File size: 3,505 Bytes
ba1bf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from typing import Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn

from ...modules.autoencoding.lpips.loss.lpips import LPIPS
from ...modules.encoders.modules import GeneralConditioner
from ...util import append_dims, instantiate_from_config
from .denoiser import Denoiser


class StandardDiffusionLoss(nn.Module):
    def __init__(
        self,
        sigma_sampler_config: dict,
        loss_weighting_config: dict,
        loss_type: str = "l2",
        offset_noise_level: float = 0.0,
        batch2model_keys: Optional[Union[str, List[str]]] = None,
    ):
        super().__init__()

        assert loss_type in ["l2", "l1", "lpips"]

        self.sigma_sampler = instantiate_from_config(sigma_sampler_config)
        self.loss_weighting = instantiate_from_config(loss_weighting_config)

        self.loss_type = loss_type
        self.offset_noise_level = offset_noise_level

        if loss_type == "lpips":
            self.lpips = LPIPS().eval()

        if not batch2model_keys:
            batch2model_keys = []

        if isinstance(batch2model_keys, str):
            batch2model_keys = [batch2model_keys]

        self.batch2model_keys = set(batch2model_keys)

    def get_noised_input(
        self, sigmas_bc: torch.Tensor, noise: torch.Tensor, input: torch.Tensor
    ) -> torch.Tensor:
        noised_input = input + noise * sigmas_bc
        return noised_input

    def forward(
        self,
        network: nn.Module,
        denoiser: Denoiser,
        conditioner: GeneralConditioner,
        input: torch.Tensor,
        batch: Dict,
    ) -> torch.Tensor:
        cond = conditioner(batch)
        return self._forward(network, denoiser, cond, input, batch)

    def _forward(
        self,
        network: nn.Module,
        denoiser: Denoiser,
        cond: Dict,
        input: torch.Tensor,
        batch: Dict,
    ) -> Tuple[torch.Tensor, Dict]:
        additional_model_inputs = {
            key: batch[key] for key in self.batch2model_keys.intersection(batch)
        }
        sigmas = self.sigma_sampler(input.shape[0]).to(input)

        noise = torch.randn_like(input)
        if self.offset_noise_level > 0.0:
            offset_shape = (
                (input.shape[0], 1, input.shape[2])
                if self.n_frames is not None
                else (input.shape[0], input.shape[1])
            )
            noise = noise + self.offset_noise_level * append_dims(
                torch.randn(offset_shape, device=input.device),
                input.ndim,
            )
        sigmas_bc = append_dims(sigmas, input.ndim)
        noised_input = self.get_noised_input(sigmas_bc, noise, input)

        model_output = denoiser(
            network, noised_input, sigmas, cond, **additional_model_inputs
        )
        w = append_dims(self.loss_weighting(sigmas), input.ndim)
        return self.get_loss(model_output, input, w)

    def get_loss(self, model_output, target, w):
        if self.loss_type == "l2":
            return torch.mean(
                (w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1
            )
        elif self.loss_type == "l1":
            return torch.mean(
                (w * (model_output - target).abs()).reshape(target.shape[0], -1), 1
            )
        elif self.loss_type == "lpips":
            loss = self.lpips(model_output, target).reshape(-1)
            return loss
        else:
            raise NotImplementedError(f"Unknown loss type {self.loss_type}")