qinchuanhui commited on
Commit
5a19fff
1 Parent(s): 6110dc9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -10
README.md CHANGED
@@ -127,10 +127,10 @@ configs:
127
  ---
128
  # Dataset Card for Dataset Name
129
 
130
- UDA is a benchmark suite for Retrieval Augmented Generation (RAG) in real-world document analysis, which involves 2965 documents and 29590 expert-annotated Q&A pairs.
131
- It includes six sub-datasets across three pivotal domains: finance, academia, and knowledge bases.
132
- Each data item within UDA is structured as a triplet: document-question-answer pair.
133
- The documents are retained in their original file formats without parsing or segmentation, to mirror the authenticity of real-world applications.
134
 
135
  ## Dataset Details
136
 
@@ -150,6 +150,8 @@ Question-answering tasks on complete unstructured documents.
150
 
151
  After loading the dataset, you should also **download the sourc document files from the folder `src_doc_files`**.
152
 
 
 
153
 
154
  ### Extended Use
155
 
@@ -200,21 +202,22 @@ Then we conduct a series of essential constructing actions, including source-doc
200
 
201
  #### Who are the source data producers?
202
 
203
- [1]CHEN, Z., CHEN, W., SMILEY, C., SHAH, S., BOROVA, I., LANGDON, D., MOUSSA, R., BEANE, M., HUANG, T.-H., ROUTLEDGE, B., ET AL. Finqa: A dataset of numerical reasoning over financial data. arXiv preprint arXiv:2109.00122 (2021).
204
 
205
- [2]ZHU, F., LEI, W., FENG, F., WANG, C., ZHANG, H., AND CHUA, T.-S. Towards complex document understanding by discrete reasoning. In Proceedings of the 30th ACM International Conference on Multimedia (2022), pp. 4857–4866.
206
 
207
- [3]DASIGI, P., LO, K., BELTAGY, I., COHAN, A., SMITH, N. A., AND GARDNER, M. A dataset of information-seeking questions and answers anchored in research papers. arXiv preprint arXiv:2105.03011 (2021).
208
 
209
- [4]NAN, L., HSIEH, C., MAO, Z., LIN, X. V., VERMA, N., ZHANG, R., KRYS ́ CIN ́ SKI, W., SCHOELKOPF, H., KONG, R., TANG, X., ET AL. Fetaqa: Free-form table question answering. Transactions of the Association for Computational Linguistics 10 (2022), 35–49.
210
 
211
- [5]KWIATKOWSKI, T., PALOMAKI, J., REDFIELD, O., COLLINS, M., PARIKH, A., ALBERTI, C., EPSTEIN, D., POLOSUKHIN, I., DEVLIN, J., LEE, K., ET AL. Natural questions: a benchmark for question answering research. Transactions of the Association for Computational Linguistics 7 (2019), 453–466.
212
 
213
 
214
  ## Considerations for Using the Data
215
  #### Personal and Sensitive Information
216
 
217
- The dataset doesn't contain data that might be considered personal, sensitive, or private. The source of data are public available reports, papers and wikipedia pages.
 
218
 
219
 
220
  <!-- ## Citation [optional] -->
 
127
  ---
128
  # Dataset Card for Dataset Name
129
 
130
+ UDA (Unstructured Document Analysis) is a benchmark suite for Retrieval Augmented Generation (RAG) in real-world document analysis.
131
+ Each entry in the UDA dataset is organized as a *document-question-answer* triplet, where a question is raised from the document, accompanied by a corresponding ground-truth answer.
132
+ The documents are retained in their original file formats without parsing or segmentation;
133
+ they consist of both textual and tabular data, reflecting the complex nature of real-world analytical scenarios.
134
 
135
  ## Dataset Details
136
 
 
150
 
151
  After loading the dataset, you should also **download the sourc document files from the folder `src_doc_files`**.
152
 
153
+ More usage guidelines please refer to https://github.com/qinchuanhui/UDA-Benchmark
154
+
155
 
156
  ### Extended Use
157
 
 
202
 
203
  #### Who are the source data producers?
204
 
205
+ [1] CHEN, Z., CHEN, W., SMILEY, C., SHAH, S., BOROVA, I., LANGDON, D., MOUSSA, R., BEANE, M., HUANG, T.-H., ROUTLEDGE, B., ET AL. Finqa: A dataset of numerical reasoning over financial data. arXiv preprint arXiv:2109.00122 (2021).
206
 
207
+ [2] ZHU, F., LEI, W., FENG, F., WANG, C., ZHANG, H., AND CHUA, T.-S. Towards complex document understanding by discrete reasoning. In Proceedings of the 30th ACM International Conference on Multimedia (2022), pp. 4857–4866.
208
 
209
+ [3] DASIGI, P., LO, K., BELTAGY, I., COHAN, A., SMITH, N. A., AND GARDNER, M. A dataset of information-seeking questions and answers anchored in research papers. arXiv preprint arXiv:2105.03011 (2021).
210
 
211
+ [4] NAN, L., HSIEH, C., MAO, Z., LIN, X. V., VERMA, N., ZHANG, R., KRYS ́ CIN ́ SKI, W., SCHOELKOPF, H., KONG, R., TANG, X., ET AL. Fetaqa: Free-form table question answering. Transactions of the Association for Computational Linguistics 10 (2022), 35–49.
212
 
213
+ [5] KWIATKOWSKI, T., PALOMAKI, J., REDFIELD, O., COLLINS, M., PARIKH, A., ALBERTI, C., EPSTEIN, D., POLOSUKHIN, I., DEVLIN, J., LEE, K., ET AL. Natural questions: a benchmark for question answering research. Transactions of the Association for Computational Linguistics 7 (2019), 453–466.
214
 
215
 
216
  ## Considerations for Using the Data
217
  #### Personal and Sensitive Information
218
 
219
+ The dataset doesn't contain data that might be considered personal, sensitive, or private. The sources of data are publicly available reports, papers and wikipedia pages, which have been commonly utilized and accepted by the broader community.
220
+
221
 
222
 
223
  <!-- ## Citation [optional] -->