--- dataset_info: features: - name: data sequence: sequence: float32 - name: label dtype: int64 splits: - name: train num_bytes: 531730928 num_examples: 4324 - name: val num_bytes: 5164824 num_examples: 42 - name: test num_bytes: 5164824 num_examples: 42 download_size: 207795149 dataset_size: 542060576 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* license: odc-by --- The [EEG Motor Movement/Imagery (MMI) Dataset](https://physionet.org/content/eegmmidb/1.0.0/) preprocessed with [DN3](https://github.com/SPOClab-ca/dn3/) to be used for downstream fine-tuning with [BENDR](https://github.com/SPOClab-ca/BENDR). The labels correspond to Task 4 (imagine opening and closing both fists or both feet) from experimental runs 4, 10 and 14. ## Creating dataloaders ```python from datasets import load_dataset from torch.utils.data import DataLoader dataset = load_dataset("rasgaard/mmi-bendr-preprocessed") dataset.set_format("torch") train_loader = DataLoader(dataset["train"], batch_size=8) val_loader = DataLoader(dataset["val"], batch_size=8) test_loader = DataLoader(dataset["test"], batch_size=8) batch = next(iter(train_loader)) batch["data"].shape, batch["label"].shape >>> (torch.Size([8, 20, 1536]), torch.Size([8])) ```