kilo_chord))
|
624 |
+
|
625 |
+
else:
|
626 |
+
|
627 |
+
kilo_chord_matrix = [0] * (len(TMIDIX.ALL_CHORDS)+128)
|
628 |
+
|
629 |
+
for c in kilo_chord:
|
630 |
+
kilo_chord_matrix[c] += 1
|
631 |
+
|
632 |
+
src_kilo_chords.append(kilo_chord_matrix)
|
633 |
+
|
634 |
+
src_kilo_chords = cp.stack(cp.array(src_kilo_chords))
|
635 |
+
|
636 |
+
#=======================================================
|
637 |
+
|
638 |
+
print('Searching for matches...Please wait...')
|
639 |
+
print('-' * 70)
|
640 |
+
|
641 |
+
lower_threshold = 0.0
|
642 |
+
upper_threshold = maximum_match_ratio_to_search_for
|
643 |
+
filter_size = number_of_top_matches_MIDIs_to_collect
|
644 |
+
|
645 |
+
final_ratios = []
|
646 |
+
|
647 |
+
avg_idxs = []
|
648 |
+
|
649 |
+
all_filtered_means = []
|
650 |
+
all_filtered_idxs = []
|
651 |
+
all_filtered_tvs = []
|
652 |
+
|
653 |
+
tv_idx = -6
|
654 |
+
|
655 |
+
for target_kc in tqdm(src_kilo_chords):
|
656 |
+
|
657 |
+
comps_lengths = cp.vstack((cp.repeat(cp.sum(target_kc != 0), kilo_chords_data.shape[0]), cp.sum(kilo_chords_data != 0, axis=1)))
|
658 |
+
comps_lengths_ratios = cp.divide(cp.min(comps_lengths, axis=0), cp.max(comps_lengths, axis=0))
|
659 |
+
|
660 |
+
comps_counts_sums = cp.vstack((cp.repeat(cp.sum(target_kc), kilo_chords_data.shape[0]), cp.sum(kilo_chords_data, axis=1)))
|
661 |
+
comps_counts_sums_ratios = cp.divide(cp.min(comps_counts_sums, axis=0), cp.max(comps_counts_sums, axis=0))
|
662 |
+
|
663 |
+
intersections = cp.where((kilo_chords_data == target_kc), kilo_chords_data, 0)
|
664 |
+
results = cp.mean(intersections != 0, axis=1)
|
665 |
+
|
666 |
+
results_weight = match_results_weight
|
667 |
+
comp_lengths_weight = match_lengths_weight
|
668 |
+
comp_counts_sums_weight = match_counts_weight
|
669 |
+
|
670 |
+
results = cp.divide(cp.add(cp.add(results_weight, comp_lengths_weight), comp_counts_sums_weight), cp.add(cp.add(cp.divide(results_weight, cp.where(results !=0, results, epsilon)), cp.divide(comp_lengths_weight, cp.where(comps_lengths_ratios !=0, comps_lengths_ratios, epsilon))), cp.divide(comp_counts_sums_weight, cp.where(comps_counts_sums_ratios !=0, comps_counts_sums_ratios, epsilon))))
|
671 |
+
|
672 |
+
unique_means = cp.unique(results)
|
673 |
+
sorted_means = cp.sort(unique_means)[::-1]
|
674 |
+
|
675 |
+
filtered_means = sorted_means[(sorted_means >= lower_threshold) & (sorted_means <= upper_threshold)][:filter_size]
|
676 |
+
|
677 |
+
filtered_idxs = cp.where(cp.in1d(results, filtered_means))[0]
|
678 |
+
|
679 |
+
all_filtered_means.extend(results[cp.in1d(results, filtered_means)].tolist())
|
680 |
+
|
681 |
+
all_filtered_idxs.extend(filtered_idxs.tolist())
|
682 |
+
|
683 |
+
filtered_tvs = [tv_idx] * filtered_idxs.shape[0]
|
684 |
+
|
685 |
+
all_filtered_tvs.extend(filtered_tvs)
|
686 |
+
|
687 |
+
tv_idx += 1
|
688 |
+
|
689 |
+
f_results = sorted(zip(all_filtered_means, all_filtered_idxs, all_filtered_tvs), key=lambda x: x[0], reverse=True)
|
690 |
+
|
691 |
+
triplet_dict = {}
|
692 |
+
|
693 |
+
for triplet in f_results:
|
694 |
+
|
695 |
+
if triplet[0] not in triplet_dict:
|
696 |
+
triplet_dict[triplet[0]] = triplet
|
697 |
+
else:
|
698 |
+
if triplet[2] == 0:
|
699 |
+
triplet_dict[triplet[0]] = triplet
|
700 |
+
|
701 |
+
filtered_results = list(triplet_dict.values())[:filter_size]
|
702 |
+
|
703 |
+
#=======================================================
|
704 |
+
|
705 |
+
print('Done!')
|
706 |
+
print('-' * 70)
|
707 |
+
print('Max match ratio:', filtered_results[0][0])
|
708 |
+
print('Max match transpose value:', filtered_results[0][2])
|
709 |
+
print('Max match signature index:', filtered_results[0][1])
|
710 |
+
print('Max match file name:', kilo_chords_file_names[filtered_results[0][1]])
|
711 |
+
print('-' * 70)
|
712 |
+
print('Copying max ratios MIDIs...')
|
713 |
+
|
714 |
+
for fr in filtered_results:
|
715 |
+
|
716 |
+
max_ratio_index = fr[1]
|
717 |
+
|
718 |
+
ffn = kilo_chords_file_names[fr[1]]
|
719 |
+
ffn_idx = [y[0] for y in LAMD_files_list].index(ffn)
|
720 |
+
|
721 |
+
ff = LAMD_files_list[ffn_idx][1]
|
722 |
+
|
723 |
+
#=======================================================
|
724 |
+
|
725 |
+
dir_str = str(fn1)
|
726 |
+
copy_path = '/content/Output-MIDI-Dataset/'+search_matching_type+'/'+dir_str
|
727 |
+
if not os.path.exists(copy_path):
|
728 |
+
os.mkdir(copy_path)
|
729 |
+
|
730 |
+
fff = str(fr[0] * 100) + '_' + str(fr[2]) + '_' + ffn + '.mid'
|
731 |
+
|
732 |
+
shutil.copy2(ff, copy_path+'/'+fff)
|
733 |
+
|
734 |
+
shutil.copy2(f, copy_path+'/'+fn)
|
735 |
+
|
736 |
+
#======================================================='''
|
737 |
+
print('Done!')
|
738 |
+
print('=' * 70)
|
739 |
+
|
740 |
+
#=======================================================
|
741 |
+
|
742 |
+
# Processed files counter
|
743 |
+
files_count += 1
|
744 |
+
|
745 |
+
except KeyboardInterrupt:
|
746 |
+
print('Quitting...')
|
747 |
+
print('Total number of processed MIDI files', files_count)
|
748 |
+
print('=' * 70)
|
749 |
+
break
|
750 |
+
|
751 |
+
except Exception as ex:
|
752 |
+
print('WARNING !!!')
|
753 |
+
print('=' * 70)
|
754 |
+
print('Bad file:', f)
|
755 |
+
print('Error detected:', ex)
|
756 |
+
print('=' * 70)
|
757 |
+
continue
|
758 |
+
|
759 |
+
print('Total number of processed MIDI files', files_count)
|
760 |
+
print('=' * 70)
|
761 |
+
|
762 |
+
else:
|
763 |
+
print('Could not find any MIDI files. Please check Dataset dir...')
|
764 |
+
print('=' * 70)
|
765 |
+
|
766 |
"""# (DOWNLOAD RESULTS)"""
|
767 |
|
768 |
# Commented out IPython magic to ensure Python compatibility.
|