File size: 5,144 Bytes
ecaa33f
 
 
 
 
2db3b9b
ecaa33f
51a6e17
2db3b9b
 
ecaa33f
 
 
3aeea9c
ecaa33f
 
 
 
 
 
 
b9b4686
dc3ebd2
4ec3d91
 
 
 
 
 
 
 
028b279
 
 
 
4ec3d91
 
 
 
 
 
028b279
 
 
 
 
4ec3d91
 
 
 
028b279
 
 
4ec3d91
 
 
 
 
 
 
 
ecaa33f
 
 
 
 
 
 
b9b4686
ecaa33f
 
 
b9b4686
 
ecaa33f
 
 
 
 
 
 
 
 
 
 
 
 
b8a4d60
ecaa33f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a4d60
 
 
4ec3d91
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- apc
- ajp
license:
- other
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
- topic-classification
paperswithcode_id: arsentd-lev
pretty_name: ArSenTD-LEV
dataset_info:
  features:
  - name: Tweet
    dtype: string
  - name: Country
    dtype:
      class_label:
        names:
          '0': jordan
          '1': lebanon
          '2': syria
          '3': palestine
  - name: Topic
    dtype: string
  - name: Sentiment
    dtype:
      class_label:
        names:
          '0': negative
          '1': neutral
          '2': positive
          '3': very_negative
          '4': very_positive
  - name: Sentiment_Expression
    dtype:
      class_label:
        names:
          '0': explicit
          '1': implicit
          '2': none
  - name: Sentiment_Target
    dtype: string
  splits:
  - name: train
    num_bytes: 1233980
    num_examples: 4000
  download_size: 392666
  dataset_size: 1233980
---

# Dataset Card for ArSenTD-LEV

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [ArSenTD-LEV homepage](http://oma-project.com/)
- **Paper:** [ArSentD-LEV: A Multi-Topic Corpus for Target-based Sentiment Analysis in Arabic Levantine Tweets](https://arxiv.org/abs/1906.01830)

### Dataset Summary

The Arabic Sentiment Twitter Dataset for Levantine dialect (ArSenTD-LEV) contains 4,000 tweets written in Arabic and equally retrieved from Jordan, Lebanon, Palestine and Syria.

### Supported Tasks and Leaderboards

Sentriment analysis

### Languages

Arabic Levantine Dualect

## Dataset Structure

### Data Instances

{'Country': 0,
 'Sentiment': 3,
 'Sentiment_Expression': 0,
 'Sentiment_Target': 'هاي سوالف عصابات ارهابية',
 'Topic': 'politics',
 'Tweet': 'ثلاث تفجيرات في #كركوك الحصيلة قتيل و 16 جريح بدأت اكلاوات كركوك كانت امان قبل دخول القوات العراقية ، هاي سوالف عصابات ارهابية'}

### Data Fields

`Tweet`: the text content of the tweet \
`Country`: the country from which the tweet was collected ('jordan', 'lebanon', 'syria', 'palestine')\
`Topic`: the topic being discussed in the tweet (personal, politics, religion, sports, entertainment and others) \
`Sentiment`: the overall sentiment expressed in the tweet (very_negative, negative, neutral, positive and very_positive) \
`Sentiment_Expression`: the way how the sentiment was expressed: explicit, implicit, or none (the latter when sentiment is neutral) \
`Sentiment_Target`: the segment from the tweet to which sentiment is expressed. If sentiment is neutral, this field takes the 'none' value.

### Data Splits

No standard splits are provided

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

Make sure to read and agree to the [license](http://oma-project.com/ArSenL/ArSenTD_Lev_Intro)

### Citation Information

```
@article{baly2019arsentd,
  title={Arsentd-lev: A multi-topic corpus for target-based sentiment analysis in arabic levantine tweets},
  author={Baly, Ramy and Khaddaj, Alaa and Hajj, Hazem and El-Hajj, Wassim and Shaban, Khaled Bashir},
  journal={arXiv preprint arXiv:1906.01830},
  year={2019}
}
```

### Contributions

Thanks to [@moussaKam](https://github.com/moussaKam) for adding this dataset.