|
""" |
|
partially adopted from |
|
https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py |
|
and |
|
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py |
|
and |
|
https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py |
|
|
|
thanks! |
|
""" |
|
|
|
import math |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange, repeat |
|
|
|
|
|
def make_beta_schedule( |
|
schedule, |
|
n_timestep, |
|
linear_start=1e-4, |
|
linear_end=2e-2, |
|
): |
|
if schedule == "linear": |
|
betas = ( |
|
torch.linspace( |
|
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64 |
|
) |
|
** 2 |
|
) |
|
return betas.numpy() |
|
|
|
|
|
def extract_into_tensor(a, t, x_shape): |
|
b, *_ = t.shape |
|
out = a.gather(-1, t) |
|
return out.reshape(b, *((1,) * (len(x_shape) - 1))) |
|
|
|
|
|
def mixed_checkpoint(func, inputs: dict, params, flag): |
|
""" |
|
Evaluate a function without caching intermediate activations, allowing for |
|
reduced memory at the expense of extra compute in the backward pass. This differs from the original checkpoint function |
|
borrowed from https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py in that |
|
it also works with non-tensor inputs |
|
:param func: the function to evaluate. |
|
:param inputs: the argument dictionary to pass to `func`. |
|
:param params: a sequence of parameters `func` depends on but does not |
|
explicitly take as arguments. |
|
:param flag: if False, disable gradient checkpointing. |
|
""" |
|
if flag: |
|
tensor_keys = [key for key in inputs if isinstance(inputs[key], torch.Tensor)] |
|
tensor_inputs = [ |
|
inputs[key] for key in inputs if isinstance(inputs[key], torch.Tensor) |
|
] |
|
non_tensor_keys = [ |
|
key for key in inputs if not isinstance(inputs[key], torch.Tensor) |
|
] |
|
non_tensor_inputs = [ |
|
inputs[key] for key in inputs if not isinstance(inputs[key], torch.Tensor) |
|
] |
|
args = tuple(tensor_inputs) + tuple(non_tensor_inputs) + tuple(params) |
|
return MixedCheckpointFunction.apply( |
|
func, |
|
len(tensor_inputs), |
|
len(non_tensor_inputs), |
|
tensor_keys, |
|
non_tensor_keys, |
|
*args, |
|
) |
|
else: |
|
return func(**inputs) |
|
|
|
|
|
class MixedCheckpointFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
run_function, |
|
length_tensors, |
|
length_non_tensors, |
|
tensor_keys, |
|
non_tensor_keys, |
|
*args, |
|
): |
|
ctx.end_tensors = length_tensors |
|
ctx.end_non_tensors = length_tensors + length_non_tensors |
|
ctx.gpu_autocast_kwargs = { |
|
"enabled": torch.is_autocast_enabled(), |
|
"dtype": torch.get_autocast_gpu_dtype(), |
|
"cache_enabled": torch.is_autocast_cache_enabled(), |
|
} |
|
assert ( |
|
len(tensor_keys) == length_tensors |
|
and len(non_tensor_keys) == length_non_tensors |
|
) |
|
|
|
ctx.input_tensors = { |
|
key: val for (key, val) in zip(tensor_keys, list(args[: ctx.end_tensors])) |
|
} |
|
ctx.input_non_tensors = { |
|
key: val |
|
for (key, val) in zip( |
|
non_tensor_keys, list(args[ctx.end_tensors : ctx.end_non_tensors]) |
|
) |
|
} |
|
ctx.run_function = run_function |
|
ctx.input_params = list(args[ctx.end_non_tensors :]) |
|
|
|
with torch.no_grad(): |
|
output_tensors = ctx.run_function( |
|
**ctx.input_tensors, **ctx.input_non_tensors |
|
) |
|
return output_tensors |
|
|
|
@staticmethod |
|
def backward(ctx, *output_grads): |
|
|
|
ctx.input_tensors = { |
|
key: ctx.input_tensors[key].detach().requires_grad_(True) |
|
for key in ctx.input_tensors |
|
} |
|
|
|
with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): |
|
|
|
|
|
|
|
shallow_copies = { |
|
key: ctx.input_tensors[key].view_as(ctx.input_tensors[key]) |
|
for key in ctx.input_tensors |
|
} |
|
|
|
output_tensors = ctx.run_function(**shallow_copies, **ctx.input_non_tensors) |
|
input_grads = torch.autograd.grad( |
|
output_tensors, |
|
list(ctx.input_tensors.values()) + ctx.input_params, |
|
output_grads, |
|
allow_unused=True, |
|
) |
|
del ctx.input_tensors |
|
del ctx.input_params |
|
del output_tensors |
|
return ( |
|
(None, None, None, None, None) |
|
+ input_grads[: ctx.end_tensors] |
|
+ (None,) * (ctx.end_non_tensors - ctx.end_tensors) |
|
+ input_grads[ctx.end_tensors :] |
|
) |
|
|
|
|
|
def checkpoint(func, inputs, params, flag): |
|
""" |
|
Evaluate a function without caching intermediate activations, allowing for |
|
reduced memory at the expense of extra compute in the backward pass. |
|
:param func: the function to evaluate. |
|
:param inputs: the argument sequence to pass to `func`. |
|
:param params: a sequence of parameters `func` depends on but does not |
|
explicitly take as arguments. |
|
:param flag: if False, disable gradient checkpointing. |
|
""" |
|
if flag: |
|
args = tuple(inputs) + tuple(params) |
|
return CheckpointFunction.apply(func, len(inputs), *args) |
|
else: |
|
return func(*inputs) |
|
|
|
|
|
class CheckpointFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, run_function, length, *args): |
|
ctx.run_function = run_function |
|
ctx.input_tensors = list(args[:length]) |
|
ctx.input_params = list(args[length:]) |
|
ctx.gpu_autocast_kwargs = { |
|
"enabled": torch.is_autocast_enabled(), |
|
"dtype": torch.get_autocast_gpu_dtype(), |
|
"cache_enabled": torch.is_autocast_cache_enabled(), |
|
} |
|
with torch.no_grad(): |
|
output_tensors = ctx.run_function(*ctx.input_tensors) |
|
return output_tensors |
|
|
|
@staticmethod |
|
def backward(ctx, *output_grads): |
|
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] |
|
with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): |
|
|
|
|
|
|
|
shallow_copies = [x.view_as(x) for x in ctx.input_tensors] |
|
output_tensors = ctx.run_function(*shallow_copies) |
|
input_grads = torch.autograd.grad( |
|
output_tensors, |
|
ctx.input_tensors + ctx.input_params, |
|
output_grads, |
|
allow_unused=True, |
|
) |
|
del ctx.input_tensors |
|
del ctx.input_params |
|
del output_tensors |
|
return (None, None) + input_grads |
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
if not repeat_only: |
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) |
|
* torch.arange(start=0, end=half, dtype=torch.float32) |
|
/ half |
|
).to(device=timesteps.device) |
|
args = timesteps[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat( |
|
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1 |
|
) |
|
else: |
|
embedding = repeat(timesteps, "b -> b d", d=dim) |
|
return embedding |
|
|
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
def scale_module(module, scale): |
|
""" |
|
Scale the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().mul_(scale) |
|
return module |
|
|
|
|
|
def mean_flat(tensor): |
|
""" |
|
Take the mean over all non-batch dimensions. |
|
""" |
|
return tensor.mean(dim=list(range(1, len(tensor.shape)))) |
|
|
|
|
|
def normalization(channels): |
|
""" |
|
Make a standard normalization layer. |
|
:param channels: number of input channels. |
|
:return: an nn.Module for normalization. |
|
""" |
|
return GroupNorm32(32, channels) |
|
|
|
|
|
|
|
class SiLU(nn.Module): |
|
def forward(self, x): |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
class GroupNorm32(nn.GroupNorm): |
|
def forward(self, x): |
|
return super().forward(x.float()).type(x.dtype) |
|
|
|
|
|
def conv_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D convolution module. |
|
""" |
|
if dims == 1: |
|
return nn.Conv1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.Conv2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.Conv3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
def linear(*args, **kwargs): |
|
""" |
|
Create a linear module. |
|
""" |
|
return nn.Linear(*args, **kwargs) |
|
|
|
|
|
def avg_pool_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D average pooling module. |
|
""" |
|
if dims == 1: |
|
return nn.AvgPool1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.AvgPool2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.AvgPool3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
class AlphaBlender(nn.Module): |
|
strategies = ["learned", "fixed", "learned_with_images"] |
|
|
|
def __init__( |
|
self, |
|
alpha: float, |
|
merge_strategy: str = "learned_with_images", |
|
rearrange_pattern: str = "b t -> (b t) 1 1", |
|
): |
|
super().__init__() |
|
self.merge_strategy = merge_strategy |
|
self.rearrange_pattern = rearrange_pattern |
|
|
|
assert ( |
|
merge_strategy in self.strategies |
|
), f"merge_strategy needs to be in {self.strategies}" |
|
|
|
if self.merge_strategy == "fixed": |
|
self.register_buffer("mix_factor", torch.Tensor([alpha])) |
|
elif ( |
|
self.merge_strategy == "learned" |
|
or self.merge_strategy == "learned_with_images" |
|
): |
|
self.register_parameter( |
|
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) |
|
) |
|
else: |
|
raise ValueError(f"unknown merge strategy {self.merge_strategy}") |
|
|
|
def get_alpha(self, image_only_indicator: torch.Tensor) -> torch.Tensor: |
|
if self.merge_strategy == "fixed": |
|
alpha = self.mix_factor |
|
elif self.merge_strategy == "learned": |
|
alpha = torch.sigmoid(self.mix_factor) |
|
elif self.merge_strategy == "learned_with_images": |
|
assert image_only_indicator is not None, "need image_only_indicator ..." |
|
alpha = torch.where( |
|
image_only_indicator.bool(), |
|
torch.ones(1, 1, device=image_only_indicator.device), |
|
rearrange(torch.sigmoid(self.mix_factor), "... -> ... 1"), |
|
) |
|
alpha = rearrange(alpha, self.rearrange_pattern) |
|
else: |
|
raise NotImplementedError |
|
return alpha |
|
|
|
def forward( |
|
self, |
|
x_spatial: torch.Tensor, |
|
x_temporal: torch.Tensor, |
|
image_only_indicator: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
alpha = self.get_alpha(image_only_indicator) |
|
x = ( |
|
alpha.to(x_spatial.dtype) * x_spatial |
|
+ (1.0 - alpha).to(x_spatial.dtype) * x_temporal |
|
) |
|
return x |
|
|