model: | |
base_learning_rate: 1.0e-4 | |
target: sgm.models.diffusion.DiffusionEngine | |
params: | |
denoiser_config: | |
target: sgm.modules.diffusionmodules.denoiser.Denoiser | |
params: | |
scaling_config: | |
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling | |
params: | |
sigma_data: 1.0 | |
network_config: | |
target: sgm.modules.diffusionmodules.openaimodel.UNetModel | |
params: | |
in_channels: 1 | |
out_channels: 1 | |
model_channels: 32 | |
attention_resolutions: [] | |
num_res_blocks: 4 | |
channel_mult: [1, 2, 2] | |
num_head_channels: 32 | |
first_stage_config: | |
target: sgm.models.autoencoder.IdentityFirstStage | |
loss_fn_config: | |
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss | |
params: | |
loss_weighting_config: | |
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting | |
params: | |
sigma_data: 1.0 | |
sigma_sampler_config: | |
target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling | |
sampler_config: | |
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler | |
params: | |
num_steps: 50 | |
discretization_config: | |
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization | |
data: | |
target: sgm.data.mnist.MNISTLoader | |
params: | |
batch_size: 512 | |
num_workers: 1 | |
lightning: | |
modelcheckpoint: | |
params: | |
every_n_train_steps: 5000 | |
callbacks: | |
metrics_over_trainsteps_checkpoint: | |
params: | |
every_n_train_steps: 25000 | |
image_logger: | |
target: main.ImageLogger | |
params: | |
disabled: False | |
batch_frequency: 1000 | |
max_images: 64 | |
increase_log_steps: False | |
log_first_step: False | |
log_images_kwargs: | |
use_ema_scope: False | |
N: 64 | |
n_rows: 8 | |
trainer: | |
devices: 0, | |
benchmark: True | |
num_sanity_val_steps: 0 | |
accumulate_grad_batches: 1 | |
max_epochs: 10 |