Datasets:
File size: 5,144 Bytes
ecaa33f 2db3b9b ecaa33f 51a6e17 2db3b9b ecaa33f 3aeea9c ecaa33f b9b4686 dc3ebd2 4ec3d91 028b279 4ec3d91 028b279 4ec3d91 028b279 4ec3d91 ecaa33f b9b4686 ecaa33f b9b4686 ecaa33f b8a4d60 ecaa33f b8a4d60 4ec3d91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- apc
- ajp
license:
- other
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
- topic-classification
paperswithcode_id: arsentd-lev
pretty_name: ArSenTD-LEV
dataset_info:
features:
- name: Tweet
dtype: string
- name: Country
dtype:
class_label:
names:
'0': jordan
'1': lebanon
'2': syria
'3': palestine
- name: Topic
dtype: string
- name: Sentiment
dtype:
class_label:
names:
'0': negative
'1': neutral
'2': positive
'3': very_negative
'4': very_positive
- name: Sentiment_Expression
dtype:
class_label:
names:
'0': explicit
'1': implicit
'2': none
- name: Sentiment_Target
dtype: string
splits:
- name: train
num_bytes: 1233980
num_examples: 4000
download_size: 392666
dataset_size: 1233980
---
# Dataset Card for ArSenTD-LEV
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [ArSenTD-LEV homepage](http://oma-project.com/)
- **Paper:** [ArSentD-LEV: A Multi-Topic Corpus for Target-based Sentiment Analysis in Arabic Levantine Tweets](https://arxiv.org/abs/1906.01830)
### Dataset Summary
The Arabic Sentiment Twitter Dataset for Levantine dialect (ArSenTD-LEV) contains 4,000 tweets written in Arabic and equally retrieved from Jordan, Lebanon, Palestine and Syria.
### Supported Tasks and Leaderboards
Sentriment analysis
### Languages
Arabic Levantine Dualect
## Dataset Structure
### Data Instances
{'Country': 0,
'Sentiment': 3,
'Sentiment_Expression': 0,
'Sentiment_Target': 'هاي سوالف عصابات ارهابية',
'Topic': 'politics',
'Tweet': 'ثلاث تفجيرات في #كركوك الحصيلة قتيل و 16 جريح بدأت اكلاوات كركوك كانت امان قبل دخول القوات العراقية ، هاي سوالف عصابات ارهابية'}
### Data Fields
`Tweet`: the text content of the tweet \
`Country`: the country from which the tweet was collected ('jordan', 'lebanon', 'syria', 'palestine')\
`Topic`: the topic being discussed in the tweet (personal, politics, religion, sports, entertainment and others) \
`Sentiment`: the overall sentiment expressed in the tweet (very_negative, negative, neutral, positive and very_positive) \
`Sentiment_Expression`: the way how the sentiment was expressed: explicit, implicit, or none (the latter when sentiment is neutral) \
`Sentiment_Target`: the segment from the tweet to which sentiment is expressed. If sentiment is neutral, this field takes the 'none' value.
### Data Splits
No standard splits are provided
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Make sure to read and agree to the [license](http://oma-project.com/ArSenL/ArSenTD_Lev_Intro)
### Citation Information
```
@article{baly2019arsentd,
title={Arsentd-lev: A multi-topic corpus for target-based sentiment analysis in arabic levantine tweets},
author={Baly, Ramy and Khaddaj, Alaa and Hajj, Hazem and El-Hajj, Wassim and Shaban, Khaled Bashir},
journal={arXiv preprint arXiv:1906.01830},
year={2019}
}
```
### Contributions
Thanks to [@moussaKam](https://github.com/moussaKam) for adding this dataset. |