File size: 22,362 Bytes
d7b858a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
import numpy as np
from torchvision import transforms
import torch
import torch.nn as nn
import torch.nn.functional as F
import PIL
import random
import os
import matplotlib.pyplot as plt
import pandas as pd
import math
import webdataset as wds
import tempfile
from torchvision.utils import make_grid
import json
from torchmetrics.image.fid import FrechetInceptionDistance
from PIL import Image
import requests
import io
import time
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def is_interactive():
import __main__ as main
return not hasattr(main, '__file__')
def seed_everything(seed=0, cudnn_deterministic=True):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if cudnn_deterministic:
torch.backends.cudnn.deterministic = True
else:
## needs to be False to use conv3D
print('Note: not using cudnn.deterministic')
def np_to_Image(x):
if x.ndim==4:
x=x[0]
return PIL.Image.fromarray((x.transpose(1, 2, 0)*127.5+128).clip(0,255).astype('uint8'))
def torch_to_Image(x):
if x.ndim==4:
x=x[0]
return transforms.ToPILImage()(x)
def Image_to_torch(x):
try:
x = (transforms.ToTensor()(x)[:3].unsqueeze(0)-.5)/.5
except:
x = (transforms.ToTensor()(x[0])[:3].unsqueeze(0)-.5)/.5
return x
def torch_to_matplotlib(x,device=device):
if torch.mean(x)>10:
x = (x.permute(0, 2, 3, 1)).clamp(0, 255).to(torch.uint8)
else:
x = (x.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8)
if device=='cpu':
return x[0]
else:
return x.cpu().numpy()[0]
def pairwise_cosine_similarity(A, B, dim=1, eps=1e-8):
#https://stackoverflow.com/questions/67199317/pytorch-cosine-similarity-nxn-elements
numerator = A @ B.T
A_l2 = torch.mul(A, A).sum(axis=dim)
B_l2 = torch.mul(B, B).sum(axis=dim)
denominator = torch.max(torch.sqrt(torch.outer(A_l2, B_l2)), torch.tensor(eps))
return torch.div(numerator, denominator)
def batchwise_pearson_correlation(Z, B):
# Calculate means
Z_mean = torch.mean(Z, dim=1, keepdim=True)
B_mean = torch.mean(B, dim=1, keepdim=True)
# Subtract means
Z_centered = Z - Z_mean
B_centered = B - B_mean
# Calculate Pearson correlation coefficient
numerator = Z_centered @ B_centered.T
Z_centered_norm = torch.linalg.norm(Z_centered, dim=1, keepdim=True)
B_centered_norm = torch.linalg.norm(B_centered, dim=1, keepdim=True)
denominator = Z_centered_norm @ B_centered_norm.T
pearson_correlation = (numerator / denominator)
return pearson_correlation
def batchwise_cosine_similarity(Z,B):
Z = Z.flatten(1)
B = B.flatten(1).T
Z_norm = torch.linalg.norm(Z, dim=1, keepdim=True) # Size (n, 1).
B_norm = torch.linalg.norm(B, dim=0, keepdim=True) # Size (1, b).
cosine_similarity = ((Z @ B) / (Z_norm @ B_norm)).T
return cosine_similarity
def prenormed_batchwise_cosine_similarity(Z,B):
return (Z @ B.T).T
def cosine_similarity(Z,B,l=0):
Z = nn.functional.normalize(Z, p=2, dim=1)
B = nn.functional.normalize(B, p=2, dim=1)
# if l>0, use distribution normalization
# https://twitter.com/YifeiZhou02/status/1716513495087472880
Z = Z - l * torch.mean(Z,dim=0)
B = B - l * torch.mean(B,dim=0)
cosine_similarity = (Z @ B.T).T
return cosine_similarity
def topk(similarities,labels,k=5):
if k > similarities.shape[0]:
k = similarities.shape[0]
topsum=0
for i in range(k):
topsum += torch.sum(torch.argsort(similarities,axis=1)[:,-(i+1)] == labels)/len(labels)
return topsum
def get_non_diagonals(a):
a = torch.triu(a,diagonal=1)+torch.tril(a,diagonal=-1)
# make diagonals -1
a=a.fill_diagonal_(-1)
return a
def gather_features(image_features, voxel_features, accelerator):
all_image_features = accelerator.gather(image_features.contiguous())
if voxel_features is not None:
all_voxel_features = accelerator.gather(voxel_features.contiguous())
return all_image_features, all_voxel_features
return all_image_features
def soft_clip_loss(preds, targs, temp=0.125): #, distributed=False, accelerator=None):
# if not distributed:
clip_clip = (targs @ targs.T)/temp
brain_clip = (preds @ targs.T)/temp
# else:
# all_targs = gather_features(targs, None, accelerator)
# clip_clip = (targs @ all_targs.T)/temp
# brain_clip = (preds @ all_targs.T)/temp
loss1 = -(brain_clip.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
loss2 = -(brain_clip.T.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
loss = (loss1 + loss2)/2
return loss
def soft_siglip_loss(preds, targs, temp, bias):
temp = torch.exp(temp)
logits = (preds @ targs.T) * temp + bias
# diagonals (aka paired samples) should be >0 and off-diagonals <0
labels = (targs @ targs.T) - 1 + (torch.eye(len(targs)).to(targs.dtype).to(targs.device))
loss1 = -torch.sum(nn.functional.logsigmoid(logits * labels[:len(preds)])) / len(preds)
loss2 = -torch.sum(nn.functional.logsigmoid(logits.T * labels[:,:len(preds)])) / len(preds)
loss = (loss1 + loss2)/2
return loss
def mixco_hard_siglip_loss(preds, targs, temp, bias, perm, betas):
temp = torch.exp(temp)
probs = torch.diag(betas)
probs[torch.arange(preds.shape[0]).to(preds.device), perm] = 1 - betas
logits = (preds @ targs.T) * temp + bias
labels = probs * 2 - 1
#labels = torch.eye(len(targs)).to(targs.dtype).to(targs.device) * 2 - 1
loss1 = -torch.sum(nn.functional.logsigmoid(logits * labels)) / len(preds)
loss2 = -torch.sum(nn.functional.logsigmoid(logits.T * labels)) / len(preds)
loss = (loss1 + loss2)/2
return loss
def mixco(voxels, beta=0.15, s_thresh=0.5, perm=None, betas=None, select=None):
if perm is None:
perm = torch.randperm(voxels.shape[0])
voxels_shuffle = voxels[perm].to(voxels.device,dtype=voxels.dtype)
if betas is None:
betas = torch.distributions.Beta(beta, beta).sample([voxels.shape[0]]).to(voxels.device,dtype=voxels.dtype)
if select is None:
select = (torch.rand(voxels.shape[0]) <= s_thresh).to(voxels.device)
betas_shape = [-1] + [1]*(len(voxels.shape)-1)
voxels[select] = voxels[select] * betas[select].reshape(*betas_shape) + \
voxels_shuffle[select] * (1 - betas[select]).reshape(*betas_shape)
betas[~select] = 1
return voxels, perm, betas, select
def mixco_clip_target(clip_target, perm, select, betas):
clip_target_shuffle = clip_target[perm]
clip_target[select] = clip_target[select] * betas[select].reshape(-1, 1) + \
clip_target_shuffle[select] * (1 - betas[select]).reshape(-1, 1)
return clip_target
def mixco_nce(preds, targs, temp=0.1, perm=None, betas=None, select=None, distributed=False,
accelerator=None, local_rank=None, bidirectional=True):
brain_clip = (preds @ targs.T)/temp
if perm is not None and betas is not None and select is not None:
probs = torch.diag(betas)
probs[torch.arange(preds.shape[0]).to(preds.device), perm] = 1 - betas
loss = -(brain_clip.log_softmax(-1) * probs).sum(-1).mean()
if bidirectional:
loss2 = -(brain_clip.T.log_softmax(-1) * probs.T).sum(-1).mean()
loss = (loss + loss2)/2
return loss
else:
loss = F.cross_entropy(brain_clip, torch.arange(brain_clip.shape[0]).to(brain_clip.device))
if bidirectional:
loss2 = F.cross_entropy(brain_clip.T, torch.arange(brain_clip.shape[0]).to(brain_clip.device))
loss = (loss + loss2)/2
return loss
def count_params(model):
total = sum(p.numel() for p in model.parameters())
trainable = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('param counts:\n{:,} total\n{:,} trainable'.format(total, trainable))
return trainable
def image_grid(imgs, rows, cols):
w, h = imgs[0].size
grid = PIL.Image.new('RGB', size=(cols*w, rows*h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def check_loss(loss):
if loss.isnan().any():
raise ValueError('NaN loss')
def cosine_anneal(start, end, steps):
return end + (start - end)/2 * (1 + torch.cos(torch.pi*torch.arange(steps)/(steps-1)))
def resize(img, img_size=128):
if img.ndim == 3: img = img[None]
return nn.functional.interpolate(img, size=(img_size, img_size), mode='nearest')
import braceexpand
def get_dataloaders(
batch_size,
image_var='images',
num_devices=None,
num_workers=None,
train_url=None,
val_url=None,
meta_url=None,
num_train=None,
num_val=None,
cache_dir="/scratch/tmp/wds-cache",
seed=0,
voxels_key="nsdgeneral.npy",
val_batch_size=None,
to_tuple=["voxels", "images", "trial"],
local_rank=0,
world_size=1,
):
print("Getting dataloaders...")
assert image_var == 'images'
def my_split_by_node(urls):
return urls
train_url = list(braceexpand.braceexpand(train_url))
val_url = list(braceexpand.braceexpand(val_url))
if num_devices is None:
num_devices = torch.cuda.device_count()
if num_workers is None:
num_workers = num_devices
if num_train is None:
metadata = json.load(open(meta_url))
num_train = metadata['totals']['train']
if num_val is None:
metadata = json.load(open(meta_url))
num_val = metadata['totals']['val']
if val_batch_size is None:
val_batch_size = batch_size
global_batch_size = batch_size * num_devices
num_batches = math.floor(num_train / global_batch_size)
num_worker_batches = math.floor(num_batches / num_workers)
if num_worker_batches == 0: num_worker_batches = 1
print("\nnum_train",num_train)
print("global_batch_size",global_batch_size)
print("batch_size",batch_size)
print("num_workers",num_workers)
print("num_batches",num_batches)
print("num_worker_batches", num_worker_batches)
# train_url = train_url[local_rank:world_size]
train_data = wds.WebDataset(train_url, resampled=False, cache_dir=cache_dir, nodesplitter=my_split_by_node)\
.shuffle(500, initial=500, rng=random.Random(42))\
.decode("torch")\
.rename(images="jpg;png", voxels=voxels_key, trial="trial.npy", coco="coco73k.npy", reps="num_uniques.npy")\
.to_tuple(*to_tuple)#\
# .batched(batch_size, partial=True)#\
# .with_epoch(num_worker_batches)
# BATCH SIZE SHOULD BE NONE!!! FOR TRAIN AND VAL | resampled=True for train | .batched(val_batch_size, partial=False)
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=1, shuffle=False)
# Validation
print("val_batch_size",val_batch_size)
val_data = wds.WebDataset(val_url, resampled=False, cache_dir=cache_dir, nodesplitter=my_split_by_node)\
.shuffle(500, initial=500, rng=random.Random(42))\
.decode("torch")\
.rename(images="jpg;png", voxels=voxels_key, trial="trial.npy", coco="coco73k.npy", reps="num_uniques.npy")\
.to_tuple(*to_tuple)#\
# .batched(val_batch_size, partial=True)
val_dl = torch.utils.data.DataLoader(val_data, batch_size=val_batch_size, num_workers=1, shuffle=False, drop_last=True)
return train_dl, val_dl, num_train, num_val
pixcorr_preprocess = transforms.Compose([
transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),
])
def pixcorr(images,brains,nan=True):
all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)
all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)
if nan:
corrmean = torch.nanmean(torch.diag(batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)))
else:
corrmean = torch.mean(torch.diag(batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)))
return corrmean
def select_annotations(annots, random=True):
"""
There are 5 annotations per image. Select one of them for each image.
"""
for i, b in enumerate(annots):
t = ''
if random:
# select random non-empty annotation
while t == '':
rand = torch.randint(5, (1,1))[0][0]
t = b[rand]
else:
# select first non-empty annotation
for j in range(5):
if b[j] != '':
t = b[j]
break
if i == 0:
txt = np.array(t)
else:
txt = np.vstack((txt, t))
txt = txt.flatten()
return txt
def add_saturation(image, alpha=2):
gray_image = 0.2989 * image[:, 0, :, :] + 0.5870 * image[:, 1, :, :] + 0.1140 * image[:, 2, :, :]
gray_image = gray_image.unsqueeze(1).expand_as(image)
saturated_image = alpha * image + (1 - alpha) * gray_image
return torch.clamp(saturated_image, 0, 1)
def find_prompt_by_image_number(image_number, data):
target_image_filename = f"img_t{image_number}.jpg"
for entry in data:
if 'target' in entry and entry['target'].endswith(target_image_filename):
return entry['prompt']
return -1
def compute_negative_l1_losses(preds, targets):
batch_size = preds.size(0)
# Expand dimensions for broadcasting
expanded_preds = preds.unsqueeze(1) # Shape: [batch_size, 1, 100]
expanded_targets = targets.unsqueeze(0) # Shape: [1, batch_size, 100]
# Compute pairwise L1 differences
l1_diffs = torch.abs(expanded_preds - expanded_targets) # Shape: [batch_size, batch_size, 100]
# Mask the diagonal to exclude positive pairs
mask = torch.eye(batch_size).bool().to(l1_diffs.device)
l1_diffs[mask] = 0
# Sum L1 differences for each sample against all negatives
negative_losses = l1_diffs.sum(dim=-1).mean()
return negative_losses
def unclip_recon(x, diffusion_engine, vector_suffix,
num_samples=1, offset_noise_level=0.04):
from generative_models.sgm.util import append_dims
assert x.ndim==3
if x.shape[0]==1:
x = x[[0]]
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.float16), diffusion_engine.ema_scope():
z = torch.randn(num_samples,4,96,96).to(device) # starting noise, can change to VAE outputs of initial image for img2img
# clip_img_tokenized = clip_img_embedder(image)
# tokens = clip_img_tokenized
token_shape = x.shape
tokens = x
c = {"crossattn": tokens.repeat(num_samples,1,1), "vector": vector_suffix.repeat(num_samples,1)}
tokens = torch.randn_like(x)
uc = {"crossattn": tokens.repeat(num_samples,1,1), "vector": vector_suffix.repeat(num_samples,1)}
for k in c:
c[k], uc[k] = map(lambda y: y[k][:num_samples].to(device), (c, uc))
noise = torch.randn_like(z)
sigmas = diffusion_engine.sampler.discretization(diffusion_engine.sampler.num_steps)
sigma = sigmas[0].to(z.device)
if offset_noise_level > 0.0:
noise = noise + offset_noise_level * append_dims(
torch.randn(z.shape[0], device=z.device), z.ndim
)
noised_z = z + noise * append_dims(sigma, z.ndim)
noised_z = noised_z / torch.sqrt(
1.0 + sigmas[0] ** 2.0
) # Note: hardcoded to DDPM-like scaling. need to generalize later.
def denoiser(x, sigma, c):
return diffusion_engine.denoiser(diffusion_engine.model, x, sigma, c)
samples_z = diffusion_engine.sampler(denoiser, noised_z, cond=c, uc=uc)
samples_x = diffusion_engine.decode_first_stage(samples_z)
samples = torch.clamp((samples_x*.8+.2), min=0.0, max=1.0)
# samples = torch.clamp((samples_x + .5) / 2.0, min=0.0, max=1.0)
return samples
def soft_cont_loss(student_preds, teacher_preds, teacher_aug_preds, temp=0.125):
teacher_teacher_aug = (teacher_preds @ teacher_aug_preds.T)/temp
teacher_teacher_aug_t = (teacher_aug_preds @ teacher_preds.T)/temp
student_teacher_aug = (student_preds @ teacher_aug_preds.T)/temp
student_teacher_aug_t = (teacher_aug_preds @ student_preds.T)/temp
loss1 = -(student_teacher_aug.log_softmax(-1) * teacher_teacher_aug.softmax(-1)).sum(-1).mean()
loss2 = -(student_teacher_aug_t.log_softmax(-1) * teacher_teacher_aug_t.softmax(-1)).sum(-1).mean()
loss = (loss1 + loss2)/2
return loss
def iterate_range(start, length, batchsize):
batch_count = int(length // batchsize )
residual = int(length % batchsize)
for i in range(batch_count):
yield range(start+i*batchsize, start+(i+1)*batchsize),batchsize
if(residual>0):
yield range(start+batch_count*batchsize,start+length),residual
# Torch fwRF
def get_value(_x):
return np.copy(_x.data.cpu().numpy())
#subject: nsd subject index between 1-8
#mode: vision, imagery
#stimtype: all, simple, complex, concepts
#average: whether to average across trials, will produce x that is (stimuli, 1, voxels)
#nest: whether to nest the data according to stimuli, will produce x that is (stimuli, trials, voxels)
import pickle
def condition_average(x, y, cond, nest=False):
idx, idx_count = np.unique(cond, return_counts=True)
idx_list = [np.array(cond)==i for i in np.sort(idx)]
if nest:
avg_x = torch.zeros((len(idx), idx_count.max(), x.shape[1]), dtype=torch.float32)
else:
avg_x = torch.zeros((len(idx), 1, x.shape[1]), dtype=torch.float32)
for i, m in enumerate(idx_list):
if nest:
avg_x[i] = x[m]
else:
avg_x[i] = torch.mean(x[m], axis=0)
return avg_x, y, len(idx_count)
def load_nsd_mental_imagery(subject, mode, stimtype="all", average=False, nest=False):
# This file has a bunch of information about the stimuli and cue associations that will make loading it easier
img_stim_file = "imagery/nsd_imagery/data/nsddata_stimuli/stimuli/nsdimagery_stimuli.pkl3"
ex_file = open(img_stim_file, 'rb')
imagery_dict = pickle.load(ex_file)
ex_file.close()
# Indicates what experiments trials belong to
exps = imagery_dict['exps']
# Indicates the cues for different stimuli
cues = imagery_dict['cues']
# Maps the cues to the stimulus image information
image_map = imagery_dict['image_map']
# Organize the indices of the trials according to the modality and the type of stimuli
cond_idx = {
'visionsimple': np.arange(len(exps))[exps=='visA'],
'visioncomplex': np.arange(len(exps))[exps=='visB'],
'visionconcepts': np.arange(len(exps))[exps=='visC'],
'visionall': np.arange(len(exps))[np.logical_or(np.logical_or(exps=='visA', exps=='visB'), exps=='visC')],
'imagerysimple': np.arange(len(exps))[np.logical_or(exps=='imgA_1', exps=='imgA_2')],
'imagerycomplex': np.arange(len(exps))[np.logical_or(exps=='imgB_1', exps=='imgB_2')],
'imageryconcepts': np.arange(len(exps))[np.logical_or(exps=='imgC_1', exps=='imgC_2')],
'imageryall': np.arange(len(exps))[np.logical_or(
np.logical_or(
np.logical_or(exps=='imgA_1', exps=='imgA_2'),
np.logical_or(exps=='imgB_1', exps=='imgB_2')),
np.logical_or(exps=='imgC_1', exps=='imgC_2'))]}
# Load normalized betas
x = torch.load("imagery/nsd_imagery/data/preprocessed_data/subject{}/nsd_imagery.pt".format(subject)).requires_grad_(False).to("cpu")
# Find the trial indices conditioned on the type of trials we want to load
cond_im_idx = {n: [image_map[c] for c in cues[idx]] for n,idx in cond_idx.items()}
conditionals = cond_im_idx[mode+stimtype]
# Stimuli file is of shape (18,3,425,425), these can be converted back into PIL images using transforms.ToPILImage()
y = torch.load("imagery/nsd_imagery/data/nsddata_stimuli/stimuli/imagery_stimuli_18.pt").requires_grad_(False).to("cpu")
# Prune the beta file down to specific experimental mode/stimuli type
x = x[cond_idx[mode+stimtype]]
# If stimtype is not all, then prune the image data down to the specific stimuli type
if stimtype == "simple":
y = y[:6]
elif stimtype == "complex":
y = y[6:12]
elif stimtype == "concepts":
y = y[12:]
# Average or nest the betas across trials
if average or nest:
x, y, sample_count = condition_average(x, y, conditionals, nest=nest)
else:
x = x.reshape((x.shape[0], 1, x.shape[1]))
# print(x.shape)
return x, y
def bb_soft_clip_loss(preds, targs, temp=0.125):
temp = np.exp(temp)
clip_clip = (targs @ targs.T)/temp
brain_brain = (preds @ preds.T)/temp
# loss1 = -(brain_brain.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
# loss2 = -(brain_brain.T.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
# loss = (loss1 + loss2)/2
loss = nn.functional.kl_div(brain_brain.log_softmax(-1), clip_clip.softmax(-1), reduction='batchmean')
return loss #* 1e5
def bb_cossim_loss(preds, targs, temp=None):
clip_clip = (targs @ targs.T)
brain_brain = (preds @ preds.T)
loss = 1 - nn.functional.cosine_similarity(brain_brain, clip_clip).mean()
return loss
def load_images_to_numpy(folder_path):
file_names = [f for f in os.listdir(folder_path) if (f.endswith('.png') or f.endswith('.jpg') or f.endswith('.jpeg'))]
image_data = []
image_names = []
for file_name in file_names:
image_path = os.path.join(folder_path, file_name)
image_names.append(file_name)
with Image.open(image_path) as img:
img_array = np.array(img)
if img_array.shape[1] != 224:
img = img.resize((224,224))
img_array = np.array(img)
image_data.append(img_array)
images_np = np.stack(image_data, axis=0)
return images_np, image_names |