File size: 21,988 Bytes
99396c8
1904eb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99396c8
1904eb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
---
annotations_creators:
- other
language_creators:
- other
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- acceptability-classification
- natural-language-inference
- semantic-similarity-scoring
- sentiment-classification
- text-scoring
paperswithcode_id: glue
pretty_name: GLUE (General Language Understanding Evaluation benchmark)
train-eval-index:
- config: cola
  task: text-classification
  task_id: binary_classification
  splits:
    train_split: train
    eval_split: validation
  col_mapping:
    sentence: text
    label: target
- config: sst2
  task: text-classification
  task_id: binary_classification
  splits:
    train_split: train
    eval_split: validation
  col_mapping:
    sentence: text
    label: target
- config: mrpc
  task: text-classification
  task_id: natural_language_inference
  splits:
    train_split: train
    eval_split: validation
  col_mapping:
    sentence1: text1
    sentence2: text2
    label: target
- config: qqp
  task: text-classification
  task_id: natural_language_inference
  splits:
    train_split: train
    eval_split: validation
  col_mapping:
    question1: text1
    question2: text2
    label: target
- config: stsb
  task: text-classification
  task_id: natural_language_inference
  splits:
    train_split: train
    eval_split: validation
  col_mapping:
    sentence1: text1
    sentence2: text2
    label: target
- config: mnli
  task: text-classification
  task_id: natural_language_inference
  splits:
    train_split: train
    eval_split: validation_matched
  col_mapping:
    premise: text1
    hypothesis: text2
    label: target
- config: mnli_mismatched
  task: text-classification
  task_id: natural_language_inference
  splits:
    train_split: train
    eval_split: validation
  col_mapping:
    premise: text1
    hypothesis: text2
    label: target
- config: mnli_matched
  task: text-classification
  task_id: natural_language_inference
  splits:
    train_split: train
    eval_split: validation
  col_mapping:
    premise: text1
    hypothesis: text2
    label: target
- config: qnli
  task: text-classification
  task_id: natural_language_inference
  splits:
    train_split: train
    eval_split: validation
  col_mapping:
    question: text1
    sentence: text2
    label: target
- config: rte
  task: text-classification
  task_id: natural_language_inference
  splits:
    train_split: train
    eval_split: validation
  col_mapping:
    sentence1: text1
    sentence2: text2
    label: target
- config: wnli
  task: text-classification
  task_id: natural_language_inference
  splits:
    train_split: train
    eval_split: validation
  col_mapping:
    sentence1: text1
    sentence2: text2
    label: target
configs:
- ax
- cola
- mnli
- mnli_matched
- mnli_mismatched
- mrpc
- qnli
- qqp
- rte
- sst2
- stsb
- wnli
tags:
- qa-nli
- coreference-nli
- paraphrase-identification
---

# Dataset Card for GLUE

## Table of Contents
- [Dataset Card for GLUE](#dataset-card-for-glue)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
      - [ax](#ax)
      - [cola](#cola)
      - [mnli](#mnli)
      - [mnli_matched](#mnli_matched)
      - [mnli_mismatched](#mnli_mismatched)
      - [mrpc](#mrpc)
      - [qnli](#qnli)
      - [qqp](#qqp)
      - [rte](#rte)
      - [sst2](#sst2)
      - [stsb](#stsb)
      - [wnli](#wnli)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
      - [ax](#ax-1)
      - [cola](#cola-1)
      - [mnli](#mnli-1)
      - [mnli_matched](#mnli_matched-1)
      - [mnli_mismatched](#mnli_mismatched-1)
      - [mrpc](#mrpc-1)
      - [qnli](#qnli-1)
      - [qqp](#qqp-1)
      - [rte](#rte-1)
      - [sst2](#sst2-1)
      - [stsb](#stsb-1)
      - [wnli](#wnli-1)
    - [Data Fields](#data-fields)
      - [ax](#ax-2)
      - [cola](#cola-2)
      - [mnli](#mnli-2)
      - [mnli_matched](#mnli_matched-2)
      - [mnli_mismatched](#mnli_mismatched-2)
      - [mrpc](#mrpc-2)
      - [qnli](#qnli-2)
      - [qqp](#qqp-2)
      - [rte](#rte-2)
      - [sst2](#sst2-2)
      - [stsb](#stsb-2)
      - [wnli](#wnli-2)
    - [Data Splits](#data-splits)
      - [ax](#ax-3)
      - [cola](#cola-3)
      - [mnli](#mnli-3)
      - [mnli_matched](#mnli_matched-3)
      - [mnli_mismatched](#mnli_mismatched-3)
      - [mrpc](#mrpc-3)
      - [qnli](#qnli-3)
      - [qqp](#qqp-3)
      - [rte](#rte-3)
      - [sst2](#sst2-3)
      - [stsb](#stsb-3)
      - [wnli](#wnli-3)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://nyu-mll.github.io/CoLA/](https://nyu-mll.github.io/CoLA/)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 955.33 MB
- **Size of the generated dataset:** 229.68 MB
- **Total amount of disk used:** 1185.01 MB

### Dataset Summary

GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems.

### Supported Tasks and Leaderboards

The leaderboard for the GLUE benchmark can be found [at this address](https://gluebenchmark.com/). It comprises the following tasks:

#### ax

A manually-curated evaluation dataset for fine-grained analysis of system performance on a broad range of linguistic phenomena. This dataset evaluates sentence understanding through Natural Language Inference (NLI) problems. Use a model trained on MulitNLI to produce predictions for this dataset.

#### cola

The Corpus of Linguistic Acceptability consists of English acceptability judgments drawn from books and journal articles on linguistic theory. Each example is a sequence of words annotated with whether it is a grammatical English sentence.

#### mnli

The Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data.

#### mnli_matched

The matched validation and test splits from MNLI. See the "mnli" BuilderConfig for additional information.

#### mnli_mismatched

The mismatched validation and test splits from MNLI. See the "mnli" BuilderConfig for additional information.

#### mrpc

The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a corpus of sentence pairs automatically extracted from online news sources, with human annotations for whether the sentences in the pair are semantically equivalent.

#### qnli

The Stanford Question Answering Dataset is a question-answering dataset consisting of question-paragraph pairs, where one of the sentences in the paragraph (drawn from Wikipedia) contains the answer to the corresponding question (written by an annotator). The authors of the benchmark convert the task into sentence pair classification by forming a pair between each question and each sentence in the corresponding context, and filtering out pairs with low lexical overlap between the question and the context sentence. The task is to determine whether the context sentence contains the answer to the question. This modified version of the original task removes the requirement that the model select the exact answer, but also removes the simplifying assumptions that the answer is always present in the input and that lexical overlap is a reliable cue.

#### qqp

The Quora Question Pairs2 dataset is a collection of question pairs from the community question-answering website Quora. The task is to determine whether a pair of questions are semantically equivalent.

#### rte

The Recognizing Textual Entailment (RTE) datasets come from a series of annual textual entailment challenges. The authors of the benchmark combined the data from RTE1 (Dagan et al., 2006), RTE2 (Bar Haim et al., 2006), RTE3 (Giampiccolo et al., 2007), and RTE5 (Bentivogli et al., 2009). Examples are constructed based on news and Wikipedia text. The authors of the benchmark convert all datasets to a two-class split, where for three-class datasets they collapse neutral and contradiction into not entailment, for consistency.

#### sst2

The Stanford Sentiment Treebank consists of sentences from movie reviews and human annotations of their sentiment. The task is to predict the sentiment of a given sentence. It uses the two-way (positive/negative) class split, with only sentence-level labels.

#### stsb

The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of sentence pairs drawn from news headlines, video and image captions, and natural language inference data. Each pair is human-annotated with a similarity score from 1 to 5.

#### wnli

The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task in which a system must read a sentence with a pronoun and select the referent of that pronoun from a list of choices. The examples are manually constructed to foil simple statistical methods: Each one is contingent on contextual information provided by a single word or phrase in the sentence. To convert the problem into sentence pair classification, the authors of the benchmark construct sentence pairs by replacing the ambiguous pronoun with each possible referent. The task is to predict if the sentence with the pronoun substituted is entailed by the original sentence. They use a small evaluation set consisting of new examples derived from fiction books that was shared privately by the authors of the original corpus. While the included training set is balanced between two classes, the test set is imbalanced between them (65% not entailment). Also, due to a data quirk, the development set is adversarial: hypotheses are sometimes shared between training and development examples, so if a model memorizes the training examples, they will predict the wrong label on corresponding development set example. As with QNLI, each example is evaluated separately, so there is not a systematic correspondence between a model's score on this task and its score on the unconverted original task. The authors of the benchmark call converted dataset WNLI (Winograd NLI).

### Languages

The language data in GLUE is in English (BCP-47 `en`)

## Dataset Structure

### Data Instances

#### ax

- **Size of downloaded dataset files:** 0.21 MB
- **Size of the generated dataset:** 0.23 MB
- **Total amount of disk used:** 0.44 MB

An example of 'test' looks as follows.
```
{
  "premise": "The cat sat on the mat.",
  "hypothesis": "The cat did not sit on the mat.",
  "label": -1,
  "idx: 0
}
```

#### cola

- **Size of downloaded dataset files:** 0.36 MB
- **Size of the generated dataset:** 0.58 MB
- **Total amount of disk used:** 0.94 MB

An example of 'train' looks as follows.
```
{
  "sentence": "Our friends won't buy this analysis, let alone the next one we propose.",
  "label": 1,
  "id": 0
}
```

#### mnli

- **Size of downloaded dataset files:** 298.29 MB
- **Size of the generated dataset:** 78.65 MB
- **Total amount of disk used:** 376.95 MB

An example of 'train' looks as follows.
```
{
  "premise": "Conceptually cream skimming has two basic dimensions - product and geography.",
  "hypothesis": "Product and geography are what make cream skimming work.",
  "label": 1,
  "idx": 0
}
```

#### mnli_matched

- **Size of downloaded dataset files:** 298.29 MB
- **Size of the generated dataset:** 3.52 MB
- **Total amount of disk used:** 301.82 MB

An example of 'test' looks as follows.
```
{
  "premise": "Hierbas, ans seco, ans dulce, and frigola are just a few names worth keeping a look-out for.",
  "hypothesis": "Hierbas is a name worth looking out for.",
  "label": -1,
  "idx": 0
}
```

#### mnli_mismatched

- **Size of downloaded dataset files:** 298.29 MB
- **Size of the generated dataset:** 3.73 MB
- **Total amount of disk used:** 302.02 MB

An example of 'test' looks as follows.
```
{
  "premise": "What have you decided, what are you going to do?",
  "hypothesis": "So what's your decision?,
  "label": -1,
  "idx": 0
}
```

#### mrpc

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### qnli

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### qqp

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### rte

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### sst2

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### stsb

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### wnli

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Data Fields

The data fields are the same among all splits.

#### ax
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
- `idx`: a `int32` feature.

#### cola
- `sentence`: a `string` feature.
- `label`: a classification label, with possible values including `unacceptable` (0), `acceptable` (1).
- `idx`: a `int32` feature.

#### mnli
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
- `idx`: a `int32` feature.

#### mnli_matched
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
- `idx`: a `int32` feature.

#### mnli_mismatched
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
- `idx`: a `int32` feature.

#### mrpc

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### qnli

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### qqp

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### rte

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### sst2

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### stsb

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### wnli

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Data Splits

#### ax

|   |test|
|---|---:|
|ax |1104|

#### cola

|    |train|validation|test|
|----|----:|---------:|---:|
|cola| 8551|      1043|1063|

#### mnli

|    |train |validation_matched|validation_mismatched|test_matched|test_mismatched|
|----|-----:|-----------------:|--------------------:|-----------:|--------------:|
|mnli|392702|              9815|                 9832|        9796|           9847|

#### mnli_matched

|            |validation|test|
|------------|---------:|---:|
|mnli_matched|      9815|9796|

#### mnli_mismatched

|               |validation|test|
|---------------|---------:|---:|
|mnli_mismatched|      9832|9847|

#### mrpc

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### qnli

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### qqp

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### rte

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### sst2

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### stsb

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### wnli

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```
@article{warstadt2018neural,
  title={Neural Network Acceptability Judgments},
  author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},
  journal={arXiv preprint arXiv:1805.12471},
  year={2018}
}
@inproceedings{wang2019glue,
  title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
  author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
  note={In the Proceedings of ICLR.},
  year={2019}
}

Note that each GLUE dataset has its own citation. Please see the source to see
the correct citation for each contained dataset.
```


### Contributions

Thanks to [@patpizio](https://github.com/patpizio), [@jeswan](https://github.com/jeswan), [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham) for adding this dataset.