|
import logging |
|
import math |
|
import re |
|
from abc import abstractmethod |
|
from contextlib import contextmanager |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import pytorch_lightning as pl |
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from packaging import version |
|
|
|
from ..modules.autoencoding.regularizers import AbstractRegularizer |
|
from ..modules.ema import LitEma |
|
from ..util import (default, get_nested_attribute, get_obj_from_str, |
|
instantiate_from_config) |
|
|
|
logpy = logging.getLogger(__name__) |
|
|
|
|
|
class AbstractAutoencoder(pl.LightningModule): |
|
""" |
|
This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators, |
|
unCLIP models, etc. Hence, it is fairly general, and specific features |
|
(e.g. discriminator training, encoding, decoding) must be implemented in subclasses. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
ema_decay: Union[None, float] = None, |
|
monitor: Union[None, str] = None, |
|
input_key: str = "jpg", |
|
): |
|
super().__init__() |
|
|
|
self.input_key = input_key |
|
self.use_ema = ema_decay is not None |
|
if monitor is not None: |
|
self.monitor = monitor |
|
|
|
if self.use_ema: |
|
self.model_ema = LitEma(self, decay=ema_decay) |
|
logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") |
|
|
|
if version.parse(torch.__version__) >= version.parse("2.0.0"): |
|
self.automatic_optimization = False |
|
|
|
def apply_ckpt(self, ckpt: Union[None, str, dict]): |
|
if ckpt is None: |
|
return |
|
if isinstance(ckpt, str): |
|
ckpt = { |
|
"target": "sgm.modules.checkpoint.CheckpointEngine", |
|
"params": {"ckpt_path": ckpt}, |
|
} |
|
engine = instantiate_from_config(ckpt) |
|
engine(self) |
|
|
|
@abstractmethod |
|
def get_input(self, batch) -> Any: |
|
raise NotImplementedError() |
|
|
|
def on_train_batch_end(self, *args, **kwargs): |
|
|
|
if self.use_ema: |
|
self.model_ema(self) |
|
|
|
@contextmanager |
|
def ema_scope(self, context=None): |
|
if self.use_ema: |
|
self.model_ema.store(self.parameters()) |
|
self.model_ema.copy_to(self) |
|
if context is not None: |
|
logpy.info(f"{context}: Switched to EMA weights") |
|
try: |
|
yield None |
|
finally: |
|
if self.use_ema: |
|
self.model_ema.restore(self.parameters()) |
|
if context is not None: |
|
logpy.info(f"{context}: Restored training weights") |
|
|
|
@abstractmethod |
|
def encode(self, *args, **kwargs) -> torch.Tensor: |
|
raise NotImplementedError("encode()-method of abstract base class called") |
|
|
|
@abstractmethod |
|
def decode(self, *args, **kwargs) -> torch.Tensor: |
|
raise NotImplementedError("decode()-method of abstract base class called") |
|
|
|
def instantiate_optimizer_from_config(self, params, lr, cfg): |
|
logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config") |
|
return get_obj_from_str(cfg["target"])( |
|
params, lr=lr, **cfg.get("params", dict()) |
|
) |
|
|
|
def configure_optimizers(self) -> Any: |
|
raise NotImplementedError() |
|
|
|
|
|
class AutoencodingEngine(AbstractAutoencoder): |
|
""" |
|
Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL |
|
(we also restore them explicitly as special cases for legacy reasons). |
|
Regularizations such as KL or VQ are moved to the regularizer class. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
encoder_config: Dict, |
|
decoder_config: Dict, |
|
loss_config: Dict, |
|
regularizer_config: Dict, |
|
optimizer_config: Union[Dict, None] = None, |
|
lr_g_factor: float = 1.0, |
|
trainable_ae_params: Optional[List[List[str]]] = None, |
|
ae_optimizer_args: Optional[List[dict]] = None, |
|
trainable_disc_params: Optional[List[List[str]]] = None, |
|
disc_optimizer_args: Optional[List[dict]] = None, |
|
disc_start_iter: int = 0, |
|
diff_boost_factor: float = 3.0, |
|
ckpt_engine: Union[None, str, dict] = None, |
|
ckpt_path: Optional[str] = None, |
|
additional_decode_keys: Optional[List[str]] = None, |
|
**kwargs, |
|
): |
|
super().__init__(*args, **kwargs) |
|
self.automatic_optimization = False |
|
|
|
self.encoder: torch.nn.Module = instantiate_from_config(encoder_config) |
|
self.decoder: torch.nn.Module = instantiate_from_config(decoder_config) |
|
self.loss: torch.nn.Module = instantiate_from_config(loss_config) |
|
self.regularization: AbstractRegularizer = instantiate_from_config( |
|
regularizer_config |
|
) |
|
self.optimizer_config = default( |
|
optimizer_config, {"target": "torch.optim.Adam"} |
|
) |
|
self.diff_boost_factor = diff_boost_factor |
|
self.disc_start_iter = disc_start_iter |
|
self.lr_g_factor = lr_g_factor |
|
self.trainable_ae_params = trainable_ae_params |
|
if self.trainable_ae_params is not None: |
|
self.ae_optimizer_args = default( |
|
ae_optimizer_args, |
|
[{} for _ in range(len(self.trainable_ae_params))], |
|
) |
|
assert len(self.ae_optimizer_args) == len(self.trainable_ae_params) |
|
else: |
|
self.ae_optimizer_args = [{}] |
|
|
|
self.trainable_disc_params = trainable_disc_params |
|
if self.trainable_disc_params is not None: |
|
self.disc_optimizer_args = default( |
|
disc_optimizer_args, |
|
[{} for _ in range(len(self.trainable_disc_params))], |
|
) |
|
assert len(self.disc_optimizer_args) == len(self.trainable_disc_params) |
|
else: |
|
self.disc_optimizer_args = [{}] |
|
|
|
if ckpt_path is not None: |
|
assert ckpt_engine is None, "Can't set ckpt_engine and ckpt_path" |
|
logpy.warn("Checkpoint path is deprecated, use `checkpoint_egnine` instead") |
|
self.apply_ckpt(default(ckpt_path, ckpt_engine)) |
|
self.additional_decode_keys = set(default(additional_decode_keys, [])) |
|
|
|
def get_input(self, batch: Dict) -> torch.Tensor: |
|
|
|
|
|
|
|
return batch[self.input_key] |
|
|
|
def get_autoencoder_params(self) -> list: |
|
params = [] |
|
if hasattr(self.loss, "get_trainable_autoencoder_parameters"): |
|
params += list(self.loss.get_trainable_autoencoder_parameters()) |
|
if hasattr(self.regularization, "get_trainable_parameters"): |
|
params += list(self.regularization.get_trainable_parameters()) |
|
params = params + list(self.encoder.parameters()) |
|
params = params + list(self.decoder.parameters()) |
|
return params |
|
|
|
def get_discriminator_params(self) -> list: |
|
if hasattr(self.loss, "get_trainable_parameters"): |
|
params = list(self.loss.get_trainable_parameters()) |
|
else: |
|
params = [] |
|
return params |
|
|
|
def get_last_layer(self): |
|
return self.decoder.get_last_layer() |
|
|
|
def encode( |
|
self, |
|
x: torch.Tensor, |
|
return_reg_log: bool = False, |
|
unregularized: bool = False, |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: |
|
z = self.encoder(x) |
|
if unregularized: |
|
return z, dict() |
|
z, reg_log = self.regularization(z) |
|
if return_reg_log: |
|
return z, reg_log |
|
return z |
|
|
|
def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor: |
|
x = self.decoder(z, **kwargs) |
|
return x |
|
|
|
def forward( |
|
self, x: torch.Tensor, **additional_decode_kwargs |
|
) -> Tuple[torch.Tensor, torch.Tensor, dict]: |
|
z, reg_log = self.encode(x, return_reg_log=True) |
|
dec = self.decode(z, **additional_decode_kwargs) |
|
return z, dec, reg_log |
|
|
|
def inner_training_step( |
|
self, batch: dict, batch_idx: int, optimizer_idx: int = 0 |
|
) -> torch.Tensor: |
|
x = self.get_input(batch) |
|
additional_decode_kwargs = { |
|
key: batch[key] for key in self.additional_decode_keys.intersection(batch) |
|
} |
|
z, xrec, regularization_log = self(x, **additional_decode_kwargs) |
|
if hasattr(self.loss, "forward_keys"): |
|
extra_info = { |
|
"z": z, |
|
"optimizer_idx": optimizer_idx, |
|
"global_step": self.global_step, |
|
"last_layer": self.get_last_layer(), |
|
"split": "train", |
|
"regularization_log": regularization_log, |
|
"autoencoder": self, |
|
} |
|
extra_info = {k: extra_info[k] for k in self.loss.forward_keys} |
|
else: |
|
extra_info = dict() |
|
|
|
if optimizer_idx == 0: |
|
|
|
out_loss = self.loss(x, xrec, **extra_info) |
|
if isinstance(out_loss, tuple): |
|
aeloss, log_dict_ae = out_loss |
|
else: |
|
|
|
aeloss = out_loss |
|
log_dict_ae = {"train/loss/rec": aeloss.detach()} |
|
|
|
self.log_dict( |
|
log_dict_ae, |
|
prog_bar=False, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
sync_dist=False, |
|
) |
|
self.log( |
|
"loss", |
|
aeloss.mean().detach(), |
|
prog_bar=True, |
|
logger=False, |
|
on_epoch=False, |
|
on_step=True, |
|
) |
|
return aeloss |
|
elif optimizer_idx == 1: |
|
|
|
discloss, log_dict_disc = self.loss(x, xrec, **extra_info) |
|
|
|
self.log_dict( |
|
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True |
|
) |
|
return discloss |
|
else: |
|
raise NotImplementedError(f"Unknown optimizer {optimizer_idx}") |
|
|
|
def training_step(self, batch: dict, batch_idx: int): |
|
opts = self.optimizers() |
|
if not isinstance(opts, list): |
|
|
|
opts = [opts] |
|
optimizer_idx = batch_idx % len(opts) |
|
if self.global_step < self.disc_start_iter: |
|
optimizer_idx = 0 |
|
opt = opts[optimizer_idx] |
|
opt.zero_grad() |
|
with opt.toggle_model(): |
|
loss = self.inner_training_step( |
|
batch, batch_idx, optimizer_idx=optimizer_idx |
|
) |
|
self.manual_backward(loss) |
|
opt.step() |
|
|
|
def validation_step(self, batch: dict, batch_idx: int) -> Dict: |
|
log_dict = self._validation_step(batch, batch_idx) |
|
with self.ema_scope(): |
|
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema") |
|
log_dict.update(log_dict_ema) |
|
return log_dict |
|
|
|
def _validation_step(self, batch: dict, batch_idx: int, postfix: str = "") -> Dict: |
|
x = self.get_input(batch) |
|
|
|
z, xrec, regularization_log = self(x) |
|
if hasattr(self.loss, "forward_keys"): |
|
extra_info = { |
|
"z": z, |
|
"optimizer_idx": 0, |
|
"global_step": self.global_step, |
|
"last_layer": self.get_last_layer(), |
|
"split": "val" + postfix, |
|
"regularization_log": regularization_log, |
|
"autoencoder": self, |
|
} |
|
extra_info = {k: extra_info[k] for k in self.loss.forward_keys} |
|
else: |
|
extra_info = dict() |
|
out_loss = self.loss(x, xrec, **extra_info) |
|
if isinstance(out_loss, tuple): |
|
aeloss, log_dict_ae = out_loss |
|
else: |
|
|
|
aeloss = out_loss |
|
log_dict_ae = {f"val{postfix}/loss/rec": aeloss.detach()} |
|
full_log_dict = log_dict_ae |
|
|
|
if "optimizer_idx" in extra_info: |
|
extra_info["optimizer_idx"] = 1 |
|
discloss, log_dict_disc = self.loss(x, xrec, **extra_info) |
|
full_log_dict.update(log_dict_disc) |
|
self.log( |
|
f"val{postfix}/loss/rec", |
|
log_dict_ae[f"val{postfix}/loss/rec"], |
|
sync_dist=True, |
|
) |
|
self.log_dict(full_log_dict, sync_dist=True) |
|
return full_log_dict |
|
|
|
def get_param_groups( |
|
self, parameter_names: List[List[str]], optimizer_args: List[dict] |
|
) -> Tuple[List[Dict[str, Any]], int]: |
|
groups = [] |
|
num_params = 0 |
|
for names, args in zip(parameter_names, optimizer_args): |
|
params = [] |
|
for pattern_ in names: |
|
pattern_params = [] |
|
pattern = re.compile(pattern_) |
|
for p_name, param in self.named_parameters(): |
|
if re.match(pattern, p_name): |
|
pattern_params.append(param) |
|
num_params += param.numel() |
|
if len(pattern_params) == 0: |
|
logpy.warn(f"Did not find parameters for pattern {pattern_}") |
|
params.extend(pattern_params) |
|
groups.append({"params": params, **args}) |
|
return groups, num_params |
|
|
|
def configure_optimizers(self) -> List[torch.optim.Optimizer]: |
|
if self.trainable_ae_params is None: |
|
ae_params = self.get_autoencoder_params() |
|
else: |
|
ae_params, num_ae_params = self.get_param_groups( |
|
self.trainable_ae_params, self.ae_optimizer_args |
|
) |
|
logpy.info(f"Number of trainable autoencoder parameters: {num_ae_params:,}") |
|
if self.trainable_disc_params is None: |
|
disc_params = self.get_discriminator_params() |
|
else: |
|
disc_params, num_disc_params = self.get_param_groups( |
|
self.trainable_disc_params, self.disc_optimizer_args |
|
) |
|
logpy.info( |
|
f"Number of trainable discriminator parameters: {num_disc_params:,}" |
|
) |
|
opt_ae = self.instantiate_optimizer_from_config( |
|
ae_params, |
|
default(self.lr_g_factor, 1.0) * self.learning_rate, |
|
self.optimizer_config, |
|
) |
|
opts = [opt_ae] |
|
if len(disc_params) > 0: |
|
opt_disc = self.instantiate_optimizer_from_config( |
|
disc_params, self.learning_rate, self.optimizer_config |
|
) |
|
opts.append(opt_disc) |
|
|
|
return opts |
|
|
|
@torch.no_grad() |
|
def log_images( |
|
self, batch: dict, additional_log_kwargs: Optional[Dict] = None, **kwargs |
|
) -> dict: |
|
log = dict() |
|
additional_decode_kwargs = {} |
|
x = self.get_input(batch) |
|
additional_decode_kwargs.update( |
|
{key: batch[key] for key in self.additional_decode_keys.intersection(batch)} |
|
) |
|
|
|
_, xrec, _ = self(x, **additional_decode_kwargs) |
|
log["inputs"] = x |
|
log["reconstructions"] = xrec |
|
diff = 0.5 * torch.abs(torch.clamp(xrec, -1.0, 1.0) - x) |
|
diff.clamp_(0, 1.0) |
|
log["diff"] = 2.0 * diff - 1.0 |
|
|
|
|
|
log["diff_boost"] = ( |
|
2.0 * torch.clamp(self.diff_boost_factor * diff, 0.0, 1.0) - 1 |
|
) |
|
if hasattr(self.loss, "log_images"): |
|
log.update(self.loss.log_images(x, xrec)) |
|
with self.ema_scope(): |
|
_, xrec_ema, _ = self(x, **additional_decode_kwargs) |
|
log["reconstructions_ema"] = xrec_ema |
|
diff_ema = 0.5 * torch.abs(torch.clamp(xrec_ema, -1.0, 1.0) - x) |
|
diff_ema.clamp_(0, 1.0) |
|
log["diff_ema"] = 2.0 * diff_ema - 1.0 |
|
log["diff_boost_ema"] = ( |
|
2.0 * torch.clamp(self.diff_boost_factor * diff_ema, 0.0, 1.0) - 1 |
|
) |
|
if additional_log_kwargs: |
|
additional_decode_kwargs.update(additional_log_kwargs) |
|
_, xrec_add, _ = self(x, **additional_decode_kwargs) |
|
log_str = "reconstructions-" + "-".join( |
|
[f"{key}={additional_log_kwargs[key]}" for key in additional_log_kwargs] |
|
) |
|
log[log_str] = xrec_add |
|
return log |
|
|
|
|
|
class AutoencodingEngineLegacy(AutoencodingEngine): |
|
def __init__(self, embed_dim: int, **kwargs): |
|
self.max_batch_size = kwargs.pop("max_batch_size", None) |
|
ddconfig = kwargs.pop("ddconfig") |
|
ckpt_path = kwargs.pop("ckpt_path", None) |
|
ckpt_engine = kwargs.pop("ckpt_engine", None) |
|
super().__init__( |
|
encoder_config={ |
|
"target": "sgm.modules.diffusionmodules.model.Encoder", |
|
"params": ddconfig, |
|
}, |
|
decoder_config={ |
|
"target": "sgm.modules.diffusionmodules.model.Decoder", |
|
"params": ddconfig, |
|
}, |
|
**kwargs, |
|
) |
|
self.quant_conv = torch.nn.Conv2d( |
|
(1 + ddconfig["double_z"]) * ddconfig["z_channels"], |
|
(1 + ddconfig["double_z"]) * embed_dim, |
|
1, |
|
) |
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) |
|
self.embed_dim = embed_dim |
|
|
|
self.apply_ckpt(default(ckpt_path, ckpt_engine)) |
|
|
|
def get_autoencoder_params(self) -> list: |
|
params = super().get_autoencoder_params() |
|
return params |
|
|
|
def encode( |
|
self, x: torch.Tensor, return_reg_log: bool = False |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: |
|
if self.max_batch_size is None: |
|
z = self.encoder(x) |
|
z = self.quant_conv(z) |
|
else: |
|
N = x.shape[0] |
|
bs = self.max_batch_size |
|
n_batches = int(math.ceil(N / bs)) |
|
z = list() |
|
for i_batch in range(n_batches): |
|
z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs]) |
|
z_batch = self.quant_conv(z_batch) |
|
z.append(z_batch) |
|
z = torch.cat(z, 0) |
|
|
|
z, reg_log = self.regularization(z) |
|
if return_reg_log: |
|
return z, reg_log |
|
return z |
|
|
|
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor: |
|
if self.max_batch_size is None: |
|
dec = self.post_quant_conv(z) |
|
dec = self.decoder(dec, **decoder_kwargs) |
|
else: |
|
N = z.shape[0] |
|
bs = self.max_batch_size |
|
n_batches = int(math.ceil(N / bs)) |
|
dec = list() |
|
for i_batch in range(n_batches): |
|
dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs]) |
|
dec_batch = self.decoder(dec_batch, **decoder_kwargs) |
|
dec.append(dec_batch) |
|
dec = torch.cat(dec, 0) |
|
|
|
return dec |
|
|
|
|
|
class AutoencoderKL(AutoencodingEngineLegacy): |
|
def __init__(self, **kwargs): |
|
if "lossconfig" in kwargs: |
|
kwargs["loss_config"] = kwargs.pop("lossconfig") |
|
super().__init__( |
|
regularizer_config={ |
|
"target": ( |
|
"sgm.modules.autoencoding.regularizers" |
|
".DiagonalGaussianRegularizer" |
|
) |
|
}, |
|
**kwargs, |
|
) |
|
|
|
|
|
class AutoencoderLegacyVQ(AutoencodingEngineLegacy): |
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
n_embed: int, |
|
sane_index_shape: bool = False, |
|
**kwargs, |
|
): |
|
if "lossconfig" in kwargs: |
|
logpy.warn(f"Parameter `lossconfig` is deprecated, use `loss_config`.") |
|
kwargs["loss_config"] = kwargs.pop("lossconfig") |
|
super().__init__( |
|
regularizer_config={ |
|
"target": ( |
|
"sgm.modules.autoencoding.regularizers.quantize" ".VectorQuantizer" |
|
), |
|
"params": { |
|
"n_e": n_embed, |
|
"e_dim": embed_dim, |
|
"sane_index_shape": sane_index_shape, |
|
}, |
|
}, |
|
**kwargs, |
|
) |
|
|
|
|
|
class IdentityFirstStage(AbstractAutoencoder): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def get_input(self, x: Any) -> Any: |
|
return x |
|
|
|
def encode(self, x: Any, *args, **kwargs) -> Any: |
|
return x |
|
|
|
def decode(self, x: Any, *args, **kwargs) -> Any: |
|
return x |
|
|
|
|
|
class AEIntegerWrapper(nn.Module): |
|
def __init__( |
|
self, |
|
model: nn.Module, |
|
shape: Union[None, Tuple[int, int], List[int]] = (16, 16), |
|
regularization_key: str = "regularization", |
|
encoder_kwargs: Optional[Dict[str, Any]] = None, |
|
): |
|
super().__init__() |
|
self.model = model |
|
assert hasattr(model, "encode") and hasattr( |
|
model, "decode" |
|
), "Need AE interface" |
|
self.regularization = get_nested_attribute(model, regularization_key) |
|
self.shape = shape |
|
self.encoder_kwargs = default(encoder_kwargs, {"return_reg_log": True}) |
|
|
|
def encode(self, x) -> torch.Tensor: |
|
assert ( |
|
not self.training |
|
), f"{self.__class__.__name__} only supports inference currently" |
|
_, log = self.model.encode(x, **self.encoder_kwargs) |
|
assert isinstance(log, dict) |
|
inds = log["min_encoding_indices"] |
|
return rearrange(inds, "b ... -> b (...)") |
|
|
|
def decode( |
|
self, inds: torch.Tensor, shape: Union[None, tuple, list] = None |
|
) -> torch.Tensor: |
|
|
|
shape = default(shape, self.shape) |
|
if shape is not None: |
|
assert len(shape) == 2, f"Unhandeled shape {shape}" |
|
inds = rearrange(inds, "b (h w) -> b h w", h=shape[0], w=shape[1]) |
|
h = self.regularization.get_codebook_entry(inds) |
|
h = rearrange(h, "b h w c -> b c h w") |
|
return self.model.decode(h) |
|
|
|
|
|
class AutoencoderKLModeOnly(AutoencodingEngineLegacy): |
|
def __init__(self, **kwargs): |
|
if "lossconfig" in kwargs: |
|
kwargs["loss_config"] = kwargs.pop("lossconfig") |
|
super().__init__( |
|
regularizer_config={ |
|
"target": ( |
|
"sgm.modules.autoencoding.regularizers" |
|
".DiagonalGaussianRegularizer" |
|
), |
|
"params": {"sample": False}, |
|
}, |
|
**kwargs, |
|
) |
|
|