ETSIES 201 873-1 vi1.1.2 2001-06)

ETSI Standard

Methods for Testing and Specification (MTS);
The Tree and Tabular Combined Notation version 3;
Part 1: TTCN-3 Core Language

ETSI %

2 ETSI ES 201 873-1 V1.1.2 (2001-06)

Reference
RES/MTS-00063-1r1

Keywords
ASN.1, methodology, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: 43349294 4200 Fax: +334 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2001.
All rights reserved.

ETSI

http://www.etsi.org/
http://www.etsi.org/tb/status
editor@etsi.fr

3 ETSI ES 201 873-1 V1.1.2 (2001-06)

Contents

Intellectual Property RIGNES ..ot nne e sneene e 12
0] Yo o OSSPSR 12
1 000 PP PP R PURP 13
2 L = (10T SR 13
3 Definitions and aDreviations..............ooieiiiii e 14
31 D= 1 4o RO RPTRR 14
311 DefiNitionS from ISO/EC-9646-1cceiiiieitieieeierie sttt sttt sttt b e et sttt eesbesbeennesee e 14
312 DefinitionS from ISO/IEC-9646-3cceiiiieitieieeeesie sttt sttt sttt st sb e e b be b s ae e e e sbesbeennesbeseas 15
3.2 ADBDIEVIBLIONS. ...ttt e b et ae e ae ettt b e e be b e b e reere e 15
4 g1 oo 1 o] o OSSR 16
4.1 The core language and presentati On fONMELS.ooviiiirie e e 16
5 BaSiC |aNQUAGE ElEMENTS ...ttt et e st e et e e s e e b e e nbe e e nre e 17
51 Definitions, iNSanNces anNd AECIAraLiONS...........veeiieeiiiiiriiee ettt e e e e e e e e s s e e e e e e s sbareeeeeeeeessenssbreeess 18
52 Ordering Of 1angUagE BlEMENTSc..iiiiiieee bbb s b e e b b 18
521 FOMWAIT FEFEIENCES. ...ttt b bt et e bt s as e ae e ae e ee e an e annenaneennesnns 18
53 PAIAIMELETZELTNON.......c.eeeeeee ettt bbb bt e s bt e sb e e bt e bt e bt e b e eabeesn e e sbeesbeesbeesreeareenreen 19
531 Parameter passing by reference and by ValUE ..ot 20
5311 Parameters passed DY FEfErENCE.......oui i e 20
5312 Parameters passet DY VBIUE.........o.eoiiieeee e 20
532 Formal and actual ParameEter [iSES........ooeiiiiiieiieie s 20
533 Empty fOrmal parameEter [ISh........ooeiieiiieieeiee e 20
534 NESLEH PAAMELET [ISES ...ttt ettt ettt b e b an e sanesaneaanesans 21
54 SCOPE FUIES.... ettt ettt a et et e e bt e s e e e b £ e e e £ o R e oo R e e e R e e e bt oAbt £ bt e bt e a bt e b e e bt e bt e b e re e 21
541 Scope and overloading Of TAENTITIENS.........ooiiii e 22
54.2 SCOPE Of FOrMEAl PAIBIMELENS.ot b bbb e re e e s b e nbe e b e 22
55 [AENtITiErS AN KEYWOITS.........oiueiieieieeee ettt sieesbe e sbeesreesbeesreen 22
6 TYPES ANU VAIUES ...ttt ettt e e s bt e et b e sae e e e neen e e nn e 23
6.1 BaSICIYPES BNU VBIUES. ...ttt b bbbttt n e e sn e et e s sbeesbeesreesbeesreen 23
6.1.1 BasiC SING tYPES AN VBIUBS.......c..eiiiiiieii ettt sb et sbe et sb e b et e e b e snnesnnesanas 24
6.1.2 Accessing individual StHNG B EMENES.........ooiiiiiiii e sre e sre e sreesree 25
6.2 User-defined SUD-TYPES 8NG VBIUES..........ooueiiiiiiiii ettt sttt sttt sb e sbe e b b sbeesbeesreesreen 25
6.2.1 LISES OF WAIUBS. ...ttt ettt ettt sttt sttt ettt esb et e sht e e sate e sn e e e mbe e e ate e e eee e s beeanbeeebeeesneeesnteas 25
6.2.2 RANGES. ... e ettt e e s e e e 25
6.221 INFINITE FBNGES. ..ottt ettt et et et e bttt e b e b e e be e 25
6.22.2 MiXING lISES AN FANGESeeueeeeeieteet ettt ab e san e b b e b e 26
6.2.3 SHNG IENGEN FESITTCLIONS ...ttt bbb e s be e b e nbe e b e 26
6.3 SrUCTUred tYPES QNGO VAIUES. ...ttt st e b e e e be e 26
6.31 RECOrA tYPE ANT VAIUES ...ttt b e bbb san e an e aan e 26
6.311 Referencing nested reCord fIaldSoouiiieiieee e e 27
6.31.2 Optional lEMENESIN ATECONT.iiuiiieeie ettt sb e bbb e bt e b e e b e e neeneesreesreen 27
6.3.2 SELTYPE AN VBIUES. ...t b bbbt b e bt e bt e bt bt e bt e b e bt e abe e beenbeebe e 27
6.321 Optional BlEMENES TN ASELcoiiiiieie et b e a e r e r et sr e nree 28
6.3.3 Records and SEtS OF SINGIETYPESeoiuieiieiieie ettt be e b nn e sanesnns 28
6.34 Enumerated tyPe N0 VBIUES...........ooiiieeeee ettt 28
6.3.5 [010 T TSSO TP TPO PP TRRTRO 28
6.4 L 1 = T TP TP PP P PTRRT 29
6.5 RECUISIVE TYIES ...ttt ettt ettt e a bt e ab e e i bt e ae e e ae e eas e e ab e eaneeaneeanesbeesbeesbeesbeenbeenbeen 29
6.6 TYPE PAMAMELENTZALION ...ttt sttt b e b e b e s bt e s bt e s bt e bt e bt e bt e bt e bt e aneeane e ebeeabeeabeenbeenbeenee 29
6.7 TYPE COMPBLIDITTTY ...ttt b bbbt b e et e s et e nb e e be e sbe e nbeebe e 30
6.7.1 Y 0L 0 01V = oo PP U TP O PP OPPTPUPTPPRPPRPUN 30
7 1170 U] =SSR 30
7.1 NAMING Of MOGUIES ...ttt ettt sh e sa bt et e e e be e e s b et e sbee e sabe e smbe e embeeenbaeesaneesaneas 30

ETSI

7.2
721
7.3
731
7.4
75
751
752
7.5.3
754
755
7.5.6
757
7.5.8
7.5.9
7.5.10

8
8.1
8.2
8.3
831
8.4
8.4.1
8.4.2
8.5
8.6
8.7

9
10

11
111

12
121

13
131
13.2

14
141
1411
14.1.2
14.2
1421
14.2.2
14.3
14.4
1441
145
14.6
146.1
14.6.2
14.7
14.8
14.9

15

151
15.2
153

4 ETSI ES 201 873-1 V1.1.2 (2001-06)

ParameteriZation Of MOGUIES.c..iiiiiieeie et sb e sb e b bt e b e be e sbeesbeesreesreen 30
Default values for MOdUIE PAraMELEN'S..........ocviiiieiiei ettt sb e be e sane e 31
MOAUIE AEFINITIONS PAIT.......eeeeeeeee ettt b ettt b e b b e e sb e e s bt e sb e e sbeesbeesbeesbeesbeesbeesbeesreen 31
GroUPS OF AEfINITIONS.......eeiiiiie et b e bbbt r e r e be e b e e nbe e b e 31
MOAUIE CONEFOL PAIT.......eeeeeeeiee ettt h e it e ae e he e e he e sae e s he e s heeeaeeeaeesbeesbeesbeesbeesbeenreen 32
IMPOItiNG frOM MOUUIES..........ooueiiiiie et b e bbb e s b e e s b e e b e e b e e b e e sbeesreesbeesreen 32
RUIES ON USING IMPOIT ...ttt ettt ettt ab e s e e bt snneann e s e e 33
IMPOrting SINGIE AEfiNITIONS........coiietieieet bbb bt bttt sen e sanesans 33
Importing all definitions Of @MOUUIE...........oouiiiiiie s 33
[MPOMTING GrOUDS. ...ttt ettt ettt ettt sttt b bbb e sb e sh e sb e sb e e eb e eb e e bt e b e e b e e bt e bt e e et emnesmnesnnennnesnns 33
Importing definitions Of the SAME KING............ooiiiii e s 33
Recursive import of cOmMplexX defiNitioNSooeiiieiiee s 33
Handling Name Clash@S 0N IMPOIT.......eoiuieiieieeiee ettt sb bbb sne e san e 34
Handling multiple references to the same defiNition............oooieieiiiiiiiei e 35
IMPOrt and MOAUIE PAIGIMELEI'S ..ottt ettt sttt sae e see e be e naeesanesan e e 35
Import definitions from NON-TTCN MOTUIES...........oiiiiiiiiieie e 35

TESE CONMTIGUIALTONS ...ttt ettt s et b e e st b e e st e e e e b e e an e e n e e b e e enn e 35
POrt CoOmMMUNICALTION MOOE! ..o bbb bbb e e s b e e sb e e s b e e sbeenbeesbeesbeesbeesreen 36
ADSIract test SYSIEM INTETACE.ei it e b e sbe b b 36
Defining COMMUNICELION POIT TYPEScuveeurieurieie ettt ettt ettt st bt b e e sbe e sbeesbeesb e e b e e beeneenneenbeesbeesreen 36
IMIEXEO POTTS ...ttt at et a st e et e e a et i et e s bt e ae e e s e e e bt e ab e e ab e e ee e e an e enneenneennennn s 37
DefiNiNg COMPONENT TYPES ...ttt sb e bttt sb e s bt e sb e e sb e e st e e b e e b e e beebe e b e enneesbeesbeesbeesreen 38
Declaring local variables and timersin @ ComMPONENT...........eoivieiierierie e 38
Defining componentSWith @rray'S Of POITS.........ueiviiiiiiiiie it 38
Addressing entitieS INSIAETNE SUT ... s bbb e 39
COMPONENTE FEFEIBNCES ...ttt ettt e s bt et et e bt et e e bt et e e bt e bt e nbeebe e 39
Defining the test SyStEM INTEITACEoo e sree 40
DECIANNG CONSLANES.cueeeeeeeiee ettt ettt sttt e sb e st e neesseeenneenbeenbeeanneanreens 411
DECIAriNg VariaIES.........eeiiieieeee ettt ere e 41
DECIANNG TIMIEI'S ...ttt bt e e e Rt et e et e e e se e e b e e nbe e e nn e e beenneeanneanreens 41
TIMENS @S PAIAIMELENS. ... ettt ettt b e e bt e sb e e s bt e sb e e e bt e e bt e abe e sbe e e Rt e e be e bt e b e e bt e be e beeabe e beenbeenbeebeenne 41
DECIAINNG IMESSAGEScuveeteeiiee ettt ettt ettt ettt e s e s et e e s se e eab e e ab e e e se e e seesbeeanneebeenneeannesnneens 42
OptioNal MESSAGE TIEIUS.eeeeeee et bbbt b et b e bbb b b e b 42
Declaring ProCeUre SIQNAEUINEScoueiieieiee et ettt e be e s e e b e e sbeesre e seesnneeneesbeesneennesnneens 43
OMItiNG GCLUBl PBIBIMELEI'S.eiiteiiteeitee ittt e e e e b e sb e e s b e e b e e bt e bt e be e enbeeabeebeenbeenne 43
SPECITYING EXCEPLIONS. ...ttt ettt s bt e e bt e e bt e b e e e e e e ae e ean e e bt e bt e beenbeebe e 43
DEClaring LEMPIALESeeeieeeee ettt e et e et r e n e nnneere e 44
Declaring MESSAGE tEMPIEEEScveeeieieete ettt sttt b e bbbt et r e et e s anesaeesbe e e sbeesbeesbeesreen 44
Templates for SENTING MESSAGES.eoviiieeieete ettt sttt st e b e sb e e b e e sbeesbeesbeesbeesbeesbeesreens 44
TemplateS for rECEIVING MESSATEScueiiteeitieiteeiteertee st e bt e bt esbeesbeesb e e sbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesreens 45
Declaring SgNatUre tEMPIEEES.eeteeteeteete ettt ettt et r e st sae e sheesb e e sbeesbe e e sbeesbeesbeenreen 45
Templates for Calling PrOCEOUNES.c..iiieeieet ettt bbb b e e sbeesbeesreesreen 46
Templates for accepting ProCadUIre CAllS..........ui i 46
Template MatChing MECNANISIMIS ..o e b e be b 46
Parameterization Of TEMPIAEES.eoiii it r e b bt e b e e e sbeesbeesreesreen 48
Parameterization with matching attribULESoouiiiiiieieee e s 49
Passing temMPlalES @S PaAIrAMELEIS.......c.eiiieieeteee ettt sb e b e sb e s b e e b e e b e e b e e b e eneesbeesbeesreesreen 49
MOITIEH TEMPIBLES. ... b e b e b e s bt bt b e e bt e bt e b e e beesne e sbeesbeesbeesbeesbeesreen 49
Parameterization of modified tEMPIELES.ooiiiiii e s 50
IN-1iNE MO fi €0 TEMPIBLES. ... ee ettt ettt 50
Changing teMPIaLe FIEIOSc.eeieeee et be e e re e 50
Y (e g W@ o= £ 1o g I TR PP PP PPR PP PPRUPRPPN 51
VAU OF OPEIBIIONccuteeuteeete ettt sh e bt b e s bt e s bt e ebe e s bt e e Ee e bt e be e bt e be et e e bt e abe e beenbeenbeebe e 51
(007 1= (= PRSPPI 51
F N g1 1l00Tc (ol e = = o) £ TR RTRR 53

S] ale 0] 1< - (o= T TR UPRPIN 53
REBLTIONE] OPEIBLOIS. ... ettt ettt ettt et ettt b et e sh e e e shb e e sabe e s abe e e abe e e abe e e sbee e saeeesabeesnbeeeabeeesnneesnreas 53

ETSI

5 ETSI ES 201 873-1 V1.1.2 (2001-06)

154 [Wos Loz o o< = (0 £ TSP P PR PP PP PPRPPRORN 54
155 B oY o 1< g (o TP P PP PP PR PPRPPRPRN 54
15.6 S TN 0 1< = (0 £ T TP TR PP PP PP 55
15.7 ROLBEE OPEIBLOIS ...ttt ettt et r e e bt e b et e s e e e s an e e e se e e be e e sane s e e s r e e e nre e e snneennre s 56
G T o o = SR PRSR 56
16.1 Parameterization Of FUNCLIONS..........ooiiitiiiieiiee sttt bttt r e bt e e s an e s e e sbeesreesreesreen 57
16.2 INVOKING TUNCEIONS......e ettt bbbt bt b e s b e e sb e e sb e e sb e e s be e b e e beebeesbeesbeesbeesbeenbeesreen 57
16.3 Predefined FUNCLIONS.ooii ettt e st e st e e ae e e aeeenbeesbeeesbeeesraeesnreas 58
A I == 0= = PO SRR PUPPPRPTPPR 58
18 Program StatementS and OPEraiONSccoueeiieerieerie ettt ettt sin e esnneeneenneen 59
19 BasiC Program STAIEIMENTSccueeirerreeitie et et et e bt esie et b e e s seesss e e beesbeesaneebeesseessneebeeanneenneens 61
191 EEXIIIESSIONIS. ...ttt sttt ettt h bbbt bbb bt eh e e b e e R e e SR e e eR e e R e e eRe e eRe e eE e e eRe e nReesEeenheenbeenreenreenree s 61
19.11 B OO EAIN EXPIESSIONS......ceteiitei ittt sttt ettt bbb bt e b et sb et sb et sb et eh e e ehe e s he e nbe e nbe e e an e nn et e e 61
19.2 F N T 4]0 1= 01 TP U PP PP PR PR 61
19.3 THE LOG SIAEEMENTttt bbbt bt e s bt e s bt e e bt e bt e be e bt e be et e e bt e sbe e be e nbeenbeebe e e 61
194 THE LADE STAEEMENT ...ttt b e b e b e b e e bt bbbt e e an e e abe e be e sbeenbeebe e 62
195 Rl gL ool = 1= 01T o | TSP PP PP PRPR 62
19.6 THE IF-E1 S8 STBIEMIENT ... bbbt b e b e bbbt b e e ae e ean e e bt e bt e nbeenbeebe e 62
19.7 THE FOr SEBLEMENTt b e bbbt b e bt e bt e bt e bt e bt e bt e b e e e e eab e e abe et e e abeenbeebe e e 62
19.8 THE WG SEBIEMENL. ...ttt b e bbbt bt bbb e an e e sb e e be e sbeenbeebe e 63
19.9 The DO-WHITE STBLEMENL. ...t b e b bt e bt e b e e bt e be e be e sbe e nbeenbe e 63
19.10 The StOP EXECULTON SEEEEMENTviitietiete ettt b et b e e bbb e e sae e sae e s abe e nbe e beebe e 63
20 Behavioural program SEEIEMENESeeiiiiieeieerie ettt b e e e n e e s n e beesseeenneenneenneas 63
20.1 SEQUENTIAl DENAVIOU ... bbbt ettt et be e 64
20.2 AIEMNELIVE DENAVIOUN ...ttt ettt e ettt he e h e e e bt e sbe e e sbe e be e abeenbeenbe e 64
20.2.1 Execution of alternative DENAVIOUoiiiiiiiieiee e s 65
20.2.2 Selecting/desalecting @n AlTErNALIVEoiiiiieie e e 66
20.2.3 ElS2 branch iN alterNaliVES.oovi ittt ettt sen e 66
20.2.4 Declaring NAamMed @lTErNELIVES...........oiiiiieiieie ettt nan e 66
20.2.5 Expanding alternatives with named alterNatiVeS.cocviiiiiiiieieeee e s 67
20.2.6 Parameterization of NAMEd AltErNELIVES............coviiiiiieeeee e 67
20.2.7 The Label statement iN DENAVIOUNooiiiiiii e sree 68
20.2.8 The GOto Statement iN DENAVIOUNc..eiiiieii e sree 68
20.28.1 RESEIICLING tNE USE OF GOLO.c.eeeetieitieie ettt be e 68
20.3 INEENTEAVEM DENAVIOUN ...ttt ettt e e sbe e sbeesbeesbeesreen 69
20.4 DEfALIT DENAVIOU ...ttt et ae et e ittt e e an e e aneeaeesbeesbeesbeesbeesbeesreen 71
204.1 The Activate and DeactiVate OPEraIONS.cieeieeiieiteestee sttt sb e s e e b e sbeesreesneebeesreen 71
20.5 THE REIUIN STBLEMENT. ...ttt bbbt b e bt e bt bt e b e e b e et e e bt e sbeenbeeabeenbeebe e 72
21 Configuration OPErALIONS.ceeiiieeseeeetieeeeeeesteeessteeesteeesseeesaseeesnseeesnseeaaseeesseeeanseeanseeesnsenesnseeannses 73
211 THE CrEBLE OPEIGLION ...ttt sttt b e bbbt e sb e e sb e e s bt e bt e ebe e abe e beeabe e bt e abeenbeenbeebeebeenne 73
21.2 The ConNeCt anNd M@ OPEIEHIONS.c..eeiueeiereiteestee st sttt ettt e st e e st e e be e b e beebe e beenesanesanesaneeabeenbeenbeenes 74
2121 CONSISLENT COMMECLIONS. ...ttt ettt st ae e st e s se e s aeeeae e saeeeaeeeaeenbe e beenbeebe e 75
21.3 The Disconnect and UNMap OPEIAHIONS..........eoetieereeiiesieesieesieesteesteesbeesreesbeesbeesbeesbeesreebeesneenesneesbeenseenns 75
21.4 The MTC, System and SElf OPEraliONS.........coiieiieiie et sre bbb e nre e 75
215 The Start teSt COMPONENT OPEIBEIONeeueeeeeeie ettt ettt se e e e st saeesaeesae e saeesanenbeeabeenbe e 76
216 The Stop test COMPONENT OPEIEHIONeiueeiieeitie ettt ettt ettt sb et b e sb e e bbb e ne e e sareeabeeabeenbe e 76
217 THE RUNNING OPEIEHION ...ttt sttt ettt sb ettt sb ettt b e e s bt e sb e e s bt e n b e e sbeeab e e ab e e abeenbeeabeenbeeabeenbeebeenne 77
21.8 THE DONE OPEIELION ...ttt ettt h e bbbt e bt s bt e bt e sb e e sb e e s bt e bt e ebe e be e be e bt e bt e abe e beeabeenbeebe e 77
219 USING COMPONENT BITAYScveeiueeiteeateesteesteesteesteesteesbeesbeesbeesbeesbeeabeeabeesbeesheesbeesbeesbeesbeesbeesbeenbeesbeesbeesbeesreens 78
21.10 Use of Any and All With COMPONENTES..........oiiiiiiiii it r e sr e s ne e sreesree 78
22 COMMUNICALION OPEFBLIONSeeeieieeieiiee et eestee e s teeesteeeasteeeseeeeaseeeaateeeaeeeeanseeaaseeeaseeeanseeesseeeanseeannnes 78
221 S T TaTo e o< = 1 o o T TP T PP TP PP 79
2211 General format of the SENAING OPEIELIONS.........ceiviiieiee et 80
22111 Response and exception NANAIING........o..voieieiee e 80
22.1.2 THE SENT OPEIBLION ...ttt ettt b e bt st e bt e st e ne e b e e s e e n e e b e e ne e s e ebeesreesreesreesreen 80
2221 THE Call OPEIBION. ...ttt b e r e s b e s b e sb e e sb e e sb e e sbeesneenneenbeesbeesreesreesreenreen 80
22211 Handling reSponseSt0 @ Call ..ottt se e e saee e 81

ETSI

6 ETSI ES 201 873-1 V1.1.2 (2001-06)

22212 Handling exceptioNSTO @ Call..........ooiiiiiiieieee e e e e 82
22213 Handling timeout exceptionSTO the Callcoeiiiiiieiieeee e e 82
2222 THE REDIY OPEIBLION.......ecueeeiee ettt b e bttt e as e et e st eanesaneesneebeesbeesbeesreesreen 83
22.2.3 THE REISE OPEILIONeeueeeiee ettt bbbt b e e s b e e sb e e sb e e sb e e sb e e sb e e sbeenbeesbeebeesbeesbeesbeesreen 83
22.3 RECEIVING OPEIBIIONS ...ttt ettt ettt ettt e bttt et e e bt e b e e bt e b e e bt e b e e beebeebeebeebeesbeesbeesbeesbeenreens 84
2231 General format of the reCaiVING OPErALIONSeeiiiiie et 84
22311 Making assignments 0N reCaiViNG OPEIaHIONS.couiiririiereerieie ettt be bbb e e 84
22.3.2 THE RECEIVE OPEIGLION. ...ttt ittt sttt ettt s b bt e sb e e sb e e sb e e sb e e sb e e sbeesbeesbeesbeesbeesbeesbeesbeesreen 84
22321 RECEIVE ANY MESSAT ...ttt ettt ettt ettt b e b e bt e b e e s b e e bt e be e be e s beenbeesbeenbe e b e enbeebeenes 85
22322 RECEIVE ON BNY PO ...ttt ettt et b et e b e e bt et e e be e bt e b e ebeebe e 86
22.3.3 THE THQOEN OPEIGLION ...ttt h e h e sh e b e eh e e she e sheeshe e sheesbeesbeesbeesbeesreesreen 86
22331 TrIQOE ON BNY IMNIESSAGEcuvteueeeuteeuteeueeeseeeseeeaseeaeeeaeeeae e e bt e bt e st easeeaseesseeabeeas e e bt e st eaneenbeenbesnnesnnesnnas 86
22.33.2 R gTe o= o e = 0\ oo S PSP T PO P PP TROUPRTRI 86
2234 THE GELCAIl OPEIBLION ...ttt b ettt bbbt b e b b e b e e e e b e sbeehe e e e s e sbeeabesbesbeannesbesnas 87
22341 ACCEDLING BNY CaIL ..o bbb 88
22.34.2 GELCAll ON BNY PO ..ttt ettt i e ket s ae e he e eheesheesaeesaeeeseeeanessnesbeesbeesreenreen 88
22.35 THE GEIFEDIY OPEIALTON.eeteet ettt h e bt bt b e sb e e sb e e sb e e sbeesbeesbeesbeesbeesbeesbeesreen 88
22351 Get any reply from @Y CalL.......o..o i e 89
22.35.2 GEL ATEPIY ON BNY POttt she e s e eae e eaeesaeesasesaeeeseesanessnesseesbeesbeesreen 90
22.3.6 THE CALCN OPEIELIONeiueeeeee ettt a ettt eh e eh et sae e sheesaeeeseessnesbeesbeesbeesbeesreen 90
22.36.1 THE TIMEOUL EXCEIDEION ...ttt ettt etttk e bttt s bt ebe e b et seeesnn e e snns 90
22.36.2 CALCN BNY EXCEIDIION. ...ttt ettt ettt ettt see e bttt e sb e e sbe e sbeesb e e sb e e sheesheesbeesbeesbeesbeesbeesbeesreen 91
22.3.6.3 107 (o 0o = 01V o o] O SPRO PP OPPPRTPPRPPRPRN 91
22.3.7 THE ChECK OPEIEEION ...ttt b e ar e n e st e bt e an e e b e eaneesseeaeesbeesbeesreesreen 91
22371 The CheCK @ny OPEIELIONc.eiieiiie ittt ettt see e san e nne e 92
22.4 Controlling COMMUNICALTON POTTS. ... eeuveeteetietiete ettt ettt et b ettt sbe b esbe e neean e e beebeenne e 92
2241 THE Clear POIT OPEIEHION.eeeeeeeeieete ettt ettt ettt b et e ee e s e ess e e ne e seeaseenneeabeeaneeaneensesbeesbeesbeesreen 92
2242 THE SEArt POIT OPEFEHION.c.veeteeitee ittt et st e st e bt et e st e e sbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesreens 92
2243 THE SLOP PO OPEIBEION.....cueeeeteeiee ettt ettt ettt b e et ae et e e e eareesneeaneeaseesneennesbeesbeesreesreen 92
225 Use Of @any anNd all WIth POFES.......coveiieiieiiee ettt sttt b e b b s b e b e e b e e sbe e sbeesbeesreesreen 93
23 TIMEN OPEIBLIONS.eeeeeeeite et ettt ettt e s s et et e e e he e e e e e s e e e se e e e e e b e e e se e e s e e s e e e seeean e e neeenneenneenneas 93
231 THE SEArt tIMEN OPEFAIIONeiieee ettt b bbb b e bt e s bt e s b e e ab e e s bt et e e abeeabeeabeeabeenbeebe e 93
23.2 THE SLOP tIMET OPEIBIION ...ttt sttt b e b e sb e e b e e s bt e e b e e sb e e abe e be e beebe e b e e sbeesbeenbeebeenne 93
23.3 The REA TIMEN OPEIELIONeiuiiiieiiee ettt b et b e s bt s bt e bt bt bt bt e b e ean e e ane e ebeesbeenbeenbe e 94
234 The RUNNING TIMEN OPENEHIONoveeitee ittt sttt ettt sttt b e bt bt s bt s b e e s bt e s b e e sbe e sbeesbeeabeeabeenbeenbeenns 94
235 THE TIMEOUL BVENT ...ttt et a e e ae e e ae e e he e s he e s ae e she e she e eae e saeesbeeabeeabeenbeebeenee 94
23.6 Use of any and all WIth TIMErS.........ooiioe bbb b b e sb e e sbe e sbeesreesree 94
Z B == /= o (o) o< = 0] 0 S TR PR PRSP RPRRPRPO 94
24.1 TESE CASE VEITICE. ...ttt b e bbbt bt e bt e bt e bt bt e bt e bt e bt e bt e ke e bt e be e bt e b 95
24.2 Verdict values and OVErWIITING TUIES.oiuiiiii et e be e 95
24.2.1 g0 Y= o o T T ST U P TROTRTOTROTRO 96
25 SUT OPEIBLIONS.....ccueeieeitieteest ettt ettt ettt e e st e e ae e e e e e se e e s et e e e e s e e eae e e ane e be e s an e et e e nneeanneenneenneas 96
26 MOQUIE CONMEIOl PAITeeieiiiiieiee sttt ettt b e st et e ne e nse e e n e e enreeneennees 96
26.1 EXECULION OF TESE CASES. ...ttt h e bbbt s bt s bt s bt e sb e e sh e e s b e e be e be et e e sbeesbeesbeenbeenreen 96
26.2 TEMINGLION OF TESE CASES ...ttt ettt b et b e bbbttt e bt et e eae e eab e e be e nbeenbeenbe e 97
26.3 Controlling EXECULTION OF TESE CASES.......ueirieiietieieeie ettt bbb s n e e bbb e 97
26.4 TESE CASE SEIECLION ...ttt b bbbt e bt e bt e bt e bt et b e e an e e e e e bt e b e be e b b e ne e 97
26.5 USE OF TIMEFSTN COMIIOLeiiiiieieie ettt b e b b e b e e s b e s b e e b e e sbeesbeesbeesbeenbeesreen 98
27 SPECITYING GEITDULES ...ttt e e b e s e e anreeneennees 99
27.1 Digplay @rIULESeoeeeee et r e r e sr e b b e sreenreenree 99
27.2 ENCOOING BLITIDULES. ...ttt r e bt r e sr e e s b e e s b e e b e e ne e sbeesbeesbeesreesreesreen 99
2721 RNz Lo = g Telos [0o LS OOV PP PR TR 100
27.3 EXTENSION BHIMOULES. ..ottt ettt nn e 100
27.4 SCOPE OF BEITIULES. ...t n e e s er e e be e bt e beenreere e 100
27.5 OVErwriting ruleS FOr @LITIDULES.........eieieie e e re e 101
27.6 Changing attributes of imported language & eMENES..........cooiiiiiii e e 101
Annex A (nor mative): BNF and StatiC SEMaNtiCS........cuiveeriieriiiie et 102

ETSI

7 ETSI ES 201 873-1 V1.1.2 (2001-06)

AL TTON-B BN ettt e ettt e e e e h bt e e e e st e e e e e aabee e e e abaeeaeaanbeeesaanbeeaeaans 102
A.l1l Conventions for the SYNtaX GESCITION.......ccvieirieie ettt be b e 102
A.l2 Statement terminator SYMIOIS.oiii i r e 102
A.13 [0 = g1 (1 = SRR R 102
Al4 10001011 07 01K PR U PR UTPPR 102
A.15 TTON-BEEIMINAIS .ttt b bt h et b e b e he et e bt s be e he e b e ebesbeeae e b e ebesheebesbesbeennenreneeas 103
A.16 TTCN-3 SyntaxX BNF PrOOUCTIONScciueetieteeieeieete ettt sttt sb e b b sbeesbeesbeesreesneebeesreesreens 104
A.l6.1 TTON MOQUIE ...ttt ettt s b e bt et be bt e a e e b e sbe e bt e neeebesbeeseeneesbesbesbeennenbeee 104
A.162 MOAUIE DEFINITIONS PAITeiiieeeee ettt e et e et e e e saee e snteesmbeeebeeennes 105
A.1621 TYPEAES DEFINITIONS.eetieie bbb bt b e 105
A.1622 (010 = o OB 1 1T 0 1 RSP TRRI 106
A.1623 TemMPIate DEfiNITIONS......cueieiee e se e bbb e 106
A.1624 FUNCL 0N DEFINITIONS. ...ttt sttt sate e sa e e st e e e be e e snbe e smbeeebeeennes 107
A.1625 SIGNELUIrE DEFINITIONS. ...c.teeteeeeet e sb e b bt et e et e e e e sanesenesnnenans 108
A.1626 TESCASE DEFINITIONS...... ettt b e b e b e et e e bt e b e e bt e b e e beebe e 108
A.l16.27 NAMEJAIT DEfINITIONS.eeteeiieite ettt bbbt sb e bt e bt be b e sseebesbesbeenesbeneas 108
A.1.628 IMPOIT DEFINITIONS ...ttt b ettt r e s e e e e abe e sbe e sre e b e 109
A.1629 GrOUP DEFINITIONS. ..ottt a e sb et sa et sae s se e sn e ae e sanesnnesnnesans 109
A.1.6.2.10 External FUNCLiON DEfINITIONScoiiiiieiiesi e 110
A.1.6211 External Constant DEfiNITiONSco.eiiiriiiiiieeerie ettt a bt b e e b s ee e e 110
A.1.6.3 (0000110 == o PRSPPI 110
A.1631 Variahl @ INSANTIBLION.eeeieiieiiee bbb bbb e 110
A.1.6.32 THMEN INSEBNTIALION ...ttt ettt b et et e e e e e sbesae e e e b e sbesbesbeeneenaenbens 110
A.1.633 COMPONENT OPEIELIONS ...ttt ettt ettt ettt et e et e bt e bt e st e bt e bt e be e seebeenbeenbeenneannesnnesnnas 110
A.1.6.34 PO OPEIEHIONS. ...ttt sttt st h e ae e e et esae e st e e e sbeebeeseebesbeeaeeneeaeesbesbesbeenneseeneas 111
A.1.6.35 THMET OPEIEHIONS. ...ttt ettt ettt ettt e bt et b e bt be e be e b e e bt e s be e beesbeesbeenbeesbeenbeenbeenbeebeenes 112
A.1.64 LY RSO PRRR 112
A.1641 N = YA Y] 0= PPV PT PP RO T 113
A.1.65 RV 2= U TP 113
A.1.6.6 e = 0TS = 015 (o TSPV PP PR TR 114
A.1.6.7 (g T 107 o SR TURPRRR 114
A.1.68 BENAVIOUr SEALEIMENTS ...ttt sttt et e et e e saee e snb e e snteesanee e snbeesmbeeebeeennes 114
A.1.69 BaSIC SEAIEMENTS. ...ttt bbbt b e bt bt ae e b b e b e e he e e e b e b e et s benbeene e e e e 115
A.1.6.10 MiSCEI | BNEOUS PrOTUCTIONS. ...ttt etttk b e e bt e b b e 117
Annex B (normative): Operational SEBMANTICScouviiieeieerre e 118
B.1 SHrUCIUrE OF ThiS BNNEXeeeiieiie ettt b e e s sn e n e e ne e e e 118
B.2 Replacement of shorthand notations and Macro CallS...........ccoovirieiieie i 118
B.2.1 Order Of reDIaCEMENT SLEDSei ittt b e b e s bt e b e e b e e bt e be e be e sbeeabeenbeebe e 119
B.2.2 Adding stop and return operationsin behaviour dESCHPLIONSeiiierierie e 120
B.2.3 Replacement of global constants and Module ParamELErS.............eeieiieieeieeieeee s 120
B.2.4 Embedding singlereceiving operations into alt SLAEMENTS...........coouiiiiiiiiiiiii s 120
B.2.5 o ol = 072 g o ST P RO TPO PRSPPI 121
B.25.1 Expansion of named alternatives in alternative StEMENTS.........c..oooiiiiiieiiereeeee s 121
B.2.5.2 Explicit call of anamed altErNaLiVe..........cocuiiiiiii e e 121
B.2.6 Replacement of the interleave CONSLIUCTooouiiiiieee e 122
B.2.7 EXPANS 0N OF EFAUITSc.veieieiee bbbt sneas 123
B.2.8 Replacement Of triggEr OPEraHIONS.......coouiitietieteetiet ettt ettt ettt ettt sb e b et e e be e b e e beebesnnesnnesnnesnnas 124
B.2.9 Replacement of the keywords 'any’ and "all".............ooiiiiiii s 124
B.29.1 Replacement of 'all’ in timer and POrt OPEratioNS..........oouiiiiieiiiereese et 125
B.2.9.2 Replacement of ‘any’ in timer and reCaiVing OPEratioNS...........cocviiririeeireeie et 125
B.2.9.3 The keywords 'any' and "all" in 'don€ and TUNNING'cocoiiiiiiii e 126
B.3 Flow graph SemantiCs Of TTCN-3o 127
B.3.1 L Lo Ve =T o] TSP 127
B.3.1.1 FLOW Graph fRaIME. ...ttt ettt b et sat e e sab e e s be e e be e e sabe e smbe e e beeeneee 127
B.3.1.2 FLOW Qraph NOOES. ...ttt ettt et et h et sab e e s et e e st e e e be e e sabeesmbe e e beeenees 127
B.3.1.21 S = o 0 010 0 (=SOSR UROPPR 127
B.3.1.2.2 ENA NOOES....... ettt b et bt e e e bt e bt e ae e b e b e e beebe et e eseesbesbesbeenneseennas 128
B.3.1.2.3 BASIC NMOUES ...ttt bttt b bt bbbt e bt bt et e e bt eE e e be e b e b bt e ae e bt b been e e e 128
B.3.1.24 REFEMENCEINOUES ...ttt et b e r e e nbe e b e nre e re e 128

ETSI

8 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.1.24.1 OR combination Of referenNCeNOUES.........cooviiiieiieiee bbb 128
B.3.1.24.2 Multiple occurrences Of refereNCENOUEScccueiiirieree et 129
B.3.1.3 FLOW TINES... ettt a e et et st e i e bt et e bttt e b b e 129
B.3.1.4 FIOW GFaah SEOMENTS......ecutiieiieteet ettt st s e s it e s b e e e e sae e et e bt e beebe e 130
B.3.1.5 L0 0 41011 01T OO T ST PU ROV VPRI 131
B.3.1.6 Handling of flow graph ESCIIPLIONS.cocuiiiiiiiei e e 131
B.3.2 Flow Graph Representation of TTCN-3 DENAVIOUIeoiiiiiiiieiieiieieeeeee e 131
B.3.2.1 The flow graph CONSIUCION PrOCEUUNE.......c..eeiieiieteet ettt senesanas 132
B.3.2.2 Flow graph representation of MOdule CONIOlooeiiieiiiiieeeee e e 132
B.3.2.3 Flow graph representation Of tESE CASES.iieiiiiiieieieesie et 132
B.3.24 Flow graph representation of TUNCLIONS.uiieiiiieieiee e e 133
B.3.25 Flow graph representation of component type definitions...........cooeerieiiereeiniee e 134
B.3.2.6 Retrieval of start nodes of FIOW graphs............ooiiiiii e 134
B.3.3 State definitioNSTor TTCN-3 MOQUIEScoiuiiiiiiiee bbb e 135
B.3.3.1 IMOAUIE SEALE ...ttt bbbt he bt h ek e bt e s bt e e b e s e e e e b e e naneeb e e bt e bt e bt e beebe e 135
B.33.11 ACCESSING thE MOAUIE SLELE ... e b b 135
B.3.3.2 L R (RSP URR 136
B.3.3.21 ACCESSING ENMITY SEAIES.....veeteeieetieiee ettt ettt ettt et be e b e b e 136
B.3.3.2.2 Data state and variabl € DINAINGcc.ooiiiiiii e 137
B.3.3.2.3 Timer state and timer BINAING........cooeiiie e 138
B.3.3.24 ACCESSING tIMEr AN JBLA STALES........eeeeeeeeeteet e be b 139
B.3.3.3 PO SEAEES ...ttt ettt b et b e bt e b e bt e b e e Ee e bt e bbbt e b bbb 140
B.3.33.1 Handling of CONNECEiONS DEIWEEN POIS......eoivieiieieeee et 141
B.3.3.3.2 HaNAIING OF POMS SLALESeeieee ettt ettt b e e se e e b e b e b e 141
B.3.34 General functions for the handling of MOdUIE STALES...........ccuiiiiiiiiii e 142
B.3.4 Messages, procedure calls, replies and EXCEPLIONS.c..eiiieiiieiieeee e 142
B.34.1 IMIESSAGES ...ttt ettt sttt b e bt et et bt s bt e it e bt bt eh e e ae e e bt e E e SR e e R e e e Ee SRt SR£ SR b e ARt e ReeR£ e ARt Rt eEeeRe e bt ebeebeene e e e e 143
B.3.4.2 Procedure CallS @0 FEPITEScueiiie et na e et e be e 143
B.3.4.3 el o) o]0 L3RRS 143
B.3.4.4 Construction of messages, procedure cals, replies and exXCeptions..........coceeveererieniienie e 144
B.3.4.5 Matching of messages, procedure calls, replies and eXCEPLioNS...........ccoveereerierienienie e 144
B.3.4.6 Retrieval of information from reCaIVE ITEMS..........cocuiiiiii e 144
B.3.5 Call records for fUNCLiONS N0 TESE CASES.ueiriiieiie ettt be b e 144
B.35.1 HaNdIiNG Of CAll FEOOTTS ..o vieieitieit et e bbb b e 145
B.3.6 The evaluation procedure for aTTCN-3 MOAUIEcceiiiiiiiiieee e 145
B.3.6.1 EVAIUBLION PRESES ... bbb e 145
B.3.6.1.1 Phase [z INITIAlTZAIIONeoeeee et nb e e sbe b b e 145
B.3.6.1.2 PRAse [1: UDPELE ...ttt sttt sb e bt e s be e be et e nbe e nbeenbe e 146
B.3.6.1.3 PRAse [Tz SEECHION........eiieeeiee ettt b e b e b e b e nbe b e nbe e b e 146
B.3.6.1.4 PRAsE VI EXECULIONeoueiiiiiie ettt ettt st eae e st e e e e e st e nbe e nbe e b e 146
B.3.6.2 GlODAl TUNCLIONS. ... ettt bbb bt bt sb e s b e e sb e e sb e e sb e e st e et e e bt et e e sbeesbeesbeesbeesreeas 146
B.3.7 Flow graph segment definitions for TTCN-3 CONSITUCES.cciueetierieeriieieeieeie s 147
B.3.7.1 F L 1= 101 0| SRS 147
B.3.7.11 Flow graph segment <recaiving-branCh>............ccoooiiiiiii i 150
B.3.7.2 ASSIGNIMENT SEBEEIMENT ...ttt ettt e b et sb e sb e e sbe e sbe e sbe e sbe e sanesan e nnesnneenns 151
B.3.7.3 (072 | oo/ = 1o o [P PTPTPP P PPPPPRTPRPPPRPON 151
B.3.7.3.1 Flow graph segment <nb-call-With-reCaIVEr>cooiiiiii e 153
B.3.7.3.2 Flow graph segment <nb-call-WithOUE-TECEIVEr>...........ooiiiiiiiii e 154
B.3.7.3.3 Flow graph segment <b-Call-With-reCaIVEISccciiiiiii e 155
B.3.7.34 Flow graph segment <b-call-WithOUE-TECEIVEr™coooiiiiiiiei e 155
B.3.7.35 Flow graph segment <b-Call-With-reC-aUr>............cocii i 156
B.3.7.3.6 Flow graph segment <b-call-WithOUE-TeC-dUI>............cociiiiiiii e 157
B.3.7.4 (07 (e 0o /< = 1o o E TP P PP PPPTPPRPRPPPRPON 157
B.3.74.1 Flow graph segment <catCh-With-SENdEr=cocoo i 158
B.3.7.4.2 Flow graph segment <catCh-WithOUE-SENAEr™cooiiiiiiiie e 159
B.3.7.5 ClEAI POIT OPEIELION ...ttt sb e sb e sb e e sb e e sb e e sb e e sb e e sb e e sb e e sbeesbeesbeenbeesbeesbeenbeesbeesbeens 160
B.3.7.6 CONMNECE OPEIBLION ...ttt ettt ettt e e bt e e et e ea b e e s e e aneeaeeeabeeaseeaseeaseeaseennesbeesbeesbeesbeesreens 161
B.3.7.7 Declaration Of 8 CONSEANT........coiuiiiieiiei ettt et e be b e 162
B.3.7.8 (O (X0 o< = Lo o DRSPS PP PPPTPPRTPRPPPRPON 163
B.3.7.9 DECIAIatiON OF B PONTveetietieit ettt ettt ab e ab e ae e et e b e b e b e 164
B.3.7.10 DECIAration OF BEIMES........eiiieie it b e b e b e b e e bt e be e bt ebeebe e 164
B.3.7.10.1 Flow graph segment <timer-decl-default™ccccooieiiiiie i 165

ETSI

B.3.7.10.2
B.3.7.11
B.3.7.11.1
B.3.7.11.2
B.3.7.12
B.3.7.13
B.3.7.14
B.3.7.15
B.3.7.16
B.3.7.17
B.3.7.17.1
B.3.7.17.2
B.3.7.18
B.3.7.18.1
B.3.7.18.2
B.3.7.18.3
B.3.7.18.4
B.3.7.19
B.3.7.20
B.3.7.21
B.3.7.22
B.3.7.23
B.3.7.24
B.3.7.25
B.3.7.26
B.3.7.27
B.3.7.27.1
B.3.7.27.2
B.3.7.28
B.3.7.28.1
B.3.7.28.2
B.3.7.29
B.3.7.30
B.3.7.30.1
B.3.7.30.2
B.3.7.31
B.3.7.32
B.3.7.33
B.3.7.34
B.3.7.35
B.3.7.35.1
B.3.7.35.2
B.3.7.36
B.3.7.37
B.3.7.37.1
B.3.7.37.2
B.3.7.37.3
B.3.7.38
B.3.7.38.1
B.3.7.38.2
B.3.7.39
B.3.7.39.1
B.3.7.39.2
B.3.7.40
B.3.7.41
B.3.7.42
B.3.7.43
B.3.7.44
B.3.7.44.1
B.3.7.44.2
B.3.7.45
B.3.7.46

9 ETSI ES 201 873-1 V1.1.2 (2001-06)

Flow graph segment <timer-decl-NO-AEf>.........ccocoiiiiiie e 165
Declaration Of 8 VATADIEoiueiiiieee e bbb 166
Flow graph segment <var-declaration-iNit>...........cccccveiiiiieeii s 166
Flow graph segment <var-declaration-UNdef>.............cooeiiiiiiiiiiee e 167
DJES ool o[o o o/ £= o) o RUU TPV P PR TR 167
DO-WHIl© SLAEEIMENT ...ttt ettt ettt et e be e b b e 168
Done-all-ComPONENES OPENBHION.........ueiieeerieesieesteestee st ettt b ettt sae e see e s e sseesae e ebeebeebe e 169
Done-any-ComPONENT OPENGLION.eitiiiieiieet ettt sae e sse e e saeesae e s bt e beenbe e 170
DONE COMPONENT OPEIEEION. ...ttt ettt ettt ettt ettt e b e san e eaneeaeesan e e bt e beene e 171
EXECULE SLEEIMENT ...ttt ettt esre e s e e s e r e nnes 171
Flow graph segment <eXeCULE-tIMEOULScciveiieiicie ettt sre e s e re e 172
Flow graph segment <execute-WithOUL-tiMEOUL>cociiiiiieiiereeree e 173
0= oo BT TPV PP UP VRPN 174
Flow graph sagment <HE-ValUESooiiiii e 174
Flow graph SEgmMENt SVAI-VaIUESc.ooiuiiiiiiiiie ettt sttt n e e 175
Flow graph segment <fUNC-0P-Call>.......c.eiiiiee e 175
Flow graph segment <OpErator-appl™ooiieeiiieiiie ettt ees 176
Flow graph segment <finalize-CoOmPONENE-INIT>ooiiiiiiiieee e 176
Flow graph segment <init-COMPONENT-SCOPESueiiueiriierieerieeiteeiee ettt see e 177
O 2 = 101 | TP ST PP TP PPN 178
FUNCEION CBIL ...t b ettt et e b et b e 179
Flow graph segment <value-par-Cal CULBLIONS...........cocuiiiiiiiiiiriesie et 180
Flow graph segment <ref-par-Var-CalC>.......ouuiiiiiiiiie ettt e 181
Flow graph segment <ref-par-timer-CalC>........ooiiiiiiii e 182
Flow graph segment <parameter-Nandling™coooiiiiiiiir i 182
(€1c (o= | o o< g Lo TP P PP PPPPPRTPRPOPRPON 183
Flow graph segment <getcall-With-SENder> ..o e 184
Flow graph segment <getcall-WithOUE-SENAEr>coooiiiiiiii e 185
(€1 1 o LYo 1< = 1 g [PPSO PP P PPPPPRTPRPOPRPRN 186
Flow graph segment <getreply-With-SENder=>...........cco i 187
Flow graph segment <getreply-WithOUt-SEN0Er>..........ccooiiiiiiiie e 188
L Tol o =1 = 101 o | TP PP PT R OPR PRI 189
[T-E1 S SEALEIMENL. ...ttt a et e s he e s b ettt bbb e ne e 189
Flow graph segment <if-with-else-branch> ... 190
Flow graph segment <if-without-elSe-Dranch>............cocoiiiiiiii e 191
I o B (= 101 | TP VPV P PP VRPN 191
(0o = = 1 1 o TP TP TP P PPN 192
= o N o= 2 1o T PP VPP PP TR 192
YO0 o = - 1o T TP VR T PR TRRTP 193
RBISE OPEI B ON ...ttt a bttt a e et a e ae e ae e et b e e bbb b e 193
Flow graph segment <rai Se-With-reCEIVEr-0D>.......coiiiiieiieiieie e 194
Flow graph segment <rai Se-WithOUE-TECEIVEr-0D>covieiiieriieii ettt 195
REAO LiMIEE OPEIBLION ... ittt ettt ettt ab e an et ea e et e bt e b b e 196
RECEIVE OPEIBHION ...ttt ettt b e b e bt e bt e bt e b e e bt e s beeab e e e beesbe e bt et e e bt enbeebe e 196
Flow graph segment <recalVe-With-SEnder> ..o 197
Flow graph segment <recalVe-WithOUE-SENder=>coiiiiiiiiin e 198
Flow graph segment <reCalVE-aSSIgNMENTScccveiieiieiie e s seeseese e seeste e teesre e beesreesreesreenre s 199
S o A0 o< = 1o TR VPP PR TR 199
Flow graph segment <reply-With-TECEIVEN-0P>ccooiiiiiiiieiiese e 200
Flow graph segment <reply-WithOUL-rECEIVE-0D>ooiiiiiiiieiiesiee et 201
RELUMN SEBEEIMENL ...t sr e e e se e sare e e r e e nnes 202
Flow graph segment <refurn-With-ValUE>.............coiiiiiiiii e 203
Flow graph segment <return-WithOUE-VaIUESc.ooiiiiiiiiieeer e 204
Running-all-ComPONENES OPEGLIONciieeiiieitieitiet ettt sb e e bbb e 205
RUNNING-8NY-COMPONENT OPEIEEION......e.teeuteetietieteeie ettt ekttt sr e s e sanesaneebeene e 206
RUNNING COMPONENT OPEIGLION.........eiutiiiiieiiiete ettt e b e b e b e 207
RUNNING TIMEN OPEIELION. ...ttt ettt b et b e b s b e e s b e s be e s ae e bt e bt e be e b e 208
s ol o = = (oo DTS P PP PP PPRTPRPPPRPON 208
Flow graph segment <send-With-reCaiVEr-0P>........ccooiieiiiiieiiee e 209
Flow graph segment <send-WithOUE-TECEIVEN-0P>ooiiiiiiiierieree e 210
S L 0 oL 2= (oo TSP PP PPPTPPRTPRPPPRPON 210
Start COMPONENT OPEIEEION.eiueeieieitee it sttt et e st ettt e e bt e st e e sb e e st e e sbe e st e e b e esbeebeeneeneesbeesbeesbeesreens 211

ETSI

10 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.47 SEAT POIT OPEFEIION ...ttt ettt skttt sb et e st sb e sb e e sb e e sb e e sb e e sb e e st e e sbeesbeesbeesbeesbeesbeesbeesbeesbeesreesreens 213
B.3.7.48 SEAT LIMEN OPEIALION. ¢... ettt ettt e ettt e e b e eabeeas e e b e eabeeaneeanesbeesbeesbeesreenreeas 213
B.3.7.48.1 Flow graph segment <start-timer-op-default>............ccoceiiiiiiiiieeee e 214
B.3.7.48.2 Flow graph segment <start-timer-op-duralion™...........ccccoieiiieiienieiee e 215
B.3.7.49 SEAEEMENE DIOCK ... bbb sttt b e b b ne e e e 216
B.3.7.50 (e ol o = ¢ 1o o TP P PP PPPTPPRTPRPPPRPON 217
B.3.7.51 SEOP POIT OPENBETON. ...ttt ettt ab e et e bt et e e st eabeeaseeaseeaseeaneeaeesbeesbeesbeesreenreeas 219
B.3.7.52 (e o] 107= ge'o = = {0/ O TSP P U PPP PP PPRTPRPPPROON 219
B.3.7.53 SUL.ACHION OPEIGLION ...ttt b e b e sb e sh e e s b e e st e e b e e b e e s e esseeaneeaneesbeesbeesbeesbeesreeas 220
B.3.7.54 SYSLEIM OPEIGLION. ...ttt et e e st e bt e s e e e st eaeeeaseeabeeaseeabeeaseeaneebeesbeeabeesbeesreenreens 220
B.3.7.55 TIMEOUL TIMEN OPEIELIONc.teeteetiete ettt b et eb e sb e e sb e e sb e e sb e e sb e e snesnnesnnesnnesnns 221
B.3.7.56 gt oo 1< = 1 o NPT VP U P UR VRPN 222
B.3.7.57 V2 do oMo = ao)o = =1 (o FO TR SOP PO TPTRTPOTPRPRO 222
B.3.7.58 AV fo o= = Aol £ (o o OO OO TP U PR PPRTPRPR 223
B.3.7.59 TR = = 1= 0L ST 224
B.3.8 Lists of operational SemMantic COMPONENTS.ccuuiieiiieriieiiereet ettt sbe e sr e b b sanesan e snnesnnes 225
B.3.8.1 FUNCEIONS BNO SLBLES ...ttt ettt ettt st a bttt e bt e bt b e 225
B.3.8.2 SPECIAI KEYWOITS ...ttt h e eh e ae e h et she e ehe e s b e e sb e e saeesaeesbeesbeesbeesbeesreens 226
B.3.8.3 FIOW GFah SEOMENTS......eoueieiiieie ettt et e s he e s e sae e e abe e b e be e b e 227
Annex C (nor mative): Matching iNCOMING VAIUES..........cooiiiiiiiieiieesee e 230
C.1 Template matching MECNANISIMSeiiiiiiieie ettt r e 230
Cl1 MaLChIiNG SPECITIC VBIUBS ...ttt ettt et n et see e sen e snnesnnennnas 230
Cl1l2 Matching mechanismSIiNStEad Of VAIUES..........ooiuiiiiiiiieiieieee s 230
C.121 [V Z= U R SRS 230
Cl122 CompPleMENLEd VAU TSeeeieeieeeeeee e bbbt b e r e sre e sbe e sreesree e 230
C.1.23 OIMITEING VAIUBS...... ettt sttt b bt bt e e e b e b e e he e e e b e b e e bt eae e e e e neeebesbesbeenneseeseas 231
C.l124 FaN YA = LU= RSO PRURR 231
C125 ANY VBIUE OF NONE.....eetiiiieeitt ettt ettt ettt ettt e st e et e bt eab e eas e ea bt e bt e abeenseenseannesnnesnnesnnesnns 231
C126 V2 L0 L=T 7= o TSRO T PSP PR PPRTPRPR 232
C13 Matching mechaniSMSINSIAE VAIUESccueiiuiiiieiieee et s 232
C.131 FAN V= 1 10T 0| PSPPSR 232
C1311 Using single charaCter WilACArdS............cooueeiieiiiie e e s 232
C132 Any number of elemeENtSOr NO ElEMENL..........oiiiiiee e 232
Cl1321 Using multiple character WildCardScooieiieiieeiece e 233
Cl4 MatChing attrTDULES OF VAIUEScveiieiiieieiieet et 233
Cl41 LENGEN FESIITCLIONS ...ttt sttt e bt et e b b e 233
C14.2 THE ITPIrESENT INAICAIONeveeieee ettt a e se et sb et ae e e ean e snnesenesnne e 233
C.15 MaLChing CharaCter PaITEINcouiiieeieeieet ettt ettt bt e bt b e b e es e ssnesnnesnneennas 234
Annex D (nor mative): Pre-defined TTCN-3 fUNCLIONS........cooiiiiieiee e 235
D.1 Pre-defined TTCN-3 fUNCHIONS.......coiiuiiiieiiieie ettt nee s 235
D.11 FpIecs = g (oo g = ol = GO PR URO PRSPPI 235
D.1.2 (O = Toi (s R (0B [01C= 0 = ST PP PR PRSPPI 235
D.1.3 INteger 10 UNIVErSal CREIBCTEYiiiiiieeee e bbbt et sne e snnesanas 235
D.14 UNIVEral CharaCter 1O INMTEOENeieiite ittt bbb b b e sb e b e e b e b e e sesesnneannesnnesnnas 235
D.15 N gl aTe R o] 010 o OO PR TP PR 235
D.1.6 HEXSITING TO INEEOEN ...ttt bbbt b e bt e bt e b e e bt ettt eae e snneann e nnnesnneenns 236
D.1.7 00 (= gl aTo R (N g0 o = ST TP PRSP USRI 236
D.1.8 (gt = 1] aTo R (o] g1 o= T T TP T PPV RP TSP 236
D.1.9 RpIe='stc g (ol o] & 1 oo [T TP SP RO TRO PP 236
D.1.10 INEEOEN TO NEXSIING. . .tteeteeteet ettt b et b e e bt e bt e bt bt e b e e b e b bt e re e 237
[20 R 1 (o= g (o 0 o= = {1 PRSP PRPTTPTR 237
D.1.12 INLEYEN 10 CRAISITING. ... e euteeuteeteeteet ettt ettt bbbt b e bt bt et e b e e bt e bt e be e bt et e enb e e bt e beebe e 237
D 20 0 O I = 0T 1 e =] 00 Y o= USSP P VR UPP PP 237
D.1.14 Number of dementSin aStrUCIUNEO tYPRcoiuiiiieiieieet et be b 238
D.1.15 The ISPrESENE FUNCHIONcueiitiiiiiieeieee ittt ettt ettt e b e e b e e b e b e be e 238
D.1.16 The ISCNOSEN TUNCHION.eoteeiieiieie ettt b e b e b e sb e e sbe e s b e st et e b e e bt e bt e be e 238
Annex E (normative): Using other datatypeswith TTCN-3 ... 239

ETSI

11 ETSI ES 201 873-1 V1.1.2 (2001-06)

E.1l USING ASN.LWItN TTON-3 .ottt ettt et e e st e e s nteeenseeesteeesnseeenseeesnseneaneeas 239
E.11 ASN.1 and TTCN-3 type EQUIVBIENTS.........oiiiiiiiieiie ettt sttt sb e bbb e sbeesreesbeesreesreesreen 239
E.12 ASN.1 daaLYPES BNG VBIUES.........eeieieeeeie ettt ettt b et an e b e e neeanesaresbeesreesreesreen 240
E121 SCOPE OFf ASN. L IUENEITIES.....eiiei bbb et sb e e sre b 240
E.13 ParameteriZation IN ASNLLottt et rb et et e sh e e b b e e nan e aneenns 240
E.14 Defining message tyPeS WIth ASNLL........oiiiiiieie et sb e b sanes 242
E.15 Defining ASN.1 MESSAgE LEIMPIALESeoeieiiet et b e bt ser e e 242
E.151 ASN.1 receive messages using the TTCN-3 template SYNEaX..........cocveieireirieiiinie e 243
E.152 Ordering Of tEMPIAIE FIEUS.eeieeee bbb bbb e sreesree s 243
E.1.6 ENCOAING INFOMMALION.......o.tiiiiiieet ettt b bt b e b e b e sae e ses e snn e nnn e e e snns 243
E.161 ASN.1 enCOUiNG @ITIULES.........eetieieeei ettt ettt et et b e 243
L [0 YOO P TSP PRPPPPPRN 245

ETSI

12 ETSI ES 201 873-1 V1.1.2 (2001-06)

Intellectual Property Rights

IPRs essential or potentially essentia to the present document may have been declared to ETSI. The information
pertaining to these essential 1PRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which isavailable from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSl Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 1 of a multi-part deliverable covering the Tree and Tabular Combined Notation version 3,
as identified below:

ES201873-1: "TTCN-3CorelLanguage";
ES201873-2: "TTCN-3 Tabular Presentation Format (TFT)";
TR 101 873-3: "TTCN-3 Graphica Presentation Format (GFT)".

ETSI

http://www.etsi.org/ipr

13 ETSI ES 201 873-1 V1.1.2 (2001-06)

1 Scope

The present document defines the Core Language of TTCN Version 3 (or TTCN-3). TTCN-3 can be used for the
specification of all types of reactive system tests over avariety of communication ports. Typical areas of application are
protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module
testing, testing of CORBA based platforms, APIs etc. TTCN-3 isnot restricted to conformance testing and can be used
for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The
specification of test suites for physical layer protocols is outside the scope of the present document.

TTCN-3isintended to be used for the specification of test suites which areindependent of test methods, layers and
protocols. Various presentation formats are defined for TTCN-3 such as atabular presentation format [1] and a
graphical presentation format [2]. The specification of these formats is outside the scope of the present document.

The present document defines anormative way of using of ASN.1 as defined in the ITU-T Recommendation X.680
series[7], [8], [9] and [10] with TTCN-3. The harmonization of other languages with TTCN-3 is outside the scope of
the present document.

While the design of TTCN-3 hastaken the eventual implementation of TTCN-3 trandators and compilersinto
consideration the means of realization of executable test suites (ETS) from abstract test suites (ATS) isoutside the
scope of the present document.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

» References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

» For aspecific reference, subsequent revisions do not apply.

» For anon-specific reference, the latest version applies.

[1] ETSI ES 201 873-2 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and
Tabular Combined Notation version 3; Part 2: TTCN-3 Tabular Presentation Format (TFT)".

[2] ETSI TR 101 873-3 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and
Tabular Combined Notation version 3; Part 3: TTCN-3 Graphical Presentation Format (GFT)".

[3] ISO/IEC 9646-1 (1994): "Information technology - Open systems interconnection - Conformance
testing methodol ogy and framework - Part 1: General Concepts'.

[4] I SO/IEC 9646-3 (1998): "Information technology - Open systems interconnection - Conformance
testing methodol ogy and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)
Edition 2.

[5] ISO/IEC 646 (1991): "Information technology - 1SO 7-bit coded character set for information
exchange".

[6] I SO/IEC 10646-1 (1993): "Information technology - Universal Multiple Octet-Coded Character

Set (UCS) - Part 1: Architecture and Basic Multilingual Plane’.

[N ITU-T Recommendation X.680 (1997): "Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation”.

[8] ITU-T Recommendation X.681 (1997): "Information technology - Abstract Syntax Notation One
(ASN.1): Information object specification”.

[9 ITU-T Recommendation X.682 (1997): "Information technology - Abstract Syntax Notation One
(ASN.1): Constraint specification”.

ETSI

14 ETSI ES 201 873-1 V1.1.2 (2001-06)

[10] ITU-T Recommendation X.683 (1997): " Information technology - Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 specifications'

[17] ITU-T Recommendation X.690 (1997): "Information technology - ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)".

[12] ITU-T Recommendation X.691 (1997): "Information technology - ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

compatible type: TTCN-3isnot strongly typed but the language does require type compatibility. Variables, constants,
templates etc. have compatible types if they resolve to the same base type and, in the case of assignments, matching
etc., no sub-typing (e.g., ranges, length restrictions) is violated

communication port: abstract mechanism facilitating communication between test components
A communication port ismodelled as a FIFO queuein the receiving direction. Ports can be message-based,
procedure-based or a mixture of the two.

exception: in cases of synchronous communication an exception (if defined) israised by an answering entity if it
cannot answer aremote procedure call with the normal expected response

test suite: TTCN-3 modulethat either explicitly or implicitly through import statements completely specifies all
definitions and behaviour descriptions necessary to define acompl ete set of test cases

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by area test system

type parameterization: ability to pass atype as an actual parameter into a parameterized object
Thisactual type parameter then compl etes the type specification of that object. Note that the parameter is not a value of
atype but the typeitsalf.

3.1.1 Definitions from ISO/IEC-9646-1

For the purposes of the present document, the following terms and definitions, given in |SO/IEC-9646-1 [3] apply:
Implementation Conformance Statement (ICS)

Implementation eXtra Information for Testing (IXIT)

Implementation Under Test (IUT)

System Under Test (SUT)

test case

test caseerror

test system

ETSI

15 ETSI ES 201 873-1 V1.1.2 (2001-06)

3.1.2 Definitions from ISO/IEC-9646-3

For the purposes of the present document, the following terms and definitions given in | SO/IEC-9646-3 [4] apply:
Main Test Component (MTC)
Parallel Test Component (PTC)

snapshot semantics

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

ASP Abstract service Primitive

ATS Abstract Test Suite

BNF Backus-Nauer Form

CORBA Common Object Request Broker Architecture
ETS Executable Test Suite

FIFO Firg In First Out

IDL Interface Description Language

IUT Implementation Under Test

MTC Master Test Component

PDU Protocol Data Unit

PTC Parallel Test Component

(PICS (Protocol) Implementation Conformance Statement
PIXIT (Protocol) Implementation eXtra Information for Testing
SUT System Under Test

TTCN Tree and Tabular Combined Notation

ETSI

16 ETSI ES 201 873-1 V1.1.2 (2001-06)

4 Introduction

TTCN-3isaflexible and powerful language applicable to the specification of all types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), modul e testing, testing of CORBA based platforms, API
testing etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including
interoperability, robustness, regression, system and integration testing.

From a syntactical point of view TTCN-3 is very different from earlier versions of the language as defined in
I SO/IEC 9646-3 [4]. However, much of the well-proven basic functionality of TTCN has been retained, and in some
cases enhanced. TTCN-3 includes the following essential characteristics:

» theahility to specify dynamic concurrent testing configurations,

» operations for synchronous and asynchronous communication;

» theability to specify encoding information and other attributes (including user extensibility);
» theability to specify data and signature templates with powerful matching mechanisms,

e type and value parameterization;

» theassignment and handling of test verdicts;

* test suite parameterization and test case selection mechanisms,

» combined use of TTCN-3 with ASN.1 (and potential use with other languages such asIDL);
« well-defined syntax, interchange format and static semantics;

« different presentation formats (e.g., tabular and graphical presentation formats);

e aprecise execution algorithm (operationa semantics).

4.1 The core language and presentation formats

Historically, TTCN has always been associated with conformance testing. In order to open the language to a wider
range of testing applicationsin both the standards domain and the industrial domain the present document separates the
specification of TTCN-3 into several parts. Thefirst part, defined in the present document, is the core language. The
second part, defined in ES 201 873-2 [1], isthetabular presentation format, smilar in appearance and functionality to
earlier versions of TTCN. The third part, defined in TR 101 873-3[2] isthe graphical presentation format.

The core language serves three purposes:
a) asa generaized text-based test languagein its own right;
b) as a standardized interchange format of TTCN test suites between TTCN tools;
¢) asthe semantic basis (and whererelevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats shall be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats may be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 usersthemselves. These additional formats are not defined in the present document.

TTCN-3 s fully harmonized with ASN.1 which may optionally be used with TTCN-3 modules as an alternative data
type and value syntax. Use of ASN.1in TTCN-3 modulesis defined in annex E of the present document. The approach
used to combine ASN.1 and TTCN-3 could be applied to support the use of other type and value systems with TTCN-3.
However, the details of thisare not defined in the present document.

ETSI

17

ETSI ES 201 873-1 V1.1.2 (2001-06)

TTCN-3 >

Core
ASN.1 Types Tabular
& Values »| Language format < >
Other Types | Graphical
& Values 2 format ,,,,,,,,,,,,,,,,,,,,

TTCN-3 User

Other Types Presentation The shaded boxes are not
& Values > format, D defined in this document

Figure 1: User's view of the core language and the various presentation formats

The core language is defined by a compl ete syntax (see annex A) and operational semantics (see annex B). It contains
minimal static semantics (provided in the body of the present document and in annex A) which do not restrict the use of
the language due to some underlying application domain or methodology. Functionality of previous versions of TTCN,
such astest suite indexes, which can be achieved using proprietary toolsis not part of TTCN-3.

5 Basic language elements

The top-level unit of TTCN-3isamodule. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have parameter lists to give aform of test suite parameterization similar to
the PICS and PIXIT parameterization mechanisms of TTCN-2.

A module consists of a definitions part and a control part. The definitions part of a modul e defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calsat ports, test
cases etc.

The control part of amodule calls the test cases and controlstheir execution. The control part may also declare (local)
variables etc. Program statements (such asi f -el se and do- whi | e) can be used to specify the selection and
execution order of individual test cases. The concept of global variablesisnot supported in TTCN-3.

TTCN-3 hasanumber of pre-defined basic data types as well as structured types such asrecords, sets, unions,
enumerated types and arrays. As an option, ASN.1 types and values may be used with TTCN-3 by importation.

A special kind of data value called atemplate provides parameterization and matching mechanisms for specifying test
datato be sent or received over the test ports. The operations on these ports provide both asynchronous and
synchronous communication capabilities. Procedure calls may be used for testing implementations which are not
message based.

Dynamic test behaviour is expressed astest cases. TTCN-3 program statements include powerful behaviour description
mechanisms such as alternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are al so supported.

Finally, most TTCN-3 language elements may be assigned attributes such as encoding information and display
attributes. It is also possible to specify (non-standardized) user-defined attributes.

ETSI

18 ETSI ES 201 873-1 V1.1.2 (2001-06)

Table 1: Overview of TTCN-3 language elements

Language element Associated Specified in Specified in Specified in
keyword module definitions| module control functions/test
cases

TTCN-3 module definition module

Import of definitions from other module |import Yes

Grouping of definitions group Yes

Data type definitions type Yes

Communication port definitions port Yes

Test component definitions component Yes

Signature definitions signature Yes

External function/constant definitions external Yes

Constant definitions const Yes Yes Yes
Data/signature template definitions template Yes

Function definitions function Yes

Named alternative definitions named alt Yes

Test case definitions testcase Yes

Variable declarations var Yes Yes
Timer declarations timer Yes Yes

5.1 Definitions, instances and declarations

In the present document the term declaration is used in agenera manner to cover making a static definition or creating
some kind of dynamic instantiation where anameis given to a TTCN-3 object. For example, types and constants are
defined and a statement such as calling afunction or declaring avariable isan instantiation. In both cases these actions
can be referred to as making a declaration.

5.2 Ordering of language elements

Generally, the order in which declarations can be made and the mixing of declarations with program statementsis
arbitrary. However, inside a satement block, such asabranch of ani f - el se statement, all declarations (if any), shall
be made at the beginning of the statement block only.

EXAMPLE:

/1 This is a legal mxing of TTCN-3 decl arations

var MyVar Type MyVar2 :
const integer MyConst:
if (x > 10)

3,
1

var integer MyVarl:= 1;
M/Var1: = MyVarl + 10;

5.2.1 Forward references

Definitions in the modul e definitions part may be made in any order and while forward references should be avoided
(for readability reasons) thisisnot mandatory. For example, recursive elements, such as functionsthat call other
functions and modul e parameterization, may lead to unavoidable forward references.

Forward references are only allowed for declarationsin the modul e definitions part. Forward references shall never be
made inside the module control part, test case definitions, functions and named alternatives. This means forward
references to local variables, local timersand local constants shall never occur.

ETSI

19 ETSI ES 201 873-1 V1.1.2 (2001-06)

53 Parameterization

TTCN-3 supports both type parameterization and value parameterization according to the following limitations:

a) language dements which cannot be parameterized are; const, var, ti mer,control, group and
i mport;

b) thelanguage eement nodul e allows static value parameterization to support test suite parametersi.e., this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
run-time (i.e, static at run-time). This means that, at run-time, module parameter values are globally visible but
not changeabl e,

¢) al user-defined t ype definitions (including the structured type definitions such asr ecor d, set etc.), and the
special configuration type addr ess support static type and static value parameterizationi.e, this
parameterization shall be resolved at compile-time;

d) thelanguage elements si gnat ur e, t est case andf unct i on support dynamic value parameterization (i.e.,
this parameterization shall be resolvable at run-time);

€) named alternatives support dynamic value parameterization (i.e., this parameterization shall be resolvable at run-
time). Since named aternatives are not a scope unit, the defined formal parameters are ssimply substituted by the
given actua parameters when the (macro) expanson of the named al t is performed.

A summary of which language elements can be parameterized and what can be passed to them as parametersisgiven in
table 2.

Table 2: Overview of parameterizable TTCN-3 language elements

Keyword Type Value Types of values allowed to appear in formal/actual
Parameterization | Parameterization parameter lists
module Static at start of run-|Values of: all basic types, all user-defined types and
time addr ess type.
type Static at compile- | Static at compile- |Values of: all basic types, all user-defined types and
time time addr ess type. Note: record of, set of, enumerated,

port, component and subtype definitions do not allow
parameterization.

template Dynamic at run-time |Values of: all basic types, all user-defined types, addr ess
type, conponent type and t enpl at e.

function Dynamic at run-time |Values of: all basic types, all user-defined types, addr ess
type, conponent type, port type, tenpl ate.andti mer.

testcase Dynamic at run-time |Values of: all basic types and of all user-defined types,
address typeandt enpl at e.

signature Dynamic at run-time |Values of: all basic types, all user-defined types and
addr ess type and conponent type.

named alt Static macro Values of: all basic types, all user-defined types, addr ess

expansion type, conponent type, port type, tenpl ate andti ner.

NOTE: Examplesof syntax and specific use of parameterization with the different language e ementsare given in
therdevant clausesin the present document.

ETSI

20 ETSI ES 201 873-1 V1.1.2 (2001-06)

5.3.1 Parameter passing by reference and by value

By default, all parameters of basic types, basic string types, user-defined structured types, address type and component
type are passed by value. This may optionally be denoted by the keyword i n. To pass parameters of the mentioned
types by reference the keywords out or i nout shal be used.

Timers and ports are always passed by reference and are identified by the keywordst i ner and por t . The keyword
i nout may optionally be usedto denote passing by reference.

5.3.1.1 Parameters passed by reference
Passing parameters by reference has the following limitations:

a) only the formal parameter liststof unct i on, si gnat ur e andt est case may contain pass-by-reference
parameters,

NOTE: Therearefurther restrictions on how to use pass-by-reference parameters in signatures (see clause 22).
b) the actual parameters shall only be variables (e.g., not constants or templates);

¢) only value parameters (i.e., not type parameters) shall be passed by reference.

EXAMPLE:

functi on MyFunction(inout bool ean MyRef erenceParaneter){ ...};

/'l MyReferenceParaneter is passed by reference. The actual paranmeter can be read and set
/1 fromw thin the function

functi on MyFunction(out bool ean MyReferenceParaneter){ ...};

/'l MyReferenceParaneter is passed by reference. The actual paranter can only be set
/1 fromw thin the function

5.3.1.2 Parameters passed by value

Actual parametersthat are passed by value may be variables as well as constants, templates etc.

function MyFunction(in tenplate MyTenpl at eType MyVal ueParaneter){ ...};
/1 MyVal ueParaneter is passed by value, the in keyword is optional

5.3.2 Formal and actual parameter lists

The number of dements and the order in which they appear in an actua parameter list shal be the same as the number
of dements and their order in which they appear in the corresponding formal parameter list. Furthermore, the type of
each actual parameter shall be compatible with the type of each corresponding formal parameter.

EXAMPLE:

// A function definition with a formal paranmeter 1|ist
function MyFunction(integer Formal Par1l, bool ean Formal Par2, bitstring Fornal Par3) { ...}

/1 A function call with an actual paranmeter |ist
MyFunction(123, true,'1100' B);

53.3 Empty formal parameter list

If theformal parameter list of a parameterizable TTCN-3 language e ement that isfunction-like (i.e., f uncti on,
testcase, signature, nanmed alt orexternal function)isempty then the empty parentheses shall be
included both in the declaration and in the invocation of that element. In all other cases the empty parentheses shall be
omitted.

ETSI

21 ETSI ES 201 873-1 V1.1.2 (2001-06)

EXAMPLE:

/1 A function definition with an enpty paranmeter list shall be witten as
function MyFunction(){ ...}

/1 Arecord definition with an enpty paranmeter list shall be witten as
type record MyRecord { ...}

5.3.4 Nested parameter lists

Generally, all parameterized entities specified as an actual parameter shall have their own parametersresolved in the
actual parameter list.

EXAMPLE:

/1 Gven the nmessage definition
type record MyMessageType
{

i nt eger fieldl,
charstring field2,
bool ean field3

}

/1 A message tenplate mght be
tenpl ate MyMessageType MyTenpl ate(i nteger MyVal ue) : =

{
fieldl : = MyVal ue,
field2 := pattern "abc*xyz",
field3 := true

}

/1 A testcase paraneterized with a tenplate mght be
testcase TCO01(tenpl ate MyMessageType RxMsg) runs on PTCl system TSl

M/PCO. recei ve(RxMsg) ;
}

// When the test case is called in the control part and the paraneterized tenplate is
/1 used as an actual paraneter, the actual paraneters for tenplate nust be provided
control

TCOO1(My Tenpl at e(7)) :

54 Scope rules
TTCN-3 provides five basic units of scope:
a) modules;
NOTE: Thereareadditiona scoping rulesfor groups (see clause 7.3.1).
b) control part of amodule;
¢) functions;
d) test cases,
€) statement blocks within control, functions and test cases.

Each unit of scope consists of (optional) declarations plus some form of (optional) functional description. All units of
scope, except modules, are hierarchical, with each level of hierarchy defining its own local scope. Declarationsin a
higher level of scope are visible to the lower levels (within the same hierarchy of scope). Declarationsin alower level
of scope are not visible to those in a higher scope.

ETSI

22 ETSI ES 201 873-1 V1.1.2 (2001-06)

EXAMPLE:
nodul e MyModul e
;:onst integer MyConst := 0; // MyConst is visible to MyBehavi our A and MyBehavi our B
iuncti on MyBehavi our A()

const integer A :=1; /1 The constant Ais only visible to MyBehavi our A

}

functi on MyBehavi our B()
{ .

const integer B := 1; /1 The constant B is only visible to MyBehavi ourB

54.1 Scope and overloading of identifiers

TTCN-3 does not support overloading of identifiersi.e, al identifiersin the same scope hierarchy shall be unique. This
means that a declaration in alower level of scope shall not re-use the same identifier as a declaration in ahigher level of
scope (and in the same scope hierarchy).

EXAMPLE:
nodul e MyModul e
{ :
const integer A :=1;

lluncti on MyBehavi our A()

{ ;:onst integer A:=1; // Is NOT allowed
if(.)
t i:onst boolean A := true; // |s NOT allowed
}

}

}

// The following IS allowed as the constants are not declared in the same scope hierarchy
// (assuming there is no declaration of A in nodul e header)
functi on MyBehavi our A()

{ ;:onst integer A :=1;
, :

functi on MyBehavi our B()

{ ;:onst integer A :=1;
) :

54.2 Scope of formal parameters
The scope of the formal parametersin a parameterized |language element (e.g., in afunction call) shall berestricted to
the definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That isthey

follow the normal scope rules (see clause 5.4). Therules of identifier overloading (see clause 5.4.1) shall also apply to
formal parameters.

5.5 Identifiers and keywords

TTCN-3 identifiers are case sensitive and TTCN-3 keywords shall be written in all lowercase | etters (see annex A).

ETSI

23 ETSI ES 201 873-1 V1.1.2 (2001-06)

6 Types and values

TTCN-3 supports anumber of predefined basic types. These basic types include ones normally associated with a
programming language, such asi nt eger, bool ean and string types, aswell as some TTCN-3 specific ones such as
obj i d andverdi ctt ype. Structured types such asr ecor d types, set typesand enuner at ed types can be
constructed from these basic types.

Special types associated with configurations such asaddr ess, port and conmponent may be used to define the
architecture of the test system (see clause 21).

The TTCN-3 types are summarized in table 3.

Table 3: Overview of TTCN-3 types

Class of type Keyword Sub-type
Basic types integer range, list
char range, list
universal char range, list
float list
boolean list
objid list
verdicttype list
Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring list, length
universal charstring list, length
User-defined structured types record list
record of list
set list
set of list
enumerated list
union list
Special configuration types address
port
component

6.1 Basic types and values

TTCN-3 supports the following basic types:
a) i nt eger: atypewith distinguished values which are the positive and negative whole numbers, including zero.

Values of integer type shall be denoted by one or more digits; thefirst digit shall not be zero unlessthevalueis
0; the value zero shall be represented by a single zero.

b) char : atype whose distinguished values are characters from 1 SO/IEC 646 [5].

Values of thetype char may be given enclosed in double quotes () or calculated using a predefined conversion
function with the positive integer value of their encoding as argument.

An order among the values of type char isdefined by the integer value of their encoding, i.e., the relational
operators==, <, >, | =, >= and <= can be used to compare values of type char .

¢) uni versal char :atypewhose distinguished values are single characters from 1SO/IEC 10646 [6].

Values of thetypeuni ver sal char may be given enclosed in double quotes (*) or calculated using a
predefined conversion function with the positive integer value of their encoding as argument.

An order among the values of type char isdefined by the integer value of their encoding, i.e., therelational
operators==, <, >, | =, >= and <= can be used to compare values of typeuni ver sal char.

ETSI

24 ETSI ES 201 873-1 V1.1.2 (2001-06)

d) f1 oat : atypeto describe floating-point numbers.

e

f)

Floating point numbers are represented as. <manti ssa>* <base> <®¥onent>

Where <mantissa> a positive or negative integer, <base> apositive integer (in most cases 2, 10 or 16) and
<exponent> a positive or negative integer.

The floating-point number representation isrestricted to a base with the value of 10. Floating point values can be
expressed by using either:

« thenormal notation with adot in a sequence of numberslike, 1.23 (which represents 123*107?), 2.783 (i.e.,
2783*10°) or -123.456789 (which represents -123456789*10°); or

« by two numbers separated by E where the first number specifies the mantissa and the second specifies the
exponent, for example 12.3E4 (which represents 12.3* 10%) or -12.3E-4 (which represents -12.3*10°).

bool ean: atype consisting of two distinguished values.
Values of boolean type shall bedenoted by t r ue and f al se.

obj i d: atype whose distinguished values are the set of all object identifiers allocated in accordance with the
rules of [7], [8], [9] and [10]. For example:

{itu-t(0) identified-organization(4) etsi(0)}
or alternatively {itu-t identified-organization etsi}
or dternatively { 04 0}

g) verdi cttype: atypefor usewith test verdicts consisting of 4 distinguished values.

Valuesof ver di ct t ype shall be denoted by pass, fai | ,i nconc,none anderror.

6.1.1 Basic string types and values

TTCN-3 supports the following basic string types:

NOTE: Thegeneral term string or string typein TTCN-3 refersto bi t st ri ng, hexstring, octet stri ng,

a)

b)

0

charstring anduni versal charstring.
bi t st ri ng: atypewhose distinguished values are the ordered sequences of zero, one, or more hits.

Values of typebi t st ri ng shall be denoted by an arbitrary number (possibly zero) of zeros and ones, preceded
by asingle quote (') and followed by the pair of characters'B. For example:

'01101'B

hexst ri ng: atype whose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

Values of type hexst ri ng shall be denoted by an arbitrary number (possibly zero) of the hexadecimal digits:
123456789ABCDEF

preceded by a single quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using ahexadecimal representation. For example:

'‘ABO1D'H

oct et stri ng: atype whose distinguished values are the ordered sequences of zero or a positive even number
of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight hits).

Values of typeoct et st ri ng shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits.

ETSI

25 ETSI ES 201 873-1 V1.1.2 (2001-06)

123456789ABCDEF

preceded by a single quote (') and followed by the pair of characters'O; each hexadecimal digit isused to
denote the value of a semi-octet using a hexadecimal representation. For example:

'FF96'O

d) charstri ng: aretypes whose distinguished values are zero, one, or more characters from | SO/IEC 646 [5].
The character string type preceded by the keyword uni ver sal denotes types whose distinguished values are
zero, one, or more characters from | SO/IEC 10646 [6].

Valuesof char st ri ng typeand uni ver sal char st ri ng type shall be denoted by an arbitrary number
(possibly zero) of characters from the relevant character set, preceded and followed by double quote ().

In cases whereit is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters. For example,
""abed"" representsthe literal string "abed".

6.1.2 Accessing individual string elements

Individual dementsin a string type may be accessed using an array-like syntax. Only single e ements of the string may
be accessed.

Units of length of different string type elements areindicated in table 4.

Indexing shall begin with the value zero (0). For example:
/1 Gven
MyBitString := '11110111" B;
// Then doi ng
MBitString[4] :='1'B;
// Results in the bitstring '11111111'B

6.2 User-defined sub-types and values

User-defined types shall be denoted by the keyword t ype. With user-defined typesit is possible to make sub-types
(such aslists, ranges and length restrictions) on i nt eger and the various string types.

6.2.1 Lists of values

TTCN-3 permitsthe specification of alist of distinguished values of any given type aslisted in table 3. The valuesin
the list shall be of the base type and shall be atrue subset of the values defined by the base type. The subtype defined by
thislist restricts the allowed values of the subtype to those values in thelist. For example:

type bitstring MListOFBitStrings ('01'B, '10'B, '11' B);

6.2.2 Ranges

TTCN-3 permits the specification of arange of values of typei nt eger, char anduni versal char (or
derivations of these types). The subtype defined by this range comprises restricts the allowed values of the subtype to
the values in the range including the lower boundary and the upper boundary. For example:

type integer MylntegerRange (0 .. 255);

6.2.2.1 Infinite ranges

In order to specify an infinite integer range, the keyword i nf i ni t y may be used instead of a value indicating that
thereisno lower or upper boundary. The upper boundary shall be greater than or equal to the lower boundary. For
example:

type integer MylntegerRange (-infinity .. -1); // Al negative integer nunbers

NOTE: The'value for infinity isimplementation dependent. Use of this feature may lead to portability problems.

ETSI

26 ETSI ES 201 873-1 V1.1.2 (2001-06)

6.2.2.2 Mixing lists and ranges

For values of typei nt eger, char anduni ver sal char (or derivations of these types) it is possible to mix lists
and ranges. For example:

type integer MylntegerRange (1, 2, 3, 10 .. 20, 99, 100);

6.2.3 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are of different
complexity depending on the string type with which they are used. In al cases, these boundaries shall evaluate to
non-negativei nt eger values (or derived i nt eger values). For example:

type bitstring MyByte | ength(8); /'l Exactly length 8
type bitstring MyByte length(8 .. 8); /'l Exactly length 8
type bitstring MyNi bbl eOrByte length(4 .. 8); /1 Mnimumlength 4, maximum |l ength 8

Table 4 specifies the units of length for different string types.

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword i nf i ni ty may also be used to indicate that thereisno upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.3 Structured types and values

Thet ype keyword is also used to specify structured types such asr ecor d types, r ecor d of types, set types, set
of types, enuner at ed typesand uni on types.

Values of these types may be given using an explicit assignment notation or a short-hand initializer. For example:

const MyRecordType MyRecordVal ue: =

fieldl := '11001'B,

field2 := true,

field3 := "A string"
/1 O

const MyRecordType MyRecordVal ue: = {'11001'B, true, "A string"}

It isnot allowed to mix the two value notations in the same (immediate) context. For example:

/1 This is disallowed
const MyRecordType MyRecordVal ue: = { Myl ntegerValue, field2 :=true, "A string"}

6.3.1 Record type and values

TTCN-3 supports ordered structured types known asr ecor d. The elements of arecord type may be any of the base
types or user-defined types such as other records, sets or arrays. The values of arecord shall be compatible with the
types of therecord fields. The element identifiersare local to the record and shall be unique within therecord. A
constant that is of record type shall contain no variables (including module parameters) as field values, either directly or
indirectly.

type record MyRecordType

i nt eger fieldl,
MyQt her St ruct fiel d2 optional,
charstring field3

ETSI

27 ETSI ES 201 873-1 V1.1.2 (2001-06)

type record MyQt herstruct Type
bitstring fieldl,
bool ean field2
}
Records may be defined with no fields (i.e., as empty records). For example:
type record MyEnmptyRecord { }
A record valueisassigned on an individual e ement basis. For example:

var integer MylntegerValue:= 1;

var MyRecordType MyRecordVal ue: =

{
fieldl : = Myl ntegerVal ue,
field2 := MyQ her Recor dVal ue,
field3 := "A string”
}
const MyQt her RecordType MyQt her Recor dVal ue: =
fieldl := '11001'B,
field2 := true

}
Or using an initializer. For example:
MyRecor dVal ue: = { Myl nt eger Val ue, {'11001'B, true}, "A string"};
For optional fields it allowed to omit the value using the omit parameter symbol. For example:
MyRecor dVal ue: = { Myl ntegerValue, - , "A string"};
// Note that this is the sane as witing, i.e., the value of field2 is undefined

MyRecor dVal ue. fieldl : = Myl nt eger Val ue;
MyRecordVal ue.field3 := "A string"

6.3.1.1 Referencing nested record fields

Elements of nested records are referenced by Recor dl d. El enent | d pairs. For example:
MyVarl : = MyRecordl. WEl enent 1;

/1 1f arecord is nested then the reference may look like this
MyVar2 := MyRecordl. WEl enent 1. MyRecor d2. MyEl enent 2;

6.3.1.2 Optional elements in a record

Optional dementsin ar ecor d shall be specified using theopt i onal keyword. For example:
type record MyMessageType

Fi el dTypel field1,
Fi el dType2 field2 optional,

Fi el dTypeN fi el dN
}

6.3.2 Set type and values

TTCN-3 supports unordered structured types known as set . Set types and values are similar to records except that the
ordering of the set fieldsis not significant. For example:

type set MySet Type

{
i nt eger fieldl,
charstring field2

}
Theinitiaizer notation for setting values shall not be used for values of set types.

ETSI

28 ETSI ES 201 873-1 V1.1.2 (2001-06)

6.3.2.1 Optional elements in a set

Optional dementsin aset shall be specified using theopt i onal keyword.

6.3.3 Records and sets of single types

TTCN-3 supports the specification of records and sets whose elements are dl of the same type. These are denoted using
the keyword of . These records and sets do not have ement identifiers and can be considered smilar to an ordered
array and an unordered array respectively.

Thel engt h keyword is used torestrict lengthsof r ecor d of andset of . For example:

type record of |ength(10) integer MyRecordOf Type; // is a record of a maxi mum of 10 integers
type set of boolean MySetOf Type; // is an unlimted set of bool ean val ues

type record of length(10) charstring StringArray |ength(10);

/1 is a record of a maximum of 10 strings each with a maxi mum|ength of 10 characters

Thevaluenotation for record of andset of isthesame asthe value notation for arrays (see clause 6.4).

6.3.4 Enumerated type and values

TTCN-3 supports enumerated types. Enumerated types are used to modd types that take only a distinct named set of
values. Operations on enumerated types shall only use the named identifiers and are restricted to assignment,
equivalence and ordering operators.

Each named value may optionally have an associated integer value, which is defined after the name in parenthesis.
These values are only used by the system to allow the use of relational operators. If no explicit integersare given the
ordering is assumed to start with zero. For example:

type enunerated MyEnunType

Monday, Tuesday, Wednesday, Thursday, Friday
}

/1 A valid instantiation of MyEnuniType woul d be
var MyEnuniType Today := Monday;

var MyEnuniType Tonorrow : = Tuesday;

// and the statenent Today < Tonorrow is true

6.3.5 Unions

TTCN-3 supportsuni on types. Union types are similar to records except that only one of the specified fields will ever
be present in an actual union value. Union types are useful to model a structure which can take one of a finite number of
known types. For example:

type uni on MyUni onType
{
i nt eger nunber,

charstring string

}

// A valid instantiation of MyUni onType woul d be
var MyUni onType age;
age. nunber := 34;
Theinitiaizer notation for setting values shall not be used for values of uni on types.

Theopt i onal keyword shall not be used with union types.

ETSI

29 ETSI ES 201 873-1 V1.1.2 (2001-06)

6.4 Arrays

In common with many programming languages, arrays are not considered to be typesin TTCN-3. Instead, they may be
specified at the point of a variable declaration. For example:

var integer MyArray[3]; // Instantiates an integer array of 3 elements with the index O to 2

The values of array elements shall be compatible with the corresponding variable declaration. Values may be assigned
individually or all at once. For example:

M/Array[0] := 10;
M/Array[1] : = 20;
MyArray[2] : = 30;

/1 or using an initializer
M/Array: = {10, 20, 30};

Array indexes are expressions which shall evaluateto positivei nt eger values, including the value zero. By default,
indexing of TTCN-3 arrays shall start with the digit O (zero).

Array dimensions shall be specified using constant expressions which shall evaluate to a positivei nt eger value.
Array dimensions may also be specified using ranges. In such cases the lower and upper values of the range define the
lower and upper index values. For example:

var integer MyArray[1l .. 5]; /1 Instantiates an integer array of 5 elenents
/1 with the index 1 to 5
/'l Lowest index

MyArray[1] := 10
=5 /1 Hi ghest index

MyArray[5] : 0

i
i

Arrays of record of types allow the possibility to specify multi-dimensional arrays. For example:

/1 Gven

type record MyRecordType

{
i nteger fieldl,
MyQt her St ruct field2,
charstring field3

}

/1 An array of MyRecordType coul d be

var MyRecordType MyRecor dArray[10];

/1l Areference to a particular elenent would look like this
MyRecordArray[1].fieldl := 1;

6.5 Recursive types

Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensurethat all typerecursion is
resolvable and that no infinite recursion occurs.

6.6 Type parameterization

Type parameterization allows dummy type identifiers which act as placeholders for any type. This means that a type can
be left open by the TTCN-3 specifier aslong asit is resolvable at compile-time.

NOTE: Thisisageneralization of the PDU meta-type concept of TTCN-2.

The actual type is only known when the type parameter is actually used. For example:

type record MyRecordType(MyMet aType)
{

bool ean fieldl,

MyMet aType field2 // MyMetaType is not of a particular type
}
var MyRecordType(i nteger) MyRecordVal ue : =

fieldl := true,

field2 := 123 /1 MyMetaType is now of type integer

ETSI

30 ETSI ES 201 873-1 V1.1.2 (2001-06)

6.7 Type compatibility

TTCN-3isnot strongly typed but the language does require type compatability. Variables, constants, templates etc.
have compatible typesif they resolve to the same base type and, in the case of assignments, matching etc., no
sub-typing (e.g., ranges, length restrictions) isviolated.

For example:

/1 Gven
type integer MyInteger(1l .. 10);

var integer x;
var Mylnteger vy,

/1 Then
X :=20; // is a valid assignnment

y :=20; // is NOT a valid assignment because 20 is not in the range of y

y :=5; // is a valid assignnent

x :=y; /Il is a valid assignnent, because the value of y is in the range of x

y :=Xx; /] is NOT valid assignment, because the value of x is not in the range of y
x :=5; /] is a valid assignnent

y :=Xx; // is a valid assignnent, because the value of x is nowin the range of y

6.7.1 Type conversion

If it is necessary to convert values of one type to values of another type, where the types are not derived from the same
base type, then either one of the predefined conversion functions defined in annex D or a user defined function shall be
used. For example:

// To convert an integer value to a hexstring value use the predefined function int2hex
MyHstring := int2hex(123, 4);

7 Modules

The principal building blocks of TTCN-3 are modules. For example, a module may define a fully executable test suite
or just alibrary. A module consists of a (optional) definitions part, and a (optional) module control part.

NOTE: Theterm test suite is synonymous with a complete TTCN-3 module containing test cases and a control
part.

7.1 Naming of modules

Module names are of the form of a TTCN-3 identifier followed by an optional object identifier.

NOTE: Themoduleidentifier istheinformal text name of the module.

7.2 Parameterization of modules

Themodul e parameter list defines a set of values that are supplied by the test environment at run-time. During test
execution these values shall be treated as constants. For example:

nodul e MyPar anet eri zedModul e(i nteger TS Parl, boolean TS Par2, hexstring TS Par3) { ...}

NOTE: This provides functionality similar to TTCN-2 test suite parametersthat provide PICS and PIXIT values
to the test suite

ETSI

31 ETSI ES 201 873-1 V1.1.2 (2001-06)

7.2.1 Default values for module parameters

For cases where actua module parameter values are not provided by the test environment at run-time, it is allowed to
specify default values for module parameters. This shall be done by an assignment in the module parmeter list. For
example:

nodul e MyModul eDef aul t Paraneter (i nteger Parl := 1234, boolean Par2 := false) { ...}

7.3 Module definitions part

The module definitions part specifies the top-level definitions of the module. These definitions may be used el sewhere
in the module, including the control part. Those language elements which may be defined in a TTCN-3 module are
listed in table 1. The module definitions may be imported by other modules.

EXAMPLE:

nodul e MyModul e
{ /1 This nmodul e contains definitions only

éonst integer MyConstant := 1;
type record MyMessageType { ...}

l;uncti on TestStep(){ ...}
}

Declarations of dynamic language elementssuch as var orti mer shall only be madein the control part, test cases or
functions.

NOTE: TTCN-3 does not support the declaration of variablesin the modul e definitions part, only in the control
part. Thismeansthat global variables cannot be defined in TTCN-3.

7.3.1 Groups of definitions

In the modul e definitions part definitions can be collected in named groups. A group of declarations can be specified
wherever asingle declaration is allowed. Groups may be nested i.e., groups may contain other groups. Thisalows the
test suite specifier to structure, among other things, collections of test data or functions describing test behaviour.

Grouping isdoneto aid readability and to add logical structureto thetest suiteif required. This means that all
identifiers of the declarations in the set of groups (including any nested groups) at any given level of grouping shall be
unique. In other words, groups and nested groups have no scoping except in the context of any attributes given to the
group by an associated wi t h statement. In such cases, awi t h statement on an outer group is overridden by awi t h
statement on an inner group.

EXAMPLE:

/1 A collection of definitions
group MyGroup
{

const integer MyConst:= 1;
iype record MyMessageType { ...}

/1 A group of test steps
group MyTest StepLi brary

group MyGroupl
{

function MyTest Stepll() { ...}
function MyTest Stepl12() { ...}

%unction MyTest Stepin() { ...}
}
group MyGroup2
{

function MyTest Step21() { ...}
function MyTest Step22() { ...}

ETSI

7.4

32 ETSI ES 201 873-1 V1.1.2 (2001-06)

function MyTestStep2n() { ...}

Module control part

The module control part describes the execution order (possibly repetitious) of the actual test cases. A test case shall be
defined in the module definitions part and called in the control part.

EXAMPLE:

nodul e MyTest Suite

{

7.5

/1 This nodule contains definitions ...

;:onst integer MyConstant := 1;
type record MyMessageType { ...}
tenpl ate MyMessageType MyMessage := { ...}

function MyFunctionl() { ...}
function MyFunction2() { ...}

iestcase MyTest casel() runs on MyMICType { ...}
testcase MyTestcase2() runs on MyMICType { ...}

/1 ... and a control part so it is executable
control

{

var bool ean MyVariable; // Local control variable

MyTest Casel(); // sequential execution of test cases
MyTest Case2();

Importing from modules

It is possible to re-use definitions specified in different modules using the i npor t statement. TTCN-3 has no explicit
export construct thus, by default, all module definitions in the module definitions part may be imported. An i npor t
statement can be used anywhere in the modul e definitions part. It shall not be used in the control part.

If an imported definition has attributes (defined by means of awi t h statement) then the attributes shall also be
imported.

NOTE: If themodule has global attributes they are associated to definitions without these attributes.

EXAMPLE:

nodul e MyModul eA

{

// This nodul e contains definitions and inported definitions

izonst integer MyConstant := 1;

import all from MyModul eB; // Scope of the inported definitions is global to MyMdul eA
type record MyMessageType { ...}

%uncti on MyBehavi our C()

{
const integer MyConstant := 2;
// inmport cannot be used here
!
control
{ // inmport cannot be used here
}

ETSI

33 ETSI ES 201 873-1 V1.1.2 (2001-06)

7.5.1 Rules on using Import
On using import the following rules shall be applied:

a) only top-leve definitionsin the module may be explicitly imported. Definitions which occur at alower scope
(e.g., local constants defined in a function) shall not be imported;

b) by default, all definitions dependent on other definitionseg., r ecor d types, areimported together with all the
definitions on which they depend. If it is wished not to import these dependenciesthe nonr ecur si ve
directive may be used;

¢) groups of definitions can also be imported. However, groups are only used for structuring purposes and do not
have scope units. Therefore, it isallowed to import sub-groupsi.e., agroup which is defined within another
group.
7.5.2 Importing single definitions

Single definitions may be imported. For example:

inmport type MyType from MyMdul eC;

7.5.3 Importing all definitions of a module

The entire contents of a module definitions part (but not the actual module itself) may be imported, for example:

import all from MyMdul e;

7.5.4 Importing groups

Groups may be imported, for example:

import group MyGroup from MyModul e;

Sub-groupsi.e., groups which are defined within another group are also imported by this statement.

7.5.5 Importing definitions of the same kind

Blocks of the same kind of definition may be imported, for example:

import all tenplate from MyModul e;

7.5.6 Recursive import of complex definitions

By default, recursive definitionsi.e., definitions that refer to other definitions, areimplicitly imported by thei npor t
statement. Examples of recursive definitionsarer ecor d types together with their component types or functions that
call other functions, for example:

import type MyType from MyMdul eC;

All definitionsimplicitly imported are visible at the top-level of scope and can be used subsequent to the import
statement.

Note that local definitions within surrounding definitions e.g., local constant declarationswithin afunction will never be
visible.

ETSI

34 ETSI ES 201 873-1 V1.1.2 (2001-06)

EXAMPLE:

/1 Gven

nodul e MyModul eA
{ :
function MyBehaviourB() { ...}
functi on MyBehavi our A()

ivyBehavi ourB();

const integer Local Const:= 1000;

}

/1 Then
nodul e MyModul eB

{ :
inmport function MyBehavi our A from MyModul eA;

// WIIl also inport and make visi bl e MyBehavi our B. Constant Local Const will still
// be enbedded in MyBehavi our A and will not be visible (outside of MyBehaviourA).

If definitionsimported from one module depend on definitions in a further modul e then the definitions of the further
module are imported too i.e., import shall implicitly import dependent definitions from the third-party module. Thisis
due to the rule that an imported definition is handled in the same manner as a definition that is defined in the module
itself.

If it iswished to inhibit recursive importsthenonr ecur si ve directive shall be used. For example:

inmport type MyType from MyModul eC nonrecursive;

7.5.7 Handling name clashes on import

All TTCN-3 modules shdl have their own name space in which al definitions shall be uniquely identified. Name
clashes may occur due to import e.g., import from different modules, import of groups or import of recursive
definitions. Name clashes shall be resolved by prefixing the imported definition (which causes the name clash) by the
identifier of the module from which it isimported. The prefix and the identifier shall be separated by a dot (.).

In cases where there are no ambiguities the prefixing need not always be present when the imported definitions are
used.

EXAMPLE:
nodul e MyModul eA
{ :
type bitstring MyTypeA;
import type MyTypeA from SomeMbdul eC;, // Where MyTypeA is of type character string
import type MyTypeB from SomeMbdul eC;, // Where MyTypeB is of type character string
izontrol
{ :
var SomeMbdul eC. yTypeA MyVarl : = "Test String"; // Prefix nmust be used
var MyTypeA MyVar2 := '10110011'B; // This is the original MTypeA
;/ar MyTypeB MyVar3 : = "Test String"; // Prefix need not be used ...
var SomeMbdul eC. yTypeB MyVar3 : = "Test String"; // ..but it can be if w shed
}
}

NOTE: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitionsin the different modules are identical. For example, importing atype which is
already defined locally, even with the same name, would lead to two different types being available in the
module.

ETSI

35 ETSI ES 201 873-1 V1.1.2 (2001-06)

7.5.8 Handling multiple references to the same definition

Theuseof i nport on single definitions, groups of definitions, definitions of the same kind etc. may lead to situations
where the same definition is referred to more than once. In such cases the definition shall be imported only once.

NOTE: The mechanismsto resolve such ambiguities e.g., overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 toals.

7.5.9 Import and module parameters

If an imported definition uses a module parameter then this parameter shall aso be included in the module parameter
list of theimporting module.

7.5.10 Import definitions from non-TTCN modules

The language keyword is used to denote cases where type definitions are imported from non-TTCN modules. For
example:

I mport type MyASN1Type from MyASN1Modul e | anguage "ASN. 1: 1997";
By default, the languageis TTCN-3. For example:
inmport type MyType from MyModul e;

Il is the same as
import type MyType from MyModul e | anguage "TTCN- 3";

8 Test configurations

TTCN-3 allows the (dynamic) specification of concurrent test configurations (or configuration for short). A
configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system.

TTCN Test system
MTC | < > PTC,
> | PTC, |——— T
+ Abstract Test System Interface v ¢
J
Real Test System Interface

SUT

Figure 2: Conceptual view of a typical TTCN-3 test configuration

Within every configuration there shall be one (and only one) main test component (MTC). Test components that are not
MTCsare called parallel test componentsor PTCs. The MTC shall be created automatically at the start of each test case
execution. The behaviour defined in the body of thetest case shall execute on this component. During execution of a
test case other components can be created dynamically by the explicit use of the cr eat e operation.

Test case execution shall end when the MTC terminates. All other PTCs aretreated equally i.e., thereisno explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC.

ETSI

36 ETSI ES 201 873-1 V1.1.2 (2001-06)

Communication is effected between the components within the test system and between the components and the test
system interface via communication ports.

Test component types and port types, denoted by the keywords conponent and por t , shal be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
creat e andconnect operationswithin thetest case behaviour. The component ports are connected to the ports of
the test system interface by means of the map operation (see clause 21.2).

8.1 Port communication model

Test components can be connected with other components and with the test system interface. There are no restrictions
on the number of connections a component may have, but a component shall not connect to itself. One-to-many
connections are allowed.

Test components are connected via their portsi.e., connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port.

NOTE: While TTCN-3 portsareinfinitein principlein ared test system they may overflow. This should be
treated asatest case error (see clause 24.2.1).

>]]]]]L

Figure 3: The TTCN-3 communication port model

8.2 Abstract test system interface

TTCN-3is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object is known asa
System Under Test or SUT. In the minimal casethe IUT and the SUT are equivalent. In the present document the term
SUT isused in a genera way to mean either SUT or [UT.

In ared test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, awell defined (but abstract) test system interface is associated with
each test case. A test system interface definition isidentical to a component definition i.e, itisalist of all possible
communication ports through which the test case is connected to the SUT.

8.3 Defining communication port types
Ports facilitate communication between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being either message-based
or procedure-based or mixed. Thisshall be denoted by the keyword nessage or the keyword pr ocedur e within the
associated port type definition.

Ports are directional. The directions are specified by the keywordsi n (for thein direction), out (for the out direction)
and i nout (for both directions). Each port type definition shall have one or more listsindicating the allowed collection
of (message) types and/or procedures together with the allowed communication direction. For example:

/1 Message-based port which allows types MsgTypel and MsgType2 to be received at, MsgType3 to be
/1 sent via and any integer value to be send and received over the port

type port MyMessagePort Type nessage

{

in MsgTypel, MsgType2;
out MsgType3;
i nout i nt eger

}

/1 Procedure-based port which allows the rembte call of the proceduress Procl, Proc2 and Proc3.

ETSI

37 ETSI ES 201 873-1 V1.1.2 (2001-06)

/1 Note that Procl, Proc2 and Proc3 are defined as signatures
type port MyProcedurePort Type procedure

out Procl, Proc2, Proc3

}

NOTE: Theterm messageis used to mean both messages as defined by templates and actua vauesresulting from
expressions. Thus, thelist restricting what may be used on a message-based port is smply alist of type
names.

Using thekeyword al | in one of thelists associated to a port type allows all types and/or all procedure signatures
defined in the module to be passed over that communication port. For example:

/'l Message-based port which allows any value of all built-in types and user-defined types to be
/1 transferred in both directions over this port
type port MyAl | MesssagesPort Type nessage

i nout al |

8.3.1 Mixed ports

It is possible to define a port as allowing both kinds of communication. Thisis denoted by the keyword ni xed. This
means that the lists for mixed ports will aso be mixed and include both, sgnatures and types. No separation ismade in
the definition.

/1 Mxed port, defining a nessage-based and a procedure-based port with the sane name. The in,
// out and inout lists are also mxed: MgTypel, MsgType2, MsgType3 and integer refer to the

/1 message-based part of the mxed port and Procl, Proc2, Proc3, Proc4 and Proc5 refer to the
/1 procedure-based port.

type port MyM xedPort Type m xed

in MsgTypel, MsgType2, Procl, Proc2;
out MsgType3, Proc3, Proc4;
i nout integer, Proch;

}

// Mxed port, all types and all signatures defined in the nodule can be used at this port to
// communicate with either the SUT or other test components */

type port MyAl | M xedPort Type m xed

i nout al |

}

A mixed port in TTCN-3 isdefined as a shorthand notation for two ports, i.e., a message-based port and a
procedure-based port with the same name. At run-time the distinction between the two ports is made by the
communication operations.

Operations used to control ports (see clause 21) i.e, st art, st op andcl ear shal perform the operation on both
queues (in arbitrary order) if called with an identifier of amixed port.

ETSI

38 ETSI ES 201 873-1 V1.1.2 (2001-06)

8.4 Defining component types

The conponent type defines which ports are associated with a component. These definitions shall be madein the
module definitions part. The port names in a component definition arelocal to that component i.e., another component
may have ports with the same names. Ports of the same component shall all have unique names. However, this shall not
be taken to mean that there is any connection between the components over these ports.

EXAMPLE:

PCO2 PCO3
MyMTC MyPTC [r—
/I of MyMTCType I of MyPTCTYpe |

PCO4

PCO1 PCO1

Figure 4: Typical components

type conponent MyMICType

port MyMessagePort Type PCOL
}

type conponent MyPTCType
port MyMessagePort Type PCOL, PCO4,

port MyProcedur ePort Type PCO2;
port MyAl | MesssagesPort Type PCO3

8.4.1 Declaring local variables and timers in a component

It is possible to declare variables and timerslocal to a particular component. For example:
type conponent MyMICType
var integer MyLocal I nteger;

timer MyLocal Ti ner;
port MyMessagePort Type PCOL

}

These declarations are visible to dl functionsthat run on the component. This shall be explicitly stated using ther uns
on keyword (see clause 16).

Component variables and timers are associated with the component instance and follow the scope rules defined in
clause 5.1. Each new instance of a component will thus haveits own set of variables and timers as specified in the
component definition (including any initial values, if stated).

8.4.2 Defining components with arrays of ports

It is possible to define arrays of ports in component type definitions (also see clause 21.9). For example:
type conponent My3pcoConpType
{

port MyMessagel nterfaceType PCJ 3]
/1 Defines a conponent type which has an array of 3 ports.

ETSI

39 ETSI ES 201 873-1 V1.1.2 (2001-06)

8.5 Addressing entities inside the SUT

An SUT may consist of several entities which have to be addressed individually. The address data type is atype for use
with port operations to address SUT entities. The actual datarepresentation of addr ess isresolved either by an
explicit type definition within the test suite or externally by thetest system (i.e. the addr ess typeis|eft asan open
type within the TTCN-3 specification). This allows abstract test cases to be specified independently of any real address
mechanism specific to the SUT.

Explicit SUT addresses shall only be generated insde a TTCN-3 moduleif the type is defined inside the module. If the
typeisnot defined inside the module explicit SUT addresses shall only be passed in as parameters or be received in
message fields or as parameters of remote procedure calls.

In addition, the special valuenul | isavailableto indicate an undefined address, e.g., for theinitialization of variables
of the address type.

EXAMPLE:

/'l Associates the type integer to the open type address
type integer address;

/} new address variable initialized with null
var address MySUTentity := null;

/'l receiving an address value and assigning it to variable MySUTentity
PCO. recei ve(address: *) -> value MySUTentity;

/} usage of the received address for sending tenplate M/Result
PCO send(M/Result) to MySUTentity;

/1 usage of the received address for receiving a confirmation tenplate
PCO. recei ve(M/Confirmation) from MySUTentity;

8.6 Component references

Component references are unique references to the test components created during the execution of atest case. This
unique component reference is generated by the test system at the time when a component is created, i.e., a component
referenceistheresult of acr eat e operation (see clause 21.1). In addition component references are returned by the
predefined functions sy st em(returns the component reference to identify the ports of the test system interface), nt ¢
(returns the component reference of the MTC) and sel f (returns the component reference of the component in which
sel f iscalled).

Component references are used in the configuration operationsconnect , map and st art (see clause 21) to set-up
test configurationsand inthef r om t 0 and sender parts of communication operations for addressing purposes (see
clause 22).

In addition, the special valuenul | isavailableto indicate an undefined component reference, e.g., for the initialization
of variables to handle component references.

The actual data representation of component references shall be resol ved externally by the test system. Thisallows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of a test system with respect to the handling and identification of test components.

NOTE: A component reference includes component type information. This means, for example, that avariable
for handling component references must use the corresponding component type name in its declaration.

EXAMPLE:

/1 A conponent type definition

type conponent MyConpType {
port Port TypeOne PCOL;
port Port TypeTwo PCO2

}

// Declaring two variable for the handling of references to conponents of type MyConpType
// and creating a conponent of this type

var MyConpType MyConpl nst := MyConpType. create;

ETSI

40 ETSI ES 201 873-1 V1.1.2 (2001-06)

/'l Usage of component references in configuration operations

/1 allways referring to the conponent created above

connect (sel f: MyPCOL, MyConpl nst: PCOL) ;

map(MyConpl nst : PCO2, syst em Ext PCOL) ;

MyConpl nst . start (MyBehavior(self)); // self is passed as a paraneter to MyBehavi or

/] Usage of conponent references in from and to- clauses
MyPCOL. r ecei ve from MyConpl nst;

WP(I]Q. recei ve(integer:*) -> sender MyConpl nst;

WP(I)L recei ve(MyTenpl ate) from MyConpl nst;

l\/POOQ. send(integer:5) to MyConpl nst;

/1 The follow ng exanpl e explains the case of a one-to-many connection at a Port PCOL

/1 where values of type ML can be received fromseveral conponents of the different types
/1 ConmpTypel, ConpType2 and ConpType3 and where the sender has to be retrieved.

/1 In this case the followi ng scheme may be used:

v;ar ML MyMessage, MyResult;

var MyConpTypel Mylnstl := null;
var MyConpType2 Mylnst2 := null;
var MyConpType3 Mylnst3 := null;
ait {
[1 PCOL.receive(M:*) from MyConpTypel -> val ue MyMessage sender Mylnstl {}
[T PCOL.receive(M:*) from MyConpType2 -> val ue MyMessage sender Mylnst2 {}
[T PCOL.receive(M:*) from MyConpType3 -> val ue MyMessage sender Mylnst3 {}
}
WResuI t := MyMessageHand! i ng(MyMessage) ; /1 sone result is retrieved froma function
i f (MyInstl ! PCOL. send(MyResul t) to Myl nst1};

= null) {
if (MlInst2 !'=null) {PCOL send(M/Result) to Myl nst2};
if (MInst3 !'=null) {PCOL send(M/Result) to Mylnst3};

8.7 Defining the test system interface

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points).

type conponent M| SDNTest Syst eml nterface

port MyBchannel I nterfaceType B1;
port MyBchannel I nterfaceType B2;
port MyDchannel I nt erfaceType D1

}

Generally, a component type reference defining the test system interface is associated with every test case. The ports of
the test system interface are automatically instantiated together with the MTC when the test case execution starts
i.e, when thetest case is called from the control part of the module.

The operation returning the address of the test system interfaceissyst em This can be used to address the ports of the
test system. For example:

map(MyNewConponent : Port 2, system PCOL);

In the case where the MTC is the only component that is instantiated during test execution, atest system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

ETSI

41 ETSI ES 201 873-1 V1.1.2 (2001-06)

9 Declaring constants

Constants can be declared and used in module headers, modul e control, test cases and functions. Constant definitions
are denoted by the keyword const . The value of the constant shall be assigned at the point of declaration. For
example:

1-

const integer MyConstl : ;
true, MyConst3 := fal se;

const bool ean MyConst2 :

The assignment of the value to the constant may be done within the module or it may be done externaly. The latter case
isan external constant declaration denoted by the keyword ext er nal . External constants shall resolve to a value at
compile-time. For example:

external const integer MyExternal Const; // external constant declaration

An externa constant may have an arbitrary type but the type has to be known in the modulei.e., abase type, definedin
the module, or imported from some other module. The mapping of the type to the external representation of an external
constant is again outsi de the scope of the present document. The mechanism of how the value of an external constant is
passed into a modul e is outside the scope of the present document.

10 Declaring variables

Variables are denoted by the keyword var . Variables can be declared and used in module control, test cases and
functions. They shall not be declared or used in amodule header (i.e., global variables are not supported in TTCN-3). A
variable declaration may have an optional initial value assigned to it. For example:

1:

var integer MyVarl : ;
true, MyVar3 := false;

var bool ean MyVar?2 :

Use of uninitidlized variables at runtime shall cause atest case error.

11 Declaring timers

Timers can be declared and used in module contral, test cases and functions. Timers shall not be declared or used in the
modul e definitions part. A timer declaration may have an optional default duration value assigned to it. Thetimer shall
be started with thisvalueif no other valueis specified. Thisvalue shall be of f | oat type where the base unit is
seconds. For example:

timer MyTimerl := 5E-3; // declaration of the tiner MyTinmerl with the default value of 5ns

timer MyTinmer2; // declaration of MyTimer2 without a default timer value i.e., a value has
// to be assigned when the tinmer is started

Thetimer operationsst art, st op, read andt i meout may be used to control timers (see clause 23). For example:

/1 Uses of MyTiner2 mght be
MyTimer2.start(10); // 10 seconds
MyTimer2.start(180); // 3 mnutes

11.1 Timers as parameters

Timers can only be passed by reference to functions and named alternatives. Timers passed into a function or named alt
are known indde the behaviour definition of the function or named alternative.

A timer passed in asreference parameter can be used like any other timer, i.e, it needs not to be declared. A started
timer can also be passed into afunction or named alternative. The timer continues its execution, i.e, it isnot stopped
implicitly. Thereby, possible timeout events can be handled inside the function or named alternative to which the timer
is passed.

ETSI

42 ETSI ES 201 873-1 V1.1.2 (2001-06)

EXAMPLE:

/1 Function definition with a timer in the formal paraneter |ist
functi on MyBehavi our (timer MyTiner)
{ .

M/Ti ner.start;

12 Declaring messages

One of the key elements of TTCN-3 isthe ability to send and receive complex messages over the communication ports
defined by the test configuration. These messages may be those explicitly concerned with testing the SUT or with the
interna co-ordination and control messages specific to the relevant test configuration.

NOTE: In TTCN-2 these messages are the Abstract Service Primitives (ASPs), the Protocol Data Units (PDUS)
and co-ordination messages. The core language of TTCN-3 is generic in the sense that it does not make
any syntactic or semantic distinctions of this kind.

Complex messages may be defined asrecord types (see clause 6.3.1). For example:
type record MyMessageType

Fi el dTypel field1,
Fi el dType2 fiel d2,

Fi el dTypeN fiel dN
}

Messages can, of course, be sub-structured, for example:

// Information element type 1 (IETypel). Simlar declarations for |EType2 to | ETypeN
type record | ETypel

| EFi el dTypel iefieldl,
| EFi el dType2 iefield2,
| EFi el dTypeN iefiel dN

}

/1 A message containing information el enments
type record MyMessageType
{

| ETypel fieldl,
| EType2 fiel d2,

i ETypeN fi el d3

12.1 Optional message fields

By default, all fieldsin a message shall be mandatory. Optional message fields shall be specified using theopt i onal
keyword. For example:

type record MyMessageType

Fi el dTypel field1,
Fi el dType2 field2 optional,

Fi el dTypeN fiel dN

ETSI

43 ETSI ES 201 873-1 V1.1.2 (2001-06)

13 Declaring procedure signatures

Procedure signatures (or signatures for short) are needed for synchronous communication. A procedure may either be
invoked in the SUT (i.e, thetest system performs the call) or invoked in the test system (i.e., the SUT performsthe
cal).

For both procedures called from the SUT and procedures called from the test system the complete procedure
si gnat ur e shall be defined in the TTCN-3 module.

Within thesi gnat ur e definition the parameter lis may include parameter identifiers, parameter types and their
directioni.e, i n, out, ori nout). Note that the direction of the parametersis as seen by the called party rather than
the calling party. For example:
signature MyRemoteProc (in integer Parl, out float Par2, inout integer Par3) return integer;
/1 This defines the renmote procedure MyRenoteProc. MyRenoteProc returns an integer value and

/'l has three paranmeters: one in paranmeter of type integer, one out paraneter of type float
/1 and one inout paraneter of type integer

A procedurecal | will result in the called party performing either ar epl y (thenormal case) or raising an exception.
The actions resulting from an accepted procedure call are defined by the receiving party (see clause 22).

13.1 Omitting actual parameters

Itisalowed to omit actua parameters from asignature actual parameter list. Thisisindicated by representing the
omitted actual parameter at its correct position by using the keyword omit. For example:

ParaneterLi st(Parl, omt, Par3) // Par2 is omtted

NOTE: Thisis often necessary when using procedure signatures in synchronous communication.

13.2 Specifying exceptions

Exceptions are represented in TTCN-3 as values of a specific type, even templates and matching mechanisms can be
used.

NOTE: The conversion of exceptions generated by the SUT into the corresponding type is tool and system
specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included in the Sgnature definition. Thislist defines dl the
possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usually only be distinguished by being represented by specific values of these types).

EXAMPLE:

signature MyRenoteProc (in integer Parl, out float Par2, inout integer Par3) return integer
excepti on(Excepti onTypel, ExceptionType2);

/1 A call of M/RenoteProc may rai se exceptions of type ExceptionTypel or exceptions
/1 of ExceptionType2

ETSI

44 ETSI ES 201 873-1 V1.1.2 (2001-06)

14 Declaring templates

Templates are used to either tranamit a set of distinct values or to test whether a set of received values matches the
template specification.

Templates provide the following possibilities:
a) they areaway to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
¢) they allow matching mechanisms;
d) they can be used with either message-based or procedure-based communications.

Within atemplate values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The type-
based templates are used for message-based communications and the signature templ ates are used in procedure-based
communi cations.

14.1 Declaring message templates

Ingtances of messages with actua values may be specified using templates. A template can be thought of as being a set
of ingtructions to build a message for sending or to match areceived message.

Templates may be specified for any TTCN-3 type defined in table 3 except for the special types (port ,
conponent, address).

// When used in a receiving operation this tenplate will match any integer val ue
tenplate integer Mytenplate := *;
// This template will match only the integer values 1, 2 or 3

tenplate integer Mytenplate := (1, 2, 3);

However, it is anticipated that the most common use will be with records, as shown by the examplesin the following
clauses.

14.1.1 Templates for sending messages

A template used in a send operation defines a complete set of field values comprising the message to be tranamitted
over atest port. At the time of the send operation, the template shall be fully defined i.e., al fields shall resolveto
actual values and no matching mechanisms shal be used in the template fields, neither directly nor indirectly.

EXAMPLE:

// Gven the nessage definition
type record MyMessageType
{

i nt eger fieldl,
charstring field2,
bool ean field3

}

// a message tenplate could be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := 1,
field2 := "My string",
field3 := true

}

// and a correspondi ng send operation could be
MyPCO. send(MyTenpl ate) ;

NOTE: Templates may also be used for exceptionsif the corresponding type has been defined.

ETSI

45 ETSI ES 201 873-1 V1.1.2 (2001-06)

14.1.2 Templates for receiving messages

A template used inar ecei ve operation defines a data template againgt which an incoming message isto be matched.
Matching mechanisms, as defined in annex C, may be used in receive templates. No binding of the incoming values to
the template shall occur.

EXAMPLE:

/1 Gven the message definition
type record MyMessageType
{

i nteger fieldl,
charstring field2,
bool ean field3

}

/1 a message tenplate might be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := 1,
field2 := pattern "abc*xyz",
field3 := true

}

/1 and a corresponding receive operation could be
M/PCO. r ecei ve(MyTenpl at e) ;

14.2 Declaring signature templates

Ingtances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

EXAMPLE:

/] signature definition for a renote procedure
signature RenoteProc(in integer Parl, out integer Par2, inout integer Par3) return integer;

/| exanple tenplates associted to defined procedure signature
tenpl ate RenoteProc Tenpl atel: =

{
Parl := 1,
Par2 := 2,
Par3 := 3
}
tenpl ate RenoteProc Tenpl ate2: =
Parl := 1,
Par2 := *,
Par3 := 3
}
tenpl ate RenoteProc Tenpl ate3: =
Parl := 1,
Par2 := *,
Par3 := *

ETSI

46 ETSI ES 201 873-1 V1.1.2 (2001-06)

14.2.1 Templates for calling procedures

A templateusedinacal | orrepl y operation defines a complete set of field valuesfor al i n andi nout
parameters. At thetimeof thecal | operational i nandi nout parametersin the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parametersis simply ignored, thereforeit is alowed to specify matching mechanismsfor these fields, or to
omit them (see annex C).

EXAMPLE:

/1 Valid call since all in and inout paranmeters have a distinct value
MyPCO. cal | (Renpt eProc: Tenpl at el);

/1 Valid call since all in and inout parameters have a distinct val ue
MyPCO. cal | (Renpt eProc: Tenpl at e2) ;

I/ Invalid call since Par3 paraneters has a matching attribute not a val ue
MyPCO. cal | (Renot eProc: Tenpl at e3) ;

/1 Tenpl ates never return values. In the case of Par2 and Par3 the values returned by the
/1 call must be retrived using an assignment clause at the end of the call statenent

14.2.2 Templates for accepting procedure calls

A template used inaget cal | operation defines a data template againg which theincoming parameter fields are
matched. Matching mechanisms, as defined in annex C, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any i n parameters shall be ignored in the matching process.

EXAMPLE:

// Valid getcall, it will match if Par2 == 2 and Par3 == 3
M/PCO. get cal | (Renot eProc: Tenpl atel);

// Valid getcall, it will match if Par3 == 3 and Any val ue of Par2
M/PCO. get cal | (Renot eProc: Tenpl at e2) ;

// Valid getcall, it will match on Any val ue of Par3 and Par2
M/PCO. get cal | (Renot eProc: Tenpl at e3) ;

14.3 Template matching mechanisms

Generally, matching mechanisms will be used to replace values of single template fields or to replace even the entire
contents of a template. Some of the mechanisms may be used in combination.

Matching mechanisms and wildcards may also be used in-linein received eventsonly (i.e.r ecei ve,getcall,
get repl y and cat ch operations). They may appear in explicit values, for example:

M/PCO. r ecei ve(charstring: "abcxyz");
M/PCO. recei ve (integer:conplenment(1, 2, 3));

Thetypeidentifier is optional, for example:
MYPCO. r ecei ve("abcxyz");

However, the type of the in-line template shall be in the port list over which the template isreceived. In the case where
thereisan ambiguity (e.g., through sub-typing) then the type name shall be included in the receive statement.

ETSI

47 ETSI ES 201 873-1 V1.1.2 (2001-06)

Matching mechanisms are arranged in four groups:
a) specific values (i.e., an expression that eval uates to a specific value);
b) special symbolsthat can be used instead of values:
e (...):alist of values,
e conpl enent (...): complement of alist of values;
e omit: vaueisomitted;
e 2. wildcard for any value;
e *:wildcard for any value or no valueat al (i.e., an omitted value);
* (lower t o upper): arange of integer values between and including the lower- and upper bounds.
¢) special symbalsthat can be used inside values:
e 7?2 wildcard for any singledement in astring, array, record of orset of;

« *:wildcard for any number of consecutive elementsin adring, array, record of orset of,orno
element at all (i.e., an omitted eement).

d) special symbolswhich describe attributes of values:
* | engt h: regtrictionsfor strings and arrays,
o | fpresent: for matching of optional field values (if not omitted).

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
in table 5. The left-hand column of thistable listsall the TTCN-3 and ASN.1 equivalent types as defined in the

ITU-T Recommendation X.680 series[7], [8], [9] and [10] to which these matching mechanisms apply. A full
description of each matching mechanism can be found in annex C.

ETSI

48 ETSI ES 201 873-1 V1.1.2 (2001-06)

Table 5: TTCN-3 Matching Mechanisms

Used with values of Value Instead of values Attributes
S Vv C @) A A R A A L |
p a o m n n a n n e f
e | m i y y n y y n P
[u p t \ \ g E E g r
i e | \Y a a e | | t e
f L e a | | e e h S
i i m | u u m m R e
C S e u e e e e e n
\% t n e ?) (0] n n s t
a t r t t t
| e N ?) s r
u d 0] (@] i
e L n r c
| e N t
s *) o} i
t n (0]
e n
(*)
boolean Yes Yes | Yes | Yes | Yes | Yes Yes
integer Yes Yes | Yes | Yes | Yes | Yes | Yes Yes
char Yes Yes | Yes | Yes | Yes | Yes | Yes Yes
universal char Yes Yes | Yes | Yes | Yes | Yes | Yes Yes
float Yes Yes | Yes | Yes | Yes | Yes Yes
bitstring Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
octetstring Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
hexstring Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
character strings Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
record Yes Yes | Yes | Yes | Yes | Yes Yes
record of Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
array Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
set Yes Yes | Yes | Yes | Yes | Yes Yes
set of Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
enumerated Yes Yes | Yes | Yes | Yes | Yes Yes
union Yes Yes | Yes | Yes | Yes | Yes Yes

14.4 Parameterization of templates

Templates for both sending and receiving operations can be parameterized. The formal parameters of atemplate can
include templates, functions and the special matching symbols. Therules for forma and actual parameter lists shall be
followed as defined in clause 5.3.

EXAMPLE:

/1 The tenplate
tenpl ate MyMessageType MyTenpl ate (integer MyFormal Paran): =

fieldl : = MyFor mal Par am
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows
pcol. send(MyTenpl at e(123));

ETSI

49 ETSI ES 201 873-1 V1.1.2 (2001-06)

14.4.1 Parameterization with matching attributes

To enable matching attributes to be passed as parameters the extra keyword t enpl at e shall be added before the type
field. This makes the parameter atemplate and in effect extends the allowed parameters for the associated type to
include the appropriate set of matching attributes (see annex C) aswedll asthe normal set of values. Template parameter
fields shall not be called by reference.

EXAMPLE:

/1 The tenplate
tenpl ate MyMessageType MyTenpl ate (tenpl ate integer MyFormal Param: =

{ fieldl : = MyFormal Param
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows

pcol.receive(MTenpl ate(?));

/1 O, if fieldl has be defined as being optional
pcol.recei ve(M/Tenpl ate(onmit));

14.5 Passing templates as parameters

Only functi on, test case,naned alt andt enpl at e definitions can have templates asformal parameters.

EXAMPLE:

functi on MyBehavi our (tenpl ate MyMsgType M/For mal Par anet er)
runs on MyConponent Type

{

pcol. recei ve(MyFor nal Paraneter);

14.6 Modified templates

Normally a template will specify a set of base, or default, values or matching symbols for each and every field defined
in the appropriate definition. In cases where small changes are needed to specify a new template it is possible to specify
amodified template. A modified template specifies modifications to particular fields of the original template, either
directly or indirectly.

Thenodi f i es keyword denotes the parent template from which the new, or modified template shall be derived. This
parent template may be either the original template or a modified template.

The modifications occur in alinked fashion eventually tracing back to the original template. If atemplate field and its
corresponding value or matching symbol is specified in the modified template, then the specified value or matching
symbol replaces the one specified in the parent template. If atemplate field and its corresponding value or matching
symbol isnot specified in the modified template, then the value or matching symbol in the parent template shall be
used.

A modified template shall not refer to itself, either directly or indirectly i.e., recursive derivation isnot allowed.

EXAMPLE:
/1 Gven
tenpl ate MyRecordType MyTenpl atel : =
{
fieldl := 123,
field2 := "A string",
field3 := true

}

// then writing
tenpl ate MyRecordType MyTenpl ate2 nodifies MyTenpl atel : =

field2 :
field3 :

"A nodified string",
omt // field3 nmust be specified as optional in the corresponding record type

ETSI

50 ETSI ES 201 873-1 V1.1.2 (2001-06)

/1 is the same as witing
tenpl ate MyRecordType MyTenpl ate2 : =

fieldl := 123,
field2 := "A nodified string",
field3 := omt

14.6.1 Parameterization of modified templates

If a base template is has aformal parameter list, the following rules apply to all modified templates derived from that
base template, whether or not they are derived in one or several modification steps:

a) the derived template shall not omit parameters, however a derived template can have additional (appended)
parametersif wished;

b) theformal parameter list shall follow the template name for every modified template;

¢) parameterized templatesin template fields shall not be modified or explicitly omitted in amodified template.

EXAMPLE:

/1 Gven

tenpl ate MyRecordType MyTenpl atel(integer Mypar):=
fieldl : = MyPar,
field2 := "A string",
field3 := true

}

/1 then a nodification could be
tenpl ate MyRecordType MyTenpl ate2(i nteger MyPar) nodifies MyTenplatel : =
{ /1 fieldl is paraneterized in Tenpl atel
field2 := "A nodified string",
field3 := omt // field3 nmust be specified as optional in the corresponding record type

14.6.2 In-line modified templates

Aswdl as creating explicitly named modified constraints TTCN-3 allows the definition of in-line modified constraints.

EXAMPLE:
/1 Gven
tenpl ate MyMessageType Setup : =
{ fieldl := 75,
field2 := "abc",
field3 := true
}

/1 Could be used to define an in-line nodified tenplate of Setup
pcol.send (nodifies Setup := {fieldl 76});

14.7 Changing template fields

All changes to template fields shall only be done via parameterization or by in-line derived templates at the time of
performing a communication operation (e.g., send, r ecei ve, cal | , get cal | etc.). The effects of these changes on
the value of the template field do not persist in the template subsequent to the corresponding communication event.

The notation of the kind MyTemplateld.Fieldid shall not be used to set or retrieve valuesin templates in communication
events. The"->" symbol shall be used for this purpose (see clause 22).

ETSI

51 ETSI ES 201 873-1 V1.1.2 (2001-06)

14.8 Match Operation

The mat ch operation alows the value of a variable to be compared with atemplate. The operation returns a boolean
value. If thetype of the template and variable are not compatible the operation returnsfalse. If the types are compatible
the return value of the operation indicates whether the value of the variable conformsto the specified template.

tenpl ate integer LessThanl0 := (1..10);

testcase TCO01()
runs on MyMICType

{
var integer RxVal ue;
PCOL. recei ve(integer:?) -> value RxVal ue;

if(match(RxVal ue, LessThanl10)) { ...}

}
14.9 Value of Operation

Theval ueof operation alows the value specified within atemplate to be assigned to the fields of a variable. The
variable and template shal be type compatible (see clause6.7) and each field of the template shall resolveto asingle
value.

type record Exanpl eType

integer fieldl,
bool ean fiel d2

}
tenpl at e Exanpl eType SetupTenpl ate : =

fieldl :
field2 :

1,
true

var Exanpl eType RxVal ue : = val ueof (SetupTenpl ate);

15 Operators

TTCN-3 supports anumber of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators,
b) string operators;

c) relationa operators,
d) logical operators,

€) bitwise operators,
f) shift operators;

g) rotate operators.

These operatorsarelisted in table 6.

ETSI

52 ETSI ES 201 873-1 V1.1.2 (2001-06)

Table 6: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +
subtraction -
multiplication *
division /
modulo mod
remainder rem
String operators concatenation &
Relational operators equal ==
less than <
greater than >
not equal I=
greater than or equal >=
less than or equal <=
Logical operators logical not not
logical and and
logical or or
logical xor xor
Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or or4b
bitwise xor xor4db
Shift operators shift left <<
shift right >>
Rotate operators rotate left <@
rotate right @>

The precedence of these operatorsis shown in table 7. Within any row in thistable, the listed operators have equal
precedence. If more than one operator of equal precedence appearsin an expression, the operations are evaluated from
left to right. Parentheses may be used to group operandsin expressions, in which case a parenthesized expression has
the highest precedence for eval uation.

Table 7: Precedence of Operators

Priority Operator type Operator
highest (...)

Unary +, -, not, not4b

Binary * [, mod, rem
+, -

<<, >> <@, @>
<, >, <=, >=

and4b
xor4b
or4db
and
xor
or

&

Lowest

ETSI

53 ETSI ES 201 873-1 V1.1.2 (2001-06)

15.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division and modulo.
Operands of these operators shall be of typei nt eger (including derivations of i nt eger) or f | oat (including
derivations of f | oat), except for rod which shall be used withi nt eger (including derivations of i nt eger) types
only.

With i nt eger typestheresult type of arithmetic operationsisi nt eger . With float types the result type of arithmetic
operationsisf | oat .

In the case where plus (+) or minus (-) is used asthe unary operator the rules for operands apply as well. The result of
using the minus operator isthe negative value of the operand if it was positive and vice versa.

Theresult of performing the division operation (/) on two:

a) i nteger valuesgivesthewholei nt eger vaueresulting from dividing thefirst i nt eger by the second
(i.e, fractions are discarded);

b) fl oat valuesgivesthef| oat valueresulting from dividing thefirst f | oat by the second (i.e., fractionsare
not discarded).

The operators r emand nod compute on operands of typei nt eger and have aresult of typei nt eger . The
operationsx rem y andx nod y compute therest that remains from an integer division of x by y. Therefore, they
are only defined for non-zero operandsy . For positivex andy, bothx rem y andx nod y havethe sameresult but
for negative arguments they differ.

Formally, mod and r emare defined as follows:

X remy =X -y * (x/y)

x mody = Xxrem]|y]| if x>0
=0 if x<0 and x rem|y| =0
=y +xrem]y| if x<0 and x rem|y| <0

The following table illustrates the difference between the mod and rem operator:

Table 8: Effect of mod and rem operator

X -3 -2 -1 0 1 2 3
x mod 3 0 1 2 0 1 2 0
X rem3 0 -2 -1 0 1 2 0

15.2 String operators

The predefined relational operators perform concatenation of string types. The operands may be any string type values
that are compatible. The operation isa simple concatenation from left to right. No form of arithmetic addition is
implied. Theresult type is the compatible string type, for example:

'1111'B & '0000'B & '1111'B gives '111100001111'B

15.3 Relational operators

The predefined relational operators represent thereations of equality, less than, greater than, not equal to, greater than
or equal to and less than or equal to. Operands of equality (==) and non-equality (!=) may be of an arbitrary type. All
other relational operators shall have operands only of typei nt eger (including derivativesof i nt eger) or f | oat
(including derivations of f | oat). In all cases the two operands shall be of compatible type. Theresult type of these
operationsisbool ean.

ETSI

54 ETSI ES 201 873-1 V1.1.2 (2001-06)

15.4 Logical operators

The predefined bool ean operators perform the operations of negation, logical and, logical or and logical xor .
Their operands shall be of type bool ean. Theresult type of thelogical operatorsisbool ean.

Thelogical not isthe unary operator that returnsthe valuet r ue if its operand was of valuef al se and returnsthe
valuef al se if the operand was of valuet r ue.

Thelogical and returnsthe valuet r ue if both its operandsaret r ue; otherwise it returnsthe valuef al se.

Thelogical or returnsthevaluet r ue if at least one of its operandsist r ue; it returnsthe value f al se only if both
operandsaref al se.

Thelogical xor returnsthevaluet r ue if one of its operandsist r ue; it returnsthe valuef al se if both operandsare
fal se orif both operandsaret r ue.

15.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not , bitwise and, bitwise or and bitwise xor .
These operators are known as not 4b, and4b, or 4b and xor 4b respectively.

NOTE: Toberead as"not for bit", "and for bit" etc.

Their operandsshall beof t ype bitstring, hexstring, octetstring. Theresult type of the bitwise
operators shall be the same asthat of the operands.

The bitwise not 4b unary operator invertstheindividual bit values of its operand. For each bit in the operand a 1 bit is
stto0OandaObitissettol. Thatis

notdb '1'B gives '0'B
notdb '0'B gives '1'B
EXAMPLE 1:

not4b '1010'B gives '0101'B
not4b '1A5'H gives 'ES5A'H
not4b '01A5' O gives ' FES5A' O

The bitwise and4b operator accepts two operands. For each corresponding bit position, the resulting valueisa 1 if both
bits are set to 1, otherwise the value for theresulting bitisO. That is:

B and4b '1' B gi ves
B and4b ' 0' B gi ves
B and4b '1' B gi ves
B and4b ' 0' B gi ves

QeeRr
W W ww

"y
ey
0
e

EXAMPLE 2:

'1001' B and4b ' 0101' B gi ves ' 0001' B
'"B'H and4b '5'H gives '1'H
'"FB'O and4b '15'O gives '11'0O

The bitwise or 4b operator accepts two operands. For each corresponding bit position, theresulting valueis O if both
bits are set to 0, otherwise the value for theresulting bitis1. That is:

'"1'Bordb '1'B gives '1'B
'"1'B ordb '0'B gives '1'B
'0'Bordb '1'B gives '1'B
'0'Bordb '0'B gives '0'B
EXAMPLE 3:

'1001' B or4b '0101'B gives '1101'B
"9'Hor4b '5'Hgives 'DH
"A9'Oordb '"F5'O gives 'FD O

ETSI

55 ETSI ES 201 873-1 V1.1.2 (2001-06)

The bitwise xor 4b operator accepts two operands. For each corresponding bit position, the resulting value is O if both
bitsare set to O or if both bitsare set to 1, otherwise the value for theresulting bitis 0. That is:

1'B xordb "1'B gives '0'B
'0'B xor4b '0'B gives '0'B
'0'B xord4b "1'B gives '1'B

1'B xordb '0'B gives '1'B

EXAMPLE 4:

'1001' B xor4b '0101' B gives '1100'B
'"9'"H xord4b '5'H gives 'CH
'39' O xor4b '15' O gives '2CO

15.6 Shift operators

The predefined shift operators perform the shift left (<<) and shiftright (>>) operators. Their left-hand operand shall
beof t ype bitstring,hexstring,octetstringorinteger.Ther right hand operand shall be of type
i nt eger . Theresult type of these operators shall be the same asthat of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left hand
operandis:

a) bitstringorinteger thentheshift unit appliedis1 bit;
b) hexstri ng then the shift unit applied is 1 hexadecimal digit;
C) oct et stri ng then the shift unit applied is 1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the left
as specified by theright hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to theleft, azero ('0'B, 'O'H, or '00'O determined according to the type of theleft-hand operand) is
inserted from the right hand side of theleft operand.

NOTE 1: If theleft hand operand is of typei nt eger , then for each bit shifted to the left, thisis equivalent to
multiplying the |eft hand operand by two.

NOTE 2: Anerror verdict shall be assigned if a system dependent overflow occurs when applying the shift | eft
operation to the left hand operand.

EXAMPLE 1

'111001'B << 2 gives '100100'B

'12345'H << 2 gives '34500'H

'1122334455' O << (1+1) gives '3344550000' O
32 << 2 gives 128

-32 << 2 gives -128

The shift right (>>) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the
right as specified by the right hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to theright, azero ('0'B, 'O'H, or '00'O determined according to the type of the left-hand operand)
isinserted from the left hand sde of the left operand.

NOTE 3: If theleft hand operand is of typei nt eger , then for each bit shifted to theright, thisis equivalent to
doing integer division of theleft hand operand by two (2).

NOTE 4: When theleft operand is of typei nt eger and its valueis negative, when performing aright shift, the
sign bit shall be propagated.

EXAMPLE 2:

'111001'B >> 2 gives '001110'B

'12345'H >> 2 gives '00123'H

'1122334455' O >> (1+1) gives '0000112233' O
32 >> 2 gives 8

-32 >> 2 gives -8

ETSI

56 ETSI ES 201 873-1 V1.1.2 (2001-06)

15.7 Rotate operators

The predefined rotate operators perform therotate left (<@ and rotateright (@) operators. Their |eft-hand operand
shdl beoft ype bitstring, hexstring,octetstring,charstringor universal charstring.
Their right hand operand shall be of typei nt eger . Theresult type of these operators shall be the same asthat of the
|eft operand.

Therotate operators behave differently based upon the type of their left-hand operand. If the type of theleft hand
operandis:

a) bitstring thentherotate unit appliedis 1 hit;

b) hexstri ng then therotate unit applied is 1 hexadecimal digit;

C) oct et stri ng thentherotate unit applied is1 octet;

d) charstringoruniversal charstring thentherotate unit applied is one character.

Therotate left (<@ operator accepts two operands. It rotates the | eft-hand operand by the number of shift unitsto the
left as specified by the right hand operand. Excess shift units (bits, hexadecimal digits, octets, or characters) are
re-inserted into the left-hand operand from its right-hand sde.

EXAMPLE 1

'101001'B <@2 gives '100110'B

'12345'H <@2 gives '34512'H

'1122334455' O <@ (1+2) gives '4455112233'0
"abcdefg" <@3 gives "defgabc"

Therotateright (@) operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the
right as specified by the right hand operand. Excess shift units (bits, hexadecimal digits, octets, or characters) are
re-inserted into the left-hand operand from itsleft-hand side.

EXAMPLE 2:

'100001'B @ 2 gives '0110001'B

'12345'H @ 2 gives '45123'H

'1122334455' 0 @ (1+2) gives '3344551122'0
"abcdefg" @ 3 gives "efgabcd"

16 Functions

Functions are used in TTCN-3 to express test behaviour or to structure computation in amodule, for example, to
calculate asingle value, to initialize a set of variables or to check some condition. Functions may return avalue. Thisis
denoted by ther et ur n keyword followed by atype identifier. If nor et ur n is specified then thefunction isvoid. An
explicit keyword for void does not exist in TTCN-3. The keyword r et ur n, when used in the body of the function,
causes the function to terminate and to return a value compatible with the return type. For example;

// Definition of MyFunction which has no paraneters
function MyFunction() return integer

{

return 7; // return the integer value 7 when the function termn nates

}

NOTE: TheTTCN-3functionsreplace Test Suite Operations and Test Suite Procedural Definitionsin TTCN-2.
Informal functions may be declared as externa functions with explanatory comments or by using an
empty formal function with comments.

ETSI

57 ETSI ES 201 873-1 V1.1.2 (2001-06)

A function may be defined within amodule or be declared as being defined externally (i.e., ext er nal). For an
externa function only the function interface has to be provided in the TTCN-3 module. Theredization of the externa
function is outside the scope of the present document. External functions are not allowed to contain port operations.

external function MyFunction4() return integer; // External function w thout paraneters
/1 which returns an integer value

external function |nitTestDevices(); /1 An external function which only has an
/'l effect outside the TTCN-3 nodul e

In amodule, the behaviour of a function can be defined by using the program statements and operations defined in
clause 18. If afunction includes port operations the associated component type shall be referenced using ther uns on
keywords in the function header to define the number, type and identifiers of the available ports. The one exception to
thisruleisif al ports used within the function are passed in as parameters.

If afunction includes port operations either al ports used within the function shall be passed in as parameters or an
associated component type shall be referenced using r uns on in the function header to define the number, type and
identifiers of the available ports. For example:

functi on MyFunction() runs on MyConponent return integer
{

}
Instances of different component types may use the same function if they fulfil the following consistency rule:

"Let C1 and C2 be two component types and FUNC be a function which refersto Clinitsr uns on clause. An
instance of component type C2 may use FUNC if the type definition C2 includes the entire type definition of C1. This
means, C2 includes the same names to address ports of the same type as C1."

16.1 Parameterization of Functions

Functions may be parameterized. The rules for formal parameter lists shall be followed as defined in clause 5.3. For
example:

functi on MyFunction2(inout integer MyPar 1)

{
/1 MyFunction2 doesn't return a val ue
MyParl := 10 * MyParl; // but changes the value of MyParl which
/1 is passed in by refefernce
}
function MyFunction3() runs on MyPTCType
{

/1 MyFunction3 doesn't return a val ue, but
var integer MyVar := 5; /1 does make use of the port operation
PCOL. send(MyVar) ; /1 send and therefore requires a runs on

// clause to resolve the port identifiers

} /1 by refernceing a conponent type

16.2 Invoking functions

A function isinvoked by referring to itsname and by the actual list of parameter. Functionsthat do not return values
can beinvoked directly. Functions that return values may be invoked inside expressions. Therules for actual parameter
lists shall be followed as defined in clause 5.3.

MyVar := MyFunction4(); // The value returned by MyFunction4 is assigned to MyVar.
/1 The types of the returned value and MyVar have to be the sanme

MyFunct i on2(MyVar 2) ; /1 MyFunction2 doesn't return a value and is called with the
// actual paraneter MyVar2, which nmay be passed in by reference

MyVar 3 : = MyFunction6(4)+ MyFunction7(My/Var3); // Functions used in expressions

Special restrictions apply to functions bound to test components using the st ar t operation. Theserestrictionsare
described in clause 21.5.

ETSI

58 ETSI ES 201 873-1 V1.1.2 (2001-06)

16.3 Predefined functions

TTCN-3 contains anumber of predefined (built-in) functions that need not be declared before use.

Table 9: List of TTCN-3 predefined functions

Category Function Keyword

Conversion functions Convert integer value to char value i nt2char
Convert char value to int value char 2i nt
Convert integer value to universal char value i nt 2uni char
Convert universal char value to int value uni char 2i nt
Convert bitstring value to integer value bi t 2i nt
Convert hexstring value to integer value hex2i nt
Convert octetstring value to Integer value oct 2i nt
Convert charstring value to integer value str2int
Convert integer value to bitstring value int2bit
Convert integer value to hexstring value i nt 2hex
Convert integer value to octetstring value i nt 2oct
Convert integer value to charstring value int2str

Length/size functions Return the length of a value of any string type I'engt hof
Return the number of elements in a record, record of, si zeof
template, set, set of or array

Presence/choice functions Determine if an optional field in a record, record of, template, |i spresent
set or set of is present
Determine which choice has been made in a union type i schosen

When a predefined function isinvoked:
1) thenumber of the actual parameters shall be the same as the number of the formal parameters; and
2) each actud parameter shall evaluate to an element of its corresponding formal parameter'stype; and
3) al variables appearing in the parameter list shall be bound.

The full description of predefined functionsis given in annex D.

17 Test cases

Test cases are a special kind of function. Their execution in the module control part isrelated to theexecut e
statement (see clause 26.1). Theresult of an executed test case is aways avalue of typever di ct t ype. Every test
case shall contain one and only one MTC the type of which is referenced in the header of the test case definition. The
behaviour defined in thetest case body is the behaviour of the MTC.

When atest caseisinvoked the ports of the test system interface are instantiated, the MTC is created and the behaviour
specified in the test case definition is started on the MTC. All these actions shall be performed implicitly i.e., without
theexplicit cr eat e and st art operations.

To provide theinformation to allow these implicit operationsto occur atest case definition has two parts:

a) interface part (mandatory): denoted by the keyword r uns on which references therequired component type for
the MTC and makes the associated port names visible within the MTC behaviour; and

b) test system part (optional): denoted by the keyword sy st emwhich references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC isinstantiated. In this case, the MTC type defines the test system interface ports
implicitly.

EXAMPLE:
testcase MyTest CaseOne()

runs on MyM cTypel /1 defines the type of the MIC
system MTest Syst eniType /1l makes the port names of the TSI visible to the MIC

ETSI

59 ETSI ES 201 873-1 V1.1.2 (2001-06)

/1 The behavi our defined here executes on the ntc when the test case invoked

}

/1 or, a test case where only the MIC is instantiated
testcase MyTest CaseTwo() runs on MyM cType2

/1 The behavi our defined here executes on the ntc when the test case invoked

18 Program statements and operations

The fundamenta program e ements of the control part of TTCN-3 modules and functions are basic program statements
such as expressions, assignments, 100p constructs etc., behavioura statements such as sequential behaviour, alternative
behaviour, interleaving, defaults etc., and operations such assend, r ecei ve, cr eat e, etc.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements).

Statement blocks are a mechanism to group statements. Statement blocks may be used in different scope units

i.e,, module control, functions and test behaviours. The kind of statements that may be used in a block will depend on
the scope unit in which the block is used. For example, a satement block appearing in a function shall only use those
program statements which may be used in functions.

General scoping rules are described in clause 5.4.

A statement block is syntactically equivalent to asingle statement, thus, wherever a satement isallowed in afunction a
block may appear. Thisimplies that blocks may be nested. Declarations, if any, shall be made at the beginning of the
block. These declarations are only visible insde the block and to nested sub-blocks.

The statementsin the block shall be executed in the order of their appearance. The specification of an empty statement
blocki.e, {}, isalowed. An empty statement block impliesthat no actions are taken.

ETSI

60

ETSI ES 201 873-1 V1.1.2 (2001-06)

Table 10: Overview of TTCN-3 statements and operations

Statement Associated keyword or| Can be usedin Can beusedin
symbol module control | functions, test cases
and named alts

Basic program statements
Expressions (...) Yes Yes
Assignments = Yes Yes
Logging log Yes Yes
Label and Goto label / goto Yes Yes
If-else if (.){. .}else{.} Yes Yes
For loop for (...){...} Yes Yes
While loop while (...){...} Yes Yes
Do while loop do {...} while (...) Yes Yes
Stop execution stop Yes Yes
Behavioural program statements
Alternative behaviour alt {...} Yes (see note 1) Yes
Named alternative named alt {...} Yes (see note 1) Yes
Interleaved behaviour interleave {...} Yes (see note 1) Yes
Activate a default activate Yes (see note 1) Yes
Deactivate a default deactivate Yes (see note 1) Yes
Returning control return Yes
Configuration operations
Create parallel test component create Yes
Connect component to component connect Yes
Disconnect two components disconnect Yes
Map port to test interface map Yes
Unmap port from test system interface unmap Yes
Get MTC address mtc Yes
Get test system interface address system Yes
Get own address self Yes
Start execution of test component start Yes
Stop execution of test component stop Yes
Check termination of a PTC running Yes
Wait for termination of a PTC done Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote entity |reply Yes
Raise exception (to an accepted call) raise Yes
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote entity getcall Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Check (current) message/call received check Yes
Clear port clear Yes
Clear and give access to port start Yes
Stop access (receiving & sending) at port |stop Yes
Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict verdict.set Yes
Get local verdict verdict.get Yes
SUT operations
Remote action to be done by the SUT [sut.action | | Yes
Execution of test cases
Execute test case lexecute | Yes | Yes (see note 2)

NOTE 1: Can be used in control with timer operations only.

NOTE 2: Can only be used in functions and named alternatives that are used in module control.

ETSI

61 ETSI ES 201 873-1 V1.1.2 (2001-06)

19 Basic program statements

Basic program statements are expressions, assignments, operations, loop constructs etc. All basic program statements
can be used in the control part of a module and in TTCN-3 functions.

Table 11: Overview of TTCN-3 basic program statements

Basic program statements

Statement Associated keyword or symbol
Expressions (...)
Assignments =
Logging log
Label and Goto label / goto
If-else if (.){...}else{...}
For loop for (..){...}
While loop while (.. {... }
Do while loop do{...}while(...)
Stop execution stop

19.1 Expressions

TTCN-3 alows the specification of expressions using the operators defined in clause 15. Expressions are built from
other (smple) expressions. Expressions may contain functions. Theresult of an expression shall be the value of a
specific type and the operators used shall be compatible with the type of the operands. For example:

(x +y - increment(z))*3;
19.1.1 Boolean expressions

A bool ean expression shal only contain bool ean values and/or bool ean operators and/or relational operators
and shall evaluateto abool ean value of either t r ue or f al se. For example:

((A and B) or (not C or (j<10));

19.2 Assignments

Values may be assigned to variables. Thisisindicated by the symbol ":=". During execution of an assignment theright-
hand side of the assignment shall evaluate to an element of the same type of the |eft-hand side. The effect of an
assignment is to bind the variable (which may also be the element of ar ecor d or set etc.) to the value of the
expression. The expression shall contain no unbound variables. All assignments occur in the order in which they appear,
that is left to right processing. For example:

My/Variable := (x +y - increnment(z))*3;

19.3 The Log statement

Thel og statement provides the means to write a character string to some logging device associated with test control or
the test component in which the statement is used. For example:

log("Line 248 in PTC A");
// The string "Line 248 in PTC A" is witten to sonme |og device of the test system

NOTE: Itisoutside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

ETSI

62 ETSI ES 201 873-1 V1.1.2 (2001-06)

19.4 The Label statement

Thel abel satement allows the specification of labelsin test cases, functions, named alternatives and the control part
of amodule. A | abel statement can be used fredy like other TTCN-3 behavioural program statements according to
the syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but, for example, not asfirst
statement of an alternativeinan al t ori nt er | eave statement (see clause 20.2.7).

19.5 The Goto statement

The got o statement can be used in functions, test cases, named aternatives and the control part of a TTCN module.
The got o statement performsajumpto al abel or to the beginning of an al t statement in order to force repeated
behaviour (see clause 20.2.8).

19.6 The If-else statement

Thei f - el se satement, aso known as the conditional statement, is used to denote branching in the control flow due
tobool ean expressions. Schematically the conditional 10oks as follows:

if (expressions)

st at enent bl ocky
el se

st at enent bl ocko

Wherest at enent bl ock, refersto ablock of statements.

EXAMPLE:
if (date == "1.1.2000") return { fail };
if (MVar < 10) {
M/Var := MyVar * 10;
log ("MyVar < 10");
el se {

MyVar := MyVar/5;
}

A more complex scheme could be:

if (expressions)
st at enent bl ocky
else if (expressiony)
st at enent bl ocko

else if (expressionp)
st at enent bl ockp
el se
st at enment bl ockp+1

In such cases readability heavily depends on the formatting but formatting shall have no syntactic or semantic meaning.

19.7 The For statement

Thef or statement defines a counter loop. The value of theindex variable isincreased, decreased or manipulated in
such amanner that after a certain number of execution loops a termination criteriais reached.

Thef or statement contains two assignments and abool ean expression. The first assignment isnecessary to initialize
the index (or counter) variable of the loop. The bool ean expression terminates the loop and the second assignment is
used to manipulate the index variable. For example:

for (j:=1; j<=10; j:=j+1) { ...}

ETSI

63 ETSI ES 201 873-1 V1.1.2 (2001-06)

The termination criterion of theloop shall be expressed by the bool ean expression. It is checked at the beginning of
each new loop iteration. If it evaluatestot r ue, the execution continues with the statement which immediately follows
thef or loop.

Theindex variable of af or loop can be declared before being used in the for statement or can be declared and
initidisedin thef or statement header. If theindex variableis declared and initidised in the f or statement header, the
scope of theindex variable islimited to the loop body, i.e., it is only visible inside the loop body. For example:

var integer j; /1 Declaration of integer variable j
for (j:=1; j<=10; j:=j+1) { ...} /'l Usage of variable j as index variable of the for |oop
for (var float i:=1.0; i<7.9; i:=1i1*1.35) { ..} /1 Index variable i is declared and

initialized
/1 in the for |oop header. Variable i only is
/1 visible in the | oop body.

19.8 The While statement

A whi | e loop is executed as long as the loop condition holds. The loop condition shall be checked at the beginning of
each new loop iteration. If the loop condition does not hold, then theloop is exited and execution shall continue with the
statement, which immediately follows the whi | e loop. For example:

while (j<10){ ..}

19.9 The Do-while statement

The do- whi | e loop isidentical to awhi | e loop with the exception that the loop condition shall be checked at theend
of each loop iteration. This meanswhen using a do- whi | e loop the behaviour is executed at least once before theloop
condition is evaluated for thefirs time. For example:

do { ...} while (j<10);
19.10 The Stop execution statement
The st op statement terminates execution in different ways depending on the context in which it is used. When used in

the control part of amodule it terminates execution of the entire module. When used in a function that is executing
behaviour it terminates the relevant test component.

20 Behavioural program statements

Behavioural program statements may be used in test cases, functions and module control, except for the return
statement which shall only be used in test cases and functions. Behavioural program statements specify the dynamic
behaviour of thetest components over the communication ports. Test behaviour can be expressed, sequentialy, asa set
of alternatives or combinations of both. An interleaving operator allows the specification of interleaved sequences or
alternatives.

Table 12: Overview of TTCN-3 behavioural program statements

Behavioural program statements

Statement Associated keyword or symbol
Alternative behaviour alt{...}
Named alternative namedalt { ... }
Interleaved behaviour interleave { ... }
Activate a default activate
Deactivate a default deactivate
Returning control return

ETSI

64 ETSI ES 201 873-1 V1.1.2 (2001-06)

20.1 Sequential behaviour

The simplest form of behaviour isaset of statementsthat are executed sequentialy, asillustrated bel ow:

S1

S2 |:> S1; S2; S3;

S3

Figure 5: Illustration of sequential behaviour

Theindividua statementsin the sequence shall be separated by the delimiter *;". For example:

MyPort . send(Mynessage); MTinmer.start; |og("Done!");

20.2 Alternative behaviour

A more complex form of behaviour iswhere sequences of statements are expressed as sets of possible alternatives to
form atree of execution paths, asillustrated below:

S1
S1;
alt {[] S3; S6;
[1 s2
alt { []1 $4; s7;
[] S5, s8;
alt { [] S9;

[1 sio;
}

Figure 6: Illustration of alternative behaviour

Theal t statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of paralle test components, i.e, it isrelated to the use of the TTCN-3 operations
recei ve,trigger,getcall,getreply,catch,check,ti nmeout anddone. Theal t statement denotesa
set of possible eventsthat are to be matched against a particular snapshot (see clause 20.2.1).

NOTE: Theal t satement correspondsto the alternatives at the same level of indentation in TTCN-2. However,
there are three sgnificant differences:
a) bool ean expressions to disable aternatives can only be made in an aternative statement;
b) itisnot possible to examinethe port queue by using the bool ean expression and then to disable
an alternative;
¢) Itisnot possibleto call afunction asan dternativein theal t statement, except in the case where
an eseguard (i.e, [el se]) isthelast choice in the alternative (see clause 20.2.3).

ETSI

EXAMPLE:

65 ETSI ES 201 873-1 V1.1.2 (2001-06)

/] Use of nested alternative statenents

al t
{
[T Ll.receive(DL_REL_CO *)
verdi ct. set (pass);
TAC. st op;
TNCAC. start;
alt {
[l Ll.receive(DL_EST_IN)
{ TNCAC. st op;
verdi ct. set (pass);

}
[T TNOAC. tinmeout

/1 UA or DMreceived; layer 2 rel eased

/1| SABME received

{ L1. send(DEL_EST RQ *);

TAC. start;
alt {

[T Ll.receive(DL_EST_CO *) // UA received; data |link established

{ TAC. st op;

verdi ct. set (pass)

}
[T TAC tinmeout

/1 no response

{verdict.set(inconc)}

[T Ll.receive

/1 like OTHERW SE in TTCN 2

{verdict.set(inconc)}

}
[T Ll.receive
{verdict.set(inconc)}
}
}

[T TAC tinmeout
{verdict.set(inconc)}

[T Ll.receive
{verdict.set(inconc)}

/1 like OTHERW SE in TTCN 2

/1l no response

/1 like OTHERW SE in TTCN- 2

/1 Use of alternative wi th Bool ean expressions (or guard)

alt {

[1 L1. recei ve(MyMessagel)
{verdict.set(fail)}

[x>1] L2. recei ve(MyMessage?2)
{verdi ct.set(pass)}

[x<=1] L2.receive(MMessage3)
{verdict.set(inconc)}

)

/] Use of done in alternatives

alt {
[T MWPTC. done {
verdi ct. set (pass)
}
[T any port.receive {
goto alt
}
)
20.2.1

/1 Bool ean guard/ expression

/1 Bool ean guar d/ expression

Execution of alternative behaviour

The dternative statementsin an al t statement are processed in their order of appearance. TTCN-3 operational
semantics (see annex B) assume that the status of any of the events cannot change during the process of trying to match
one alternative in a set of alternatives. Thisimplies that snapshot semantics are used for received events and timeouts
i.e, each timearound a set of alternatives a snapshot istaken of which events have been received and which timeouts

have fired. Only those identified in the snapshot can match on the next cycle through the alternatives.

NOTE 1: These semantics are exactly the same asfor TTCN-2.

ETSI

66 ETSI ES 201 873-1 V1.1.2 (2001-06)
NOTE 2: Synchronous events (e.g., cal |) block the loop until acall is completed.

20.2.2 Selecting/deselecting an alternative

If necessary, it is possible to enable/disable an alternative by means of abool ean expression placed between the [|’
brackets of the alternative. For example:

[MyVar ==3] PCO. recei ve(MyMessage) {}

The open and close square brackets'[' ' shall be present at the start of each alternative, even if they are empty. Thisnot
only aidsreadability but also is necessary to syntactically distinguish one alternative from another.

20.2.3 Else branch in alternatives

If necessary, it is possible to define one branch in the alternative statement which is always taken if no other previoudy
defined aternative can be taken. If an el se branch is defined al subsequently defined alternatives are redundant i.e.,
they can never be reached. For example:

alt {

[1 L1. recei ve(MyMessagel)
{ verdict.set(fail);
MyConponent . st op
[x>1] L2. recei ve(MyMessage?2) /1 Bool ean guar d/ expressi on
{ verdi ct. set (pass);
[x<=1] L2.receive(MMessage3) // Bool ean guar d/ expressi on
{ verdi ct. set (i nconc);
}
[else] { MyEr ror Handl i ng() ; /'l else branch

verdict.set(fail);
MyConponent . st op;

It should be noted that defaults are always appended to the end of all alternatives. If an el se branch isdefined, an
activated def aul t will never be entered.

NOTE: Itisasopossibletouseel se in named alternatives.

20.2.4 Declaring named alternatives

Alternatives which are used in anumber of places can be defined in a named aternative denoted by the keyword pair
named al t . Named alternatives shall be defined globally in the module definitions. When invoked ananed al t is
identical to the behaviour al t construct except that it has an identifier and alows parameterization.

A naned al t when referenced has the same effect as a macro substitution. A naned al t can be referenced at any
place in a behaviour definition whereitisvalid toincludeanormal al t construct.

EXAMPLE:

/1 Definition of the naned alternatives nacro
nanmed alt Handl ePCO2()

{
[T PCR.receive(DL_EST_IN)

{PCX2. send(DL_EST_CO}

[T PCR.receive(DL_EST_CO {}
// do not hing

}

// Using a naned alt in-line
testcase TC001() runs on MyPTCtype

{
Handl ePCC2() ; /1 Call named alt

ETSI

67

}
/1 Which expands to
testcase TC001() runs on MyPTCtype

{ .
alt {
[T PCXR.receive(DL_EST_IN)
{PC®2. send(DL_EST_CO}
[T PCXR.receive(DL_EST_CO {}
/1 do nothing
4
} :

EXAMPLE:

/1 Using a named alt by expanding
testcase TCO02()runs on MyPTCtype

ETSI ES 201 873-1 V1.1.2 (2001-06)

20.2.5 Expanding alternatives with named alternatives

In addition to direct in-linereferencing it is also possible to explicitly expand the alternatives specified in the nanmed
al t construct using the expand statement. The expand statement can be placed at any position within an al t
statement and will insert the associated guards from the naned al t at that position.

[expand] Handl ePCO2() /1 Expand narmed alt alternatives to specified alt statenent

{ .
alt {
[T PCOL. receive(DL_EST_IN)
{PCOL. send(DL_EST_CO)}
[T PCOL. receive(DL_EST_CO {}
// do nothing
}
}

/1 Which expands to
testcase TCO02()runs on MyPTCtype

{

alt {

[T PCOL. receive(DL_EST_IN)
{PCOL. send(DL_EST_CO)}

[T PCOL. receive(DL_EST_CO {}
// do nothing

[T PCXR.receive(DL_EST_IN)
{PC®2. send(DL_EST_CO}

[T PCXR.receive(DL_EST_CO {}
// do nothing

}

20.2.6 Parameterization of named alternatives

EXAMPLE:
naned alt Handl eAnyPCO(MyPort T PCO)
{
[T PCO receive(DL_EST_IN)
{PCO send(DL_EST_CO}
[T PCO receive(DL_EST_CO {}
// do nothing
}

testcase TC001() runs on MyPTCtype

Handl eAnyPCQ(PCQ2) ;

ETSI

Named alternatives can be parameterized with types, values, functions and templates. Since named alternatives are not a
scope unit, the defined formal parameters are ssimply substituted by the given actua parameters when the macro
expansion is performed.

68 ETSI ES 201 873-1 V1.1.2 (2001-06)

alt {
[expand] Handl eAnyPCO(PCOL) ;
[expand] Handl eAnyPCO(PCOR2) ;

20.2.7 The Label statement in behaviour

Thel abel satement allows the specification of labelsin test cases, functions, named alternatives and the control part
of amodule. It can be used before or after any TTCN-3 statement but shall not be the first gatement of an alternative in
analt orinterl eave gatement.

EXAMPLE:

| abel MyLabel ;
/1 Defines the | abel MyLabel

/1 The labels L1, L2 and L3 are defined in the followi ng TTCN-3 code fragnent

Iébel L1; // Definition of l|abel L1
al t{
[T PCOL. receive(MSigl)
{ | abel L2; /1 Definition of |abel L2
PCOL. send(W/Si g2) ;
PCOL. recei ve(MySi g3)
}
[T PCR.receive(MWSig4)
{ PC2. send(MySi g5) ;
PC2. send(MySi g6) ;

| abel L3; /1 Definition of |abel L3
PC2. recei ve(M/Si g7) ;
goto L1; [/ Junp to label L1

20.2.8 The Goto statement in behaviour

The got o statement can be used in functions, test cases, named aternatives and the control part of a TTCN module.
The got o statement performsajumpto al abel or to the beginning of an al t statement in order to force repeated
behaviour.

There-evaluation of an al t statement can be achieved by either:

a) using got o <Labelld>wheretherdevant labd statement should be placed immediately before the al t
keyword of the actual alternative that isto be jumped to; or

b) byusinggot o al t withintheal t statement which should be re-evaluated. In this case the keyword al t can
be seen asan implicit label for theal t statement within which the got o isused.
20.2.8.1 Restricting the use of Goto

The got o statement provides the possibility to jump fredly, i.e., forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g., awhi | e loop) and to jump over several levels out of
nested compound statements (e.g., nested alternatives). However, the use of the got o statement shall berestricted by
the following rules:

a) Itisnot allowed to jJump out of or into functions, test cases, named alternatives and the control part of aTTCN
module.

b) Itisnot allowed to jump into a sequence of statements defined in a compound statement (i.e., al t statement,
whi | e loop, for loop, i f -el se statement, do- whi | e loop andthei nt er | eave statement).

¢) Asan exception torule @) for named aternatives, it isallowed to usegot o al t insideanamed aternativein
order to force there-evaluation of an al t statement within which the named alternative may be expanded.

ETSI

69 ETSI ES 201 873-1 V1.1.2 (2001-06)

NOTE: Thisrule providesthe possibility to jump out of a named alternative in arestricted manner to provide the
functionality to describe defaults.

d) Itisnot allowed to usethe got o statement within ani nt er| eave statement.

EXAMPLE:

/1 The followi ng TTCN-3 code fragnent includes

| abel L1,

MyVar := 2 * MyVar;

if (MyVar < 2000) { goto L1; } /1 ... a junp backward to L1 and
MyVar2 := Myfunction(MVar);

if (MVvar2 > MyVar) { goto L2; } /1 ... ajunmp forward to L2,

PCOL. send(MyVar) ;

PCOL. recei ve -> val ue MyVar 2,

| abel L2;

PC2. send(i nteger: 21);

alt {

[T PCOL. receive
{ goto alt; } /1 ... a junp which forces the re-eval uation of
/1 the previous alt statenent
[T PCXR.receive(integer: 67)
{ | abel L3;
PCO2. send(MyVar) ;
alt {
[T PCOL. receive
{ goto alt; } /1 ... again a junp which forces the re-evaluation of the
/1 the previous alt statement (not the sanme as for the
/1 goto before),
[T PCXR.receive(integer: 90)
{ PC2. send(i nteger: 33);
PC2. recei ve(integer: 13);
goto L4; /1 ... ajunp forward out of two nested alt statenens,

}
[T PCXR.receive(MError)

{ goto L3; } /1 ... a junp backward out of the current alt statenent,
[T any port.receive
{ goto L2; } /1 ... a junp backward out of two nested alt statenents,
}
}
[T any port.receive
{ goto L2; } // ... and a long junp backward out of an alt statenent
}
| abel L4;

20.3 Interleaved behaviour

Control transfer statementsf or, whi | e, do-whi | e, got 0, acti vat e, deacti vat e, st op, r et ur n and (direct
and indirect) calls of user-defined functions, which include communication operations, shall not be used in
i nt erl eave statements. In addition, it isnot allowed to guard branches of an i nt er | eave statement with Boolean
expressions (i.e., the'[] shall always be empty). It isaso not allowed to expand i nt er | eave statements with named
alternatives or to specify el se branchesin interleaved behaviour.

Interleaved behaviour can always be replaced by an equivalent set of nested alternatives. The procedures for this
replacement are described in annex B.

Therulefor the evaluation of an interleaving statement is the following:

a) whenever areception satement is executed, the foll owing non-reception statements are subsequently executed
until the next reception statement is reached or the interleaved sequence ends,

NOTE: Reception statements are TTCN-3 statements which may occur in sets of alternativesi.e., r ecei ve,
check,trigger,getcall,getreply,catchandtineout.Non-reception statements denote all
other non-control-transfer statements which can be used within the interleaving statement.

b) the evaluation then continues by taking the next snapshot.

The operational semantics of interleaving are fully defined in annex B.

ETSI

70

EXAMPLE:
/1 The follow ng TTCN-3 code fragnent

interleave {
[l PCOL.receive(MSigl)
{ PCOL. send(MW/Si g2) ;
PCOL. recei ve(M/Si g3) ;

}
[l PCXR.receive(MSig4)
{ PC®2. send(My/Si g5) ;
PCX2. send(MySi g6) ;
PCX2. recei ve(MySi g7) ;

/1l can be interpreted as a shorthand for

alt {
[T PCOL. receive(MSigl)
{ PCOL. send(MWy/Si g2) ;
alt {
[T PCOL. receive(MSig3)
{ PCO2. recei ve(M/Si g4) ;
PC2. send(MySi g5) ;
PC2. send(MySi g6) ;
PC2. recei ve(M/Si g7)
}
[T PCR.receive(MWSig4)
{ PC2. send(MySi g5) ;
PCO2. send(MySi g6) ;
alt {
[T PCOL. receive(MSig3) {
PC2. recei ve(MWSi g7); }
[T PCR.receive(MSig7) {
PCOL. recei ve(MWSi g3); }
}

}

}
[T PCR.receive(MWSig4)
{ PC2. send(M/Si g5) ;
PC2. send(MySi g6) ;
alt {
[T PCOL. receive(MSigl)
{ PCOL. send(MW/Si g2) ;
al t
[1 EDOO& recei ve(MySi g3)
{ PC2. recei ve(M/Si g7) ;

}

[T PCR.receive(MWSig7)
{ PCOL. r ecei ve(My/Si g3) ;
}

}

}
[T PCR.receive(MSig7)
{ PCOL. recei ve(M/Si gl) ;
PCOL. send(MW/Si g2) ;
PCOL. recei ve(M/Si g3) ;

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)

71 ETSI ES 201 873-1 V1.1.2 (2001-06)

20.4 Default behaviour

Default behaviour can be seen asan extensionto an al t statement or a single receive operation which is defined in a
special manner. A default behaviour shall be defined by specifying anamed al t and activated before it can be invoked
and executed.

Activation of a default meansthat the aternatives defined in the relevant named alt are appended to the top-level of all
subsequent alternatives.

The default behaviour is also appended to any single (i.e.,, not inan al t statement) receiving operations, timeouts or
done statements. Thisis because these operations are conceptualy the same as one single dternative. For example:

i\/yPort .recei ve(MyMsQ) ;

/1 Is the sane as

alt {
[T MyPort.receive(M/Msg) {}

20.4.1 The Activate and Deactivate operations

A default behaviour is activated by using theact i vat e operation and deactivated by usingthedeact i vat e
operation. An empty deact i vat e operation deactivates all active default behaviours.

In the case of multiple activation of multiple named alternativesthe al t elements shal be expanded in the order of
activation.

In the case where the argument to an activate operation isalist of named alternativesthe al t elements shall be
expanded in the order indicated by the list.

EXAMPLE:

nanmed alt Defaultl() // nanmed alt definition

{
[T MWPort.check

{MyBehavi our 1() }

/1 inside behaviour definition
activate(Defaultl());

CL2.recei ve(MySet up) ;

al t{
[T CL2.receive(MSigl)
{CL2. send(MW/Si g2) }
[T CL2.receive(MSig2)
{CL2. send(nySi gl1)}
}

/1 This statement deactivates the default behaviour Defaultl
deactivate(Defaul t1);

/1 This statement deactivates all previously activated default behaviour
deacti vate;

/1 Conceptually, after definition and activation the default alt is expanded to the end of
// any following alt or receive statements
activate (Defaultl());

CLZ. recei ve(MySet up) ;

ETSI

72 ETSI ES 201 873-1 V1.1.2 (2001-06)

CL2.recei ve(M/Si g1)
{CL2. send(MW/Si g2) }
CL2.recei ve(M/Si g2)
{CL2. send(nySi g1)}

// is equivalent to

alt{
[]

[]

20.5

CL2.recei ve(MySetup); // The single receive now becones an alt in its own right

MyPor t . check
{MyBehavi our 1() }

CL2. recei ve(M/Si g1)
{CL2. send(MW/Si g2) }
CL2.recei ve(M/Si g2)
{CL2. send(nySi gl)}

MyPor t . check
{MyBehavi our 1() }

The Return statement

Ther et ur n statement terminates execution of a function and returns control to the point from which the function was
called. A r et ur n statement may be optionally associated with areturn value. Using r et ur n in atest case or control
isequivalent to st op.

EXAMPLE:

functi on MyFunction() return bool ean

{

if (date == "1.1.2000") { return false; }
/] execution stops on the 1.1.2000 and returns false as a failure indication

return true; /] true is returned

}

functi on MyBehavi our() return verdicttype

{

if (MyFunction()) { verdict.set(pass); } // use of MyFunction in an if statenent
el se { verdict.set(inconc); }

return verdict.get; // explicit return of the verdict

ETSI

73 ETSI ES 201 873-1 V1.1.2 (2001-06)

21 Configuration operations

Configuration operations are used to set up and control test components. These operations shall only be used in TTCN-3
test cases and functions (i.e., not in the module control part).

Table 13: Overview of TTCN-3 configuration operations

Configuration operations

Statement Operation Name
Create parallel test component create
Connect one component to another component connect
Disconnect two components disconnect
Map component port to test interface port map
Unmap port from test system interface unmap
Get MTC address mtc
Get test system interface address system
Get own address self
Start execution of test component start
Stop execution of test component stop
Check termination of a PTC running
Wait for termination of a PTC done

21.1 The Create operation

The MTC isthe only test component which is automatically created when atest case starts. All other test components
are created explicitly during test execution by cr eat e operations. A component is created with itsfull set of ports of
which the input queues are empty. Furthermore, if a port is defined to be of thetypei n or i nout it shall beina
listening state ready to receive traffic over the connection.

Since all components and ports areimplicitly destroyed at the termination of each test case, each test case shall
completdy create its required configuration of components and connections when it isinvoked.

/1 This exanple declares a variable of type address, which is used to store the reference of a
// newy created conmponent of type MyConponent Type which is the result of the create function.

v;ar MyConponent t ype MyNewConponent ;

M/NemOorrponent ;= MyConponent Type. cr eat e;

Thecr eat e operation shall return the unique component reference of the newly created instance. The unique
reference to the component will typically be stored in a variable (see clause 8.6) and can be used for connecting
instances and for communication purposes such as sending and receiving.

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can creste any other component). The visibility of component references shall
follow the same scope rules as that of variables and in order to reference components outside their scope of creation the
component reference shall be passed as a parameter or asafield in amessage.

ETSI

74 ETSI ES 201 873-1 V1.1.2 (2001-06)

21.2 The Connect and Map operations

The ports of atest component can be connected to other components or to the ports of the test system interface. In the
case of connections between two test componentsthe connect operation shall be used. When connecting a test
component to atest system interface the map operation shall be used. Theconnect operation directly connects one
port to another with thei n side connected to the out side and vice versa. The map operation on the other hand can be
seen purely as aname trandation defining how communications streams should be referenced.

Test system Connected Ports
I N
«
MTC PTC
>
ot I'N
ot I'N
Mapped Ports
Abstract Test System Interface ot ¢ | I'N
O—C—

Real Test System Interface

SUT

Figure 7: Illustration of the connect and map operations

With both the connect operation and the map operation, the portsto be connected are identified by the component
references of the componentsto be connected and the names of the ports to be connected.

There are two operations for identifying the MTC i.e,, nt c, and for identifying ports of the test system interfacei.e,,
syst em(see clause 8.6). Both these operations can be used for identifying and connecting ports.

Both the connect and map operations can be called from any behaviour definition (function). However before either
operation is called the components to be connected shall have been created and their component references shall be
known together with the names of the relevant ports.

Both the map and connect operations allow the connection of a port to more than one other port. It isnot allowed to
connect to a mapped port or to map to a connected port.

EXAMPLE:

// 1t is assuned that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared
// in the corresponding port type and conponent type definitions

v;ar MyConponent Type My/NewConponent ;
Wl\lem()orrponent ;= MyConponent Type. cr eat e;

cbnnect (MyNewConponent : Port1, ntc:Port3);
map(MyNewConponent : Port 2, system PCOL);

/1 In this exanple a new conponent of type MyConponent Type is created and its reference stored

/1 in variable MyNewConponent. Afterwards in the connect operation, Portl of this new conponent
/1 is connected with Port3 of the MIC. By nmeans of the map operation, Port2 of the new conponent
/1 is then connected to port PCOL of the test systeminterface

ETSI

75 ETSI ES 201 873-1 V1.1.2 (2001-06)

21.2.1 Consistent connections
For both the connect and map operations only consistent connections are alowed.
Assuming the following:
a) ports PORT1 and PORT2 are the ports to be connected;
b) inlig-PORT1 defines the messages or procedures of the in-direction of PORT1,
¢) outlist-PORT 1defines the messages or procedures of the out-direction of PORT1;
d) inlist-PORT2 defines the messages or procedures of the in-direction of PORT2; and
e) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.
Theconnect operationisallowed if and only if:
- outlist-PORT1 O inlist-PORT2 and outlist-PORT2 [inlist-PORT 1.
The map operation (assuming PORT2 is the test system interface port) isalowed if and only if:
- outlist-PORT1 O outlist-PORT2 and inlist-PORT2 [inlist-PORT 1.
In dl other cases, the operations shall not be allowed.

Since TTCN-3 alows dynamic configurations and addresses, not al of these consistency checks can be made statically
at compile-time. All checks, which could not be made at compile-time, shall be made at run-time and shall lead to atest
case error when failing.

21.3 The Disconnect and Unmap operations

Thedi sconnect and unmap operations are the opposite operations of connect and map. They perform the
disconnection (of previoudy connected) ports of test components and the unmapping of (previously mapped) ports of
test components and portsin the test system interface.

Both, thedi sconnect and unnmap operations can be called from any component if the relevant component references
together with the names of the relevant portsare known. A di sconnect or unmap operation has only an effect if the
connection or mapping to be removed has been crested beforehand.

EXAMPLE:

cbnnect (MyNewConponent : Port1, ntc:Port3);
map(MyNewConponent : Port 2, system PCOL);

di sconnect (MyNewConponent : Port 1, ntc: Port3); /1 di sconnect previously nade connection
unmap(MyNewConponent : Port 2, system PCOL) ; /1 unmap previously nade napping

21.4 The MTC, System and Self operations

The component reference (see clause 8.6) has two operations, nt ¢ and sy st emwhich return the reference of the
master test component and the test system interface respectively. In addition, the operation sel f can be used to return
the reference of the component in which it iscalled. For example:

var MyConponent Type MyAddress;
MyAddress := self; // Store the current conmponent reference

The only operations allowed on component references are assignment and equivalence.

ETSI

76 ETSI ES 201 873-1 V1.1.2 (2001-06)

21.5 The Start test component operation

Once a component has been created and connected behaviour has to be bound to the component and the execution of its
behaviour has to be started. Thisis done by using the st art operation (component creation does not start execution of
the component behaviour). Thereason for the distinction between cr eat e and st ar t isto allow connection
operations to be done before actually running the test component.

Thest art operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an already defined function. For example:

/1 It is assumed that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared
/1 in the corresponding port type and conponent type definitions

vér My Conponent Type MyNewConponent ;
M/NemOorrponent ;= MyConmponent Type. creat e;
cbnnect (MyNewConponent : Port1, ntc:Port3);
connect (MyNewConponent : Port 2, system PCOL);

M/NemOorrponent .start (MyConponent Behavi our ());

/1 In this exanple, a new conponent is first created, then connected to its environment and |astly
/1 it is started by neans of the start operation. For identifying the conponent to be executed its
/'l reference is used

The following restrictions apply to a function invoked in ast art test component operation:
« |f thisfunction has parameters they shal only bei n parameters, i.e., value parameters.

« Thisfunction shall either have ar uns on definition referencing the same component type as the newly created
component or shall passin all information needed from the component type definition as parameters.

» Portsand timers can only be passed into this function if they refer to ports and timersin the component type
definition of the newly created component, i.e., ports and timers are local to component instances and shall not
be passed to other components.

NOTE: The ability to pass portsin as parameters allows the specification of generic functionsthat are not tied to
one specific component type.

21.6 The Stop test component operation

The st op test component statement explicitly stops the execution of the test component in which the stop is called. The
operation has no arguments. For example:

if (date == "1.1.2000") { stop; } /1 execution stops on the 1.1.2000

If thetest component that is stopped isthe MTC all remaining PTCsthat are till running shall aso be stopped and the
test case terminates.

NOTE: The concrete mechanism for stopping all remaining running PTCs is outside the scope of the present
document.

All resources shall be released when atest component terminates, either explicitly using the st op operation or through
reaching ar et ur n statement in the function that originally started the test component or implicitly when the
component reaches the end of its behaviour tree. Any variables storing a stopped component reference shall refer to
nothing.

Therulesfor the termination of test cases and the calculation of the fina test verdict are described in clause 24.

ETSI

77 ETSI ES 201 873-1 V1.1.2 (2001-06)

21.7 The Running operation

Ther unni ng operation alows behaviour executing on atest component to ascertain whether behaviour running on a
different test component has completed. Ther unni ng operation is considered to be abool ean expression and, thus,
returnsabool ean value to indicate whether the specified test component (or all test components) has terminated. In
contrast to the done operation, ther unni ng operation can be used freely in bool ean expressions. For example:

i f (PTCL. running) /1 usage of running in an if statenent

/1 Do sonet hi ng!

while (all component.running != true) { // usage of running in a | oop condition
My Speci al Functi on()
}

21.8 The Done operation

The done operation alows behaviour executing on atest component to ascertain whether the behaviour running on a
different test component has compl eted.

The done operation shall be used in the same manner asareceiving operation or at i meout operation. Thismeansit
shall not beused in abool ean expression, but it can be used to determine an alternativein an al t statement or as
stand-alone statement in a behaviour description. In the latter case adone operation is considered to be a shorthand for
an al t statement with only one alternative, i.e., it has blocking semantics, and therefore provides the ability of passive
waiting for the termination of test components.

NOTE: TheTTCN-3 done operation and the DONE operation TTCN-2 have identical semantics.
EXAMPLE:

/1 Use of done in alternatives

;u t{

[T MWPTC. done {
verdi ct. set (pass)
}

[T any port.receive {
goto alt
}

/1 the follow ng done as stand-al one statenent:

al | component. done;

// has the follow ng neaning:

ait {
[T all conponent.done {}
}

// and thus, blocks the execution until all parallel test conponents have termn nated

ETSI

78 ETSI ES 201 873-1 V1.1.2 (2001-06)

21.9 Using component arrays

Thecr eat e, connect, start and st op operations do not work directly on arrays of components. Instead a
specific element of the array shall be provided as the parameter. For components the effect of an array is achieved by
using an array of component references and assigning the relevant array element to theresult of the cr eat e operation.

/1 This exanpl e shows how to nodel the effect of creating, connecting and running arrays of
/1 conmponents using a |l oop and by storing the created conponent reference in an array of
/1 component references.

testcase MyTest Case() runs on MyM cType system MyTest System nterface
{

vér integer i;
var MyPTCTypel MPtcType[11];
for (i:= 1; i<=10; i:=i+1)
{
MyPt cAddr esses[i] := MyPtcTypel. create;

connect (sel f: Pt cCoordi nati on, MyPtcAddresses[i]: M cCordination);
MyPt cAddr esses[i].start(M/PtcBehaviour());

21.10 Use of Any and All with components
The keywordsany and al | may be used with configuration operations asindicated in table 14.

Table 14: Any and All with components

Operation Allowed Example
any all

create

start

running Yes but from Yes but from MTC |any component.running
MTC only only all component.running

done Yes but from Yes but from MTC |any component.done
MTC only only all component.done

stop

22 Communication operations

TTCN-3 supports message-based (asynchronous) and procedure-based (synchronous) communication (see clause 8.1).
Asynchronous communication is non-blocking on the send operation, asillustrated in figure 8 where processing in the
MTC continuesimmediately after the send operation occurs. The SUT is blocked onther ecei ve operation until it
receives a sent message.

send recei ve

MTC > SUT

Figure 8: Illustration of the asynchronous send and receive
Synchronous communication is blocking on thecal | operation, asillustrated in figure 9 wherethe cal | operation

blocks processing in the MTC until either ar epl y or exception isreceived from the SUT. Smilar tother ecei ve,
theget cal | blocksthe SUT until the call isreceived.

ETSI

79 ETSI ES 201 873-1 V1.1.2 (2001-06)

cal | 1 get cal |
—_— :
MTC |
44— -
getreply 2 reply or
catch exception rai se exception

Figure 9: Illustration of a complete synchronous call

Operationssuch assend and cal | are collectively known as communication operations. These operations shall only
be used in TTCN-3 test cases and functions (i.e., not directly in the module control part). The communication
operations are divided into three groups:

a) acomponent sends a message, calls a procedure, or repliesto an accepted call or raises an exception. These
actions are collectively referred to as sending operations,

b) acomponent receives a message, accepts a procedure call, receives areply for aprevioudy called procedure or
catches an exception. These actions are collectively referred to as receiving operations,

¢) control of accessto aport by doingacl ear, start or st op. These actions are collectively referred to as
contralling operations.

These operations can be used on the communication ports of atest component as summarized in table 15. In cases of
mixed ports all the operations are applicable.

Table 15: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at Can be used at
message-based ports | procedure-based ports
Sending operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote entity [reply Yes
Raise exception (to an accepted call) raise Yes
Receiving operations
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote entity getcall Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Check msg/call/exception/reply received check Yes Yes
Controlling operations
Clear port clear Yes Yes
Clear and give access to port start Yes Yes
Stop access (receiving & sending) to port stop Yes Yes

22.1 Sending operations
The sending operations are:
a) send: send a message asynchronously;
b) cal | : call aprocedure;
c) repl y:reply to an accepted procedure call from the SUT; and

d) rai se: raise an exception in cases where a procedure call is received.

ETSI

80 ETSI ES 201 873-1 V1.1.2 (2001-06)

22.1.1 General format of the sending operations

Sending operations consist of a send part and, in the case of the procedure-based cal | operation, a response and
exception handling part.

The send part:
» gpecifiesthe port at which the specified operation shall take place;
» definesthe value of the information to be transmitted;

» gives an (optional) address expression which uniquely identifies the communication partner in the case of a one-
to-many connection.

The port name, operation name and value shall be present in all sending operations. The identification of the
communication partner (denoted by thet o keyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity shall be explicitly identified.

22.1.1.1 Response and exception handling

Response and exception handling is only needed in cases of synchronous communication. The response and exception
handling part of thecal | operation isoptional and isrequired for cases where the called procedure returns a value or
hasout ori nout parameters whose values are needed within the calling component and for cases where the called
procedure may raise exceptions which need to be handled by the calling component.

Theresponse and exception handling part of the call operation makes use of get r epl y and cat ch operationsto
provide the required functionality.

22.1.2 The Send operation

The send operation is used to place a value on an outgoing message port queue. The value may be specified by
referencing atemplate, avariable, or a constant or can be defined in-line from an expression (which of course can be an
explicit value). When defining the value in-line the optiona type field shall be used if thereis ambiguity of the type of
the value being sent.

The send operation shall only be used on message-based (or mixed) ports and the type of the valueto be sent shall be
in the list of outgoing types of the port type definition. For example:

MyPort . send(MyTenpl at e(5, MyVar)) ;
/1 Sends the tenplate MyTenplate with the actual paraneters 5 and MyVar via MyPort.

MyPort . send(i nteger:5);
/1 Sends the integer value 5

In cases of one-to-many connections the communication partner shall be specified uniquely. This shall be denoted using
thet o keyword. For example:

MyPort.send("My string") to MyPartner;

// Sends the string "My string" to a conponent with a conponent reference stored in the

/1 variable MyPartner.

M/PCO. send(MyVari abl e + YourVariable - 2) to MyPartner;
/] Sends the result of the arithmetic expression to MyPartner.

22.2.1 The Call operation

Thecal | operation isused to specify that atest component calls aprocedure in the SUT or in another test component.
Thecal | isablocking operation in that it shall wait until it receives aresponse (i.e,, ar epl y) or an exception from
the called entity. In other wordsthe cal | operation works in a synchronous manner.

NOTE: Thisiscomparable with the testing of server functionality i.e., the SUT isthe server and the component
playstherole of aclient.

ETSI

8l ETSI ES 201 873-1 V1.1.2 (2001-06)

Thecal | operation shall only be used on procedure-based (or mixed) ports. The type definition of the port at which
the call operation takes place shall indude the procedure nameinitsout or i nout listi.e, it must be allowed to call
this procedure at this port.

Thevalue of thecal | operation isasignature that may either be defined in the form of a signature template or be
defined in-line. For example:

signature MyProc (out integer MyParl, inout bool ean MyPar2);

MyPort . cal | (MyProc: { MyVar 1, MyVar 2}) ;

/1 Calls the remote procedure MyProc at My/CL with the in and inout paranmeters 5 and MyVar.

/1 Neither a return value nor an exception is expected fromthis call. If one (or both) of the
/1 two paranmeters is defined to be an inout parameter, its value will not be considered i.e.,
/1 it is not assigned to a variable.

/1 The follow ng exanple explains the possibilities to assign values to in and inout paraneters
/1 on the call argument. The follow ng signature is assumed for the procedure to be called.

/1 Note: MyProc2 has no return value and no exceptions

signature MyProc2 (in integer A out integer B, inout integer O);

i\/yPort.caII(NyProcZ:{l, -, 3h):
/1 Only values of in and inout paranmeters are specified The returned val ues of out and inout
/'l parameters are not used after the call and, thus, not assigned to variables.

All'i nandi nout parameters of the Sgnature shall have a specific valuei.e., the use of matching mechanisms such as
AnyValueis not allowed.

The signature arguments of the cal | operation are not used to retrieve variable names for out and i nout parameters.
The actual assignment of the procedure return valueand out and i nout parameter valuesto variables shall explicitly
be made in theresponse (get r epl y) and exception handling (cat ch) part of thecal | operation. Thisis denoted by
the keywords val ue and par amrespectively. Thisallows the use of signaturetemplatesin cal | operationsin the
same manner as templates can be used for types.

In general, acal | operation isassumed to have blocking-semantics. However, TTCN-3 also supports non-blocking
calls. A cdl, which has no return values, is assumed to be a non-blocking call. Exceptions (if specified) raised by a call
without return values shall be caught within afollowing al t statement. In addition, it isalso possible to force
non-blocking semantics by the nowai t keyword (see clause 22.2.12).

In cases of one-to-many connections the communication partner shall be specified uniquely. This shall be denoted using
the keyword t 0. For example:

MyPort.call (MyProc: { MWVarl, MVar2}) to MyPartner;

/1 In this exanple the called party is explicitly identified by the conponent reference stored
// in the variable MyPartner.

22211 Handling responses to a Call

The handling of the responseto a call isdone by means of the get r epl y operation (see clause 22.3.5). This operation
defines the alternative behaviour depending on the response that has been generated as aresult of thecal | operation.
For example:

MyPort.call (MyProc: { WVarl, MyVar2}) to MyPartner // Where { ...} is an inline tenplate

[T Wd .getreply(MyProc: {M/Varl, MVar2}) {}
}

If needed, thereturn value of the called procedure shall be picked up explicitly inthe get r epl y operation. Thisis
expressed using '->' and the (optional) keyword val ue. For example:

MyPort.call (MyProc: { Varl, MyVar2}) to MyPartner
{

[T Wd .getreply(MyProc: {M/Varl, MVar2}) -> value MyResult {}

}
/1 A value shall be returned by MyProc which will be stored in the variable M/Result.

ETSI

82 ETSI ES 201 873-1 V1.1.2 (2001-06)

The signature arguments of the cal | operation are not used to retrieve variable names for out and i nout parameters.
The actual assignment of the procedure return valueand out andi nout parameter valuesto variables shall explicitly
be madein theresponse (get r epl y) and exception handling (cat ch) part of thecal | operation. Thisis denoted by
the keywords val ue and par amrespectively. Thisallows the use of signaturetemplatesin cal | operationsin the
same manner as templates can be used for types. For example:

MyPort.call (MyProc: {5, M/Var}) to MyPartner
[IMd .getrepl y(MyProc: { MVarl, MVar2}) -> value MyResult param (M/Par1Var, MyPar2Var) {}

/1 In this exanple both parameters of MyProc are specified as inout paranmeters and their val ues
/1 after the term nation of MyProc are assigned to MyPar1Var and MyPar2Var.

22.2.1.2 Handling exceptions to a Call

The handling of exceptionsto a cdl is done by means of the cat ch operation (see clause 22.3.6). This operation
defines the alternative behaviour depending on the exception (if any) that has been generated asaresult of thecal |
operation. For example:

signature MyProc3 (out integer MyParl, inout bool ean MyPar2) return MyResult Type
exception (ExceptionTypeOne, ExceptionTypeTwo, ExceptionTypeThree);

-// The follow ng call operation shows the getreply and exception handling mechani smof the
/1 call operation

MyPort.call (M/Proc3: {5, Myvar}, 30E-3) to MyPartner

[T WO .getreply(MProc3: {MVarl, MVar2}) -> value MyResult param (MyPar1Var, MyPar 2Var) {}
[T MWPort.catch(MProc3, MExceptionOne)

{ /1 catch an exception
verdict.set(fail); /1 set the verdict and
st op /1 stop as result of the exception
}
[T MWPort.catch(MProc3, MExceptionTwo) /1 catch a second exception
{verdict.set(inconc)} /1 set the verdict and continue after

/1l the call as result of the
/1 second exception

[MyCondi tion] MyPort.catch(M/Proc3, MyExceptionThree) {} /1 catch a third exception which
/1 may occur if MyCondition
// evalutates to true

[T MWPort.catch(tineout) {} // timeout exception i.e., the called party
// does not react in time, nothing is done

}
22.2.1.3 Handling timeout exceptions to the Call

Thecal | operation may optionally include atimeout. Thisis defined as an explicit value or constant of f | oat type
and defines the length of time after the cal | operation has garted that at i meout exception shall be generated by the
test system. If no timeout value part is present inthecal | operationnot i meout exception shall be generated. For
example:

MyPort . call (MyProc: {5, MyVar}, 20E-3)

{
[T MPort.catch(tineout)
{
verdict.set(fail);
st op
}
}
/1 This exanple shows a call with a tinmeout value of 20nms. This nmeans if the called party does
// not respond with a reply or exception within this time the test systemw |l automatically
/] generate a timeout exception. The handling of the tinmeout is done by means of a catch
// operation. If the procedure conpletes wi thout a tineout exception, execution will continue

/1 with the statement following the call operation.

Using the keyword nowai t in the timeout value part of acal | operation alows calling a procedure without waiting
either for atermination, aresponse, an exception raised by the called procedure or a timeout exception. For example:

MyPort.call (MyProc: {5 MVar}, nowait);

/1 In this exanple the test conponent w |l continue execution w thout
/1 waiting for the term nation of M/Proc.

ETSI

83 ETSI ES 201 873-1 V1.1.2 (2001-06)

In such cases a possible response or exception hasto be removed from the queue by usingaget r epl y oracat ch
operation in asubsequent al t statement.

22.2.2 The Reply operation

Ther epl y operation isused to reply to a previoudy accepted call according to the procedure signature. A r epl y
operation shall only be used at a procedure-based (or mixed) port. The type definition of the port shall include the name
of the procedure to which ther epl y operation belongs.

The value part of ther epl y operation conssts of a signature reference with an associated actual parameter list and
(optiona) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line. All out andi nout parameters of the signature shall have a specific valuei.e,, the use of matching
mechanisms such as AnyValue is not allowed. For example:

MyPort.reply(MProc2:{ - ,5});

/1 Replies to an accepted call of MyProc2. The MyProc2 has no return value but two paraneters.
/1 The first parameter is an in parameter i.e., its value will not be replied and therefore

/1 needs not to be specified. The second paranmeter is either an out or an inout paranmeter. Its
/1 value is 5.

In cases of one-to-many connections the communication partner shall be specified explicitly and shall be unique. This
shall be denoted using thet o keyword. For example:

MyPort.repl y(MProc3:{ - ,5}) to MyPartner;
/1 This exanple is identical to previous one, but the reply is directed to a conponent with a
/1 conponent reference stored in variable MyPartner

If avalueisto bereturned to the calling party this shall be explicitly stated using the val ue keyword.

MyPort.repl y(MProc: {5, MyVar} val ue 20);
/! Replies to an accepted call of MyProc. The return value of MyProc is 20 and it has two
/] paraneters which are out or inout paraneters. Their values are provided by 5 and MyVar.

22.2.3 The Raise operation

Ther ai se operation isused to raise an exception. An exception shall only be raised at a procedure-based (or mixed)
port. An exception isareaction to an accepted procedure call the result of which leads to an exceptional event. Thetype
of the exception shall be specified in the signature of the called procedure. The type definition of the port shall include
initslist of accepted procedure calls the name of the procedure to which the exception belongs.

NOTE: Thereation between an accepted call andar ai se operation cannot always be checked statically. For
testing it isallowed to specify ar ai se operation without an associated get cal | operation.

The value part of ther ai se operation conssts of the signature reference followed by the exception value. For
example:

MyPort.rai se(MySi gnature, MyVariable + YourVariable - 2);
// Raises an exception with a value which is the result of the arithnetic expression
/1 at MyPort

Exceptions are specified as atype. Therefore the exception value may either be derived from atemplate or be the value
resulting from an expression (which of course can be an explicit value). The optional type field in the value
specification to ther ai se operation shall be used in cases where it is necessary to avoid any ambiguity of the type of
the value being sent. For example:

MyPort.rai se(M/Proc, MyExceptionType: {5, M/Var});
// Raises an exception fromthe renote procedure defined by Myproc with the val ue defined
/1 by tenplate MyExceptionTenplate with the actual parameters 5 and MyVar at port MyPort

In cases of one-to-many connections the communication partner shall be specified uniquely. This shall be denoted using
the keyword t 0. For example:

MyPort.rai se(MySignature, "My string") to MyPartner;

// Raises a string exception with the value"My string" at MyPort to to a conponent with an
/1 conponent reference stored in variable MyPartner

ETSI

84 ETSI ES 201 873-1 V1.1.2 (2001-06)

22.3 Receiving operations

Thereceiving operations are:
a) recei ve: receive an asynchronoudy sent message;
b) trigger: trigger on thereception of a specific message;
c) get cal | : accept aprocedure call;
d) getrepl y: handling thereply to a previoudy called procedure;
€) cat ch: catch an exception which has beraised asareaction to acall operation; and

f) check: check thetop element of the in-queue of a particular port.

22.3.1 General format of the receiving operations
Receiving operation consists of areceive part and an assignment part.
Thereceive part:
a) specifiesthe port at which the operation shall take place;
b) defines amatching part which specifies the acceptabl e input which will match the statement;

¢) givesan (optional) address expression which uniquely identifies the communication partner (in case of
one-to-many connections).

The port name, operation name and value part of all receiving operations shall be present. The identification of the
communication partner (denoted by the f r omkeyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity needs to be explicitly identified.

22.3.1.1 Making assignments on receiving operations

The assignment part in areceiving operation is optional. For message-based portsit is used when it isrequired to store
received messages. In the case of procedure-based portsit isused for storing thei n andi nout parameters of an
accepted call or for storing exceptions.

In addition, the assignment part may also be used to assign the sender address of a message, exception, r epl y or
cal | toavariable Thisisuseful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, r epl y or exception must be sent back to the original sending
component.

22.3.2 The Receive operation

Ther ecei ve operation isused to receive a value from an incoming message port queue. The value may be specified
by referencing atemplate, a variable, or aconstant or can be defined in-line from an expression (which of course can be
an explicit value). When defining the value in-line the optional type field shall be used to avoid any ambiguity of the
type of the value being received. Ther ecei ve operation shall only be used on message-based (or mixed) ports and the
type of the value to be received shall be included in the list of incoming types of the port type definition.

Ther ecei ve operation removes the top message from the associated incoming port queueif, and only if, that top
message satisfies all the matching criteria associated with ther ecei ve operation. No binding of the incoming values
to the terms of the expression or to the template shall occur.

If thematch is not successful, the top message shall not be removed from the port queuei.e., if ther ecei ve operation
isnot successful the execution of thetest case shall continue with the next alternative.

The matching criteriaare related to the type and value of the message to be received. The type and value of the message
to be received may either be derived from atemplate or be the value resulting from an expression (which of course can
be an explicit value).

ETSI

85 ETSI ES 201 873-1 V1.1.2 (2001-06)

MyPort . receive(MyTenpl ate(5, MyVar));
/1 Specifies the reception of a value which fulfils the conditions defined by the tenplate
/1l MyTenplate with actual parameters 5 and MyVar.

MyPort.recei ve(A<B);
/1 Specifies the reception of a Boolean value true or false depending on the outconme of A<B

An optional type field in the matching criteriato ther ecei ve operation shall be used to avoid any ambiguity of the
type of the value being received. For example:

MyPort . recei ve(integer: MyVar);

/1 Specifiess the reception of an integer value which has the same value as the variable MyVar
Il at MyPort. The (optional) type identifier integer is not strictly necessary because the

/1 type is already given by the definition of MyVar. However, in conplex and |ong test cases
/'l such a type identifier may be used to inprove readability.

MyPort.receive(MVar);
/1 I's an alternative to the previous exanple.

If the match is successful, the value removed from the port queue can be stored in a variable and the address of the
component that sent the message, can beretrieved and stored in avariable. Thisis denoted by the symbol '->' and the
keyword val ue. For example:

MyPort . receive(MyType: *) from MyPartner -> value MyVar;

/1 Specifies the reception of an arbitrary value of MyType (froma conponent with an address
/'l stored in variable MyPartner) which afterwards is assigned to the variable MyVar. MyVar has
/1 to be of the type MyType.

In the case of one-to-many connectionsther ecei ve operation may be restricted to a certain communication partner.
Thisrestriction shall be denoted using the f r omkeyword.

MyPort . receive(charstring: "Hello")from MyPartner;
/1 Specifies the reception of the charstring "Hello" froma conponent with a conponent reference
// or address stored in the variable M/Partner.

Itis also possible to retrieve the component reference or address of the sender of amessage. Thisis denoted by the
keyword sender . For example:

MyPort . receive(MyTenpl ate: {5, MyVarOne}) -> value MyVar Two sender MyPartner;

/1 Specifies the reception of a value which fulfils the conditions defined by the tenplate

/1l MyTenplate with actual paranmeters 5 and MyVarOne. After reception the value is assigned to
/1 the variable MyVarTwo. The reference of the sender conponent is retrieved by call operation
// and assigned to variable MyPartner.

MyPort . recei ve(A<B) -> sender MyPartnner;
/1 Specifies the reception of a Bool ean value of true or false depending on the outconme of A<B.

/1 The conponent reference of the sender conponent is retrieved by call operation and assi gned
/1 to variable MyPartner.

22.3.2.1 Receive any message

A r ecei ve operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.

NOTE: Thisisequivaent tothe TTCN-2 OTHERWISE statement.
A message received by ReceiveAnyMessage shall not be assigned to a variable.
EXAMPLE:

MyPort . recei ve;
/1 Reroves the top value from M/Port. MyPort.

MyPort.receive from MyPartner;
/'l Renoves the top value fromCL1 if it is a message fromthe conmponent with the
addr essr ef erence

MyPort . receive -> sender MySender Var;

/1 Reroves the top value from CL1, but renenbers the sending instance by storing its reference
/1 in MySender Var

ETSI

86 ETSI ES 201 873-1 V1.1.2 (2001-06)

22.3.2.2 Receive on any port

Tor ecei ve amessage on any port usethe any keyword. For example:

any port.recei ve(M/Message);
22.3.3 The Trigger operation

Thetri gger operation filters messages with certain matching criteria from a stream of received messages on agiven
incoming port. Thet ri gger operation shall only be used on message-based (or mixed) ports and the type of the value
to be received shall be included in thelist of incoming types of the port type definition. All messages that do not fulfil
the matching criteria shall be removed from the queue without any further action i.e., thetrigger operation waits for the
next message on that queue. If amessage meets the matching criteria, thet r i gger operation behavesin the same
manner asar ecei ve operation. For example:

MyPort.trigger(MType:*);
/1 Specifies that the operation will trigger on the reception of the first nessage observed of

/1 the type MyType with an arbitrary value at port MyPort.

Thet ri gger operation requiresthe port name, matching criteria for type and value, an optional f r omrestriction
(i.e., selection of communication partner) and an optional assgnment of the matching message and sender component to
variables.

EXAMPLE:

MyPort.trigger(MType:*) from MyPartner;

/1 Specifies that the operation will trigger on the reception of the first nmessage observed of
/1 the type MyType with an arbitrary value at port MyCL coming froma conponent with a reference
// identical to the one stored in the variable M/Partner.

MyPort.trigger(MType:*) from MyPartner -> val ue MyRecMessage;

/1 This exanple is alnpst identical to the previous exanple. The addition is that the nessage
/1 which triggers i.e., all matching criteria are nmet, is stored in the variable M/RecMessage.
MyPort.trigger(MType:*) -> sender MyPartner;

/1 Specifies that the operation will trigger on the reception of the first nmessage observed of
/1 the type MyType with an arbitrary value at MyPort. The reference of the sender conponent

// of this nmessage will be stored in the variable M/Partner.

MyPort.trigger(integer:*) -> value MyVar sender MyPartner;

/1 Specifies that the operation will trigger on the reception of an arbitrary integer value

/1 which afterwards is stored in the variable M/Var and the reference of the sender conponent of
/1 this nessage will be stored in the variable M/Partner.

22.3.3.1 Trigger on any message

A trigger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning isidentical
to the meaning of receive any message. A message received by Trigger OnAnyMessage shall not be assigned to a
variable.

EXAMPLE:
MyPort.trigger;
MyPort.trigger from MyPartner;

MyPort.trigger -> sender MySender Var;

22.3.3.2 Trigger on any port

Totrigger onamessage at any port usetheany keyword. For example:

any port.trigger

ETSI

87 ETSI ES 201 873-1 V1.1.2 (2001-06)

22.3.4 The Getcall operation

Theget cal | operation isused to specify that atest component accepts a call from the SUT, or another test
component. Theget cal | operation shal only be used on procedure-based (or mixed) ports and the signature of the
procedure call to be accepted shall beincluded in the list of allowed incoming procedures of the port type definition.

MyPort . getcal | (MyProc(5, MVar));
/1 WIIl accept a call of MyProc at My/CL with the in or inout paranmeters 5 and value of MyVar.

Theget cal | operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated to the get cal | operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteria for the signature may either be specified in-line or be
derived from a signature template.

A get cal | operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted using the f r omkeyword.

MyPort . getcal |l (M/Proc: {5, MyVar}) from MyPartner;
/1 WIl accept a call of MyProc at My/CL (with the in or inout paraneters 5 and val ue of MyVar)
/1 froma peer entity with the address or conponent reference stored in variable MyPartner.

The assignment part of the get cal | operation comprises the optional assignment of i n and i nout parameter values
to variables and theretrieval and assignment of the address of the calling component to a variable.

The keyword par amis used to retrieve the parameter values of a call. For example:

MyPort . getcal | (M/Proc: {5, MyVar}) from MyPartner -> param (M/Par1Var, M/Par2Var);

/1 Both parmeters of MyProc are inout paranmeters and that their values are assigned

/1 to MyPari1Var and MyPar2Var. The identification of paraneters defined in the procedure

/1 signature and the nanmes in the list of variable nanes follow ng the param keyword in the
/] accept operation above is done by the order in the |ist

The keyword sender isused when it isrequired to retrieve the address of the sender (e.g., for addressingar epl y or
exception to the calling party in a one-to-many configuration).

MyPort.getcal | (M/Proc: {5, My/Var}) -> sender MySender Var;
/1 W1l accept a call of MyProc at MyCL with the in or inout paraneters 5 and MyVar. The calling
/] party is retrieved by the accept operation and stored in MySenderVar. This allows to handle
/1 call of the same procedure from several conponents at the same port in the sane manner.
/1 MySenderVar can be used to reply or raise an exception to the calling conponent.

The signature argument of theget cal | operation shall not be used to pass in variable namesfor i n and i nout
parameters. Theassignment of i n and i nout parameter values to variables shall be made in the assignment part of the
get cal | operation. Thisalowsthe use of signaturetemplatesin get cal | operationsin the same manner as
templates are used for types.

Thefollowing get cal | operations show the possibilities to use matching attributes and omit optional parts, which
may be of no importance for the test specification.

EXAMPLE:
MyPort . getcal | (M/Proc: {5, MyVar}) -> param MyPari1Var, M/Par2Var) sender MSender Var;
MyPort . getcal | (MyProc: {5, *}) -> paran{MPar1Var, MPar2Var);

MyPort . getcal |l (MProc:{*, MyVar}) -> paranm(- , MyPar2Var);
/1 Value of the first inout parameter is not inportant or not used

/1 The follow ng exanples shall explain the possibilities to assign in and inout paraneter
// values to variables. The following signature is assunmed for the procedure to be called

signature MyProc2(in integer A, integer B, integer C, out integer D, integer E, inout integer F);
/1 MyProc2 has no return value and no exceptions

MyPort.getcal | (MyProc2:{*, *, 3, -, - , *}) ->

param(MyVarInl, MyVarln2, MyVarin3, - , - ,MVarlnoutl);
// The in paraneters A, B and C are assigned to the variables M/Varinl, MVarln2 and MyVarl n3
// the inout paramanmeter F is assigned to variable MyVarlnoutl. The out paranmeters D and E need
/1 not to be considered in the assignment part of the accept operation.

ETSI

88 ETSI ES 201 873-1 V1.1.2 (2001-06)

MyPort.getcal | (MyProc2: {*, *, *, - , - , *}) -> paranm(M/Varlnl:=A, MVarln2: =B, MyVarln3:=C,
MyVar | nout 1: =F) ;

/1 Aternative notation for the value assignment of in and inout parameter to variables. Note,
// the nanmes in the assignnent list refer to the names used in the signature of MyProc2

MyPort.getcal |l (MyProc2: {1, 2, 3, - , - ,*}) -> paranm(M/Varlnout 1: =F);
// Only the inout paraneter value is needed for the further test case execution

22.34.1 Accepting any call

A get cal | operation with no argument list for the signature matching criteria will remove the call on the top of the
incoming port queue (if any) if all other matching criteriaare fulfilled. Parameters of calls accepted by AcceptAnyCall
shall not be assigned to avariable.

EXAMPLE:

MyPort . getcall;
/'l Rermoves the top call from MyPort.

MyPort.getcall from MyPartner;

/'l Rermoves the top call fromCL1 if the calling party is an entity with an address or conponent
/'l reference stored in the variable MyPartner.

MyPort.getcall -> sender MySender Var;

/'l Rernoves the top call from CL1, but remenbers the calling party by storing its address or
/'l component reference in MySender Var

22.3.4.2 Getcall on any port

Toget cal | onany port isdenoted by the any keyword. For example:

any port.getcall (M/Proc)

22.3.5 The Getreply operation

Theget r epl y operation isused to handle replies from a previoudy called procedure. A get r epl y operation shall
only be used at a procedure-based (or mixed) port. For example:

MyPort . getrepl y(MyProc: {5, MyVar} val ue 20);
/1 Accepts a reply of procedure MyProc where the returned value is 20 and the val ues of the two
// out or inout paraneters is 5 and the val ue of MyVar.

MyPort . getreply(MyProc2:{ - , 5});
/1 Accepts a reply from MProc2. MyProc2 has no return value but two paraneters. The first
// paraneter is an in paraneter i.e., its value will not be replied and therefore will not be

/1 considered for matching. The second paraneter is either an out or an inout paranmeter. Its
/'l value has to be 5.

It may either beused in the get r epl y and exception part of a call, for example:

MyPort.call (My/Proc) to MyPeer
{

[] MpPort.getreply(MProc:*) {}
) [T MPort.catch {}
or withinan al t statement, for example:
MyPort.call (My/Proc, nowait) to MyPeer;
alt
{ [1 MpPort.getreply(MProc:*) {}
}

Ifusedinanal t statement theget cal | should cover cases where the response of a previoudly called procedure
arrivestoo late i.e., atimeout exception has been raised.

ETSI

89 ETSI ES 201 873-1 V1.1.2 (2001-06)

Aswith other receiving operations matching mechanisms are dlowed in the get r epl y operation in order to
distinguish between replies from a previoudy called procedure which either differ in thereturned value and/or the value
of out andi nout parameters.

MyPort . getreply(MyProcl: {*, MVar});
/1 In this exanple there is no restriction on the returned value and the value of the
/1 first paraneter.

MyPort . getrepl y(MyProcl: {*, *});
/1 The getreply operation will match with any reply from M/Procl with any returned val ue. The
Il stars are inline tenplate definitions for M/Procl and the return type of MyProcl.

In cases of one-to-many connectionsthe get r epl y operation alows to distinguish between different communication
partners by using af r omclause.

MyPort. getreply(MyProc2:{ - ,5}) from MyPartner;

/1 The reply is only accepeted if it is froma conponent with the reference specified in the
/1 variable MyPartner

The optional assignment part of the get r epl y operation allowsto assign values of out and i nout parametersand
returned values to variables.

EXAMPLE:

MyPort . getrepl y(MyProcl: {*, *} value *) -> value MyReturnVal ue param MyPar1, MyPar 2);
// After acceptance, the returned value is assigned to variable MyReturnVal ue and the val ue
// of the two out or inout paranmeters is assigned to the variables MyParl and MyPar?2.

MyPort . getrepl y(MyProcl: {*, *} value *) -> value MyReturnVal ue param(- , M/Par2) sender MSender;
/1 The value of the first parameter is not considered for the further test execution and
// the address or conponent reference of the entity fromwhich the response has been received
// is stored in the variable M/Sender.

/1 The follow ng exanpl es describe sonme possibilities to assign out and inout paraneter val ues
/1 to variables. The following signature is assuned for the procedure which has been called
signature MyProc2(in integer A, integer B, integer C, out integer D, integer E, inout integer F);
/1 Note: MyProc2 has no return value and no exceptions

MyPort . getrepl y(MyProc2: *) -> param - , - -, MVvarQutl, MyVarQut2, - , MyVarlnoutl);
/1 The in paraneters D and E are assi gned to the variables M/VarQut1l and MyVarQut 2 the inout
// paramaneter F is assigned to variable My/Varlnout1.

MyPort . getrepl y(MyProc2: *) -> param MyVarQut 1: =D, MyVar CQut 2: =E, MyVar | nout 1: =F) ;
/1 Alternative notation for the value assignment of in and inout paranmeter to variables. Note,
// the nanmes in the assignnent list refer to the names used in the signature of MyProc2

MyPort . getreply(MyProc2:{ - , -, -, 3, *, *}) -> param(M/Varl nout 1: =F);
// Only the inout paraneter value is needed for the further test case execution

22.35.1 Get any reply from any call

A get r epl y operation with no argument list for the signature matching criteriashall remove ar epl y message on the
top of the incoming port queue (if any) if all other matching criteriaare fulfilled. Parameters or return values of
responses accepted by GetAnyReply shall not be assigned to a variable.

EXAMPLE:

MyPort . getreply;
/1 Renoves the top response from MyPort.

MyPort.getreply from MyPartner;

/1 Renoves the top response fromCL1 if the responding party is an entity with the address
/1 or conponent reference stored in variable MyPartner.

MyPort.getreply -> sender MySender Var;

/1 Reroves the top response from CL1, but renenbers the responding party by storing it
// in the variabl e MySender Var

ETSI

90 ETSI ES 201 873-1 V1.1.2 (2001-06)

22.3.5.2 Get a reply on any port
To get areply on any port use theany keyword. For example:

any port.getreply(Mproc)

22.3.6 The Catch operation

The cat ch operation isused to catch exceptions raised by a peer entity asareaction to aprocedure call. Thecat ch
operation shall only be used at procedure-based (or mixed) ports. The type of the caught exception shall be specified in
the signature for the procedure which raised the exception.

MySyncPort . catch(MySi gnature, integer: MyVar);

/'l Specifiess the catch of an exception raised by a procedure with a signature Mysignature at

/] port MySyncPort. The exception is an integer value which has the sanme value as the variable
/1l MyVar. The (optional) type identifier integer is not strictly necessary because the type is
/1l already given by the definition of MyVar. However, in conplex and |ong test cases such a type
/1l identifier may be used to inprove readability.

MySyncPort . cat ch(MySi gnature, MVar);
/1 I's an alternative to the previous exanple.

MySyncPort . catch(My/Si gnature, A<B);
/1 Catches a Bool ean exception of true or false depending on the outcone of A<B raised by a

/'l procedure with a signature MySignature at port MySyncPort.

The cat ch operation may be part of the accepting part of acall or be used to determine an alternativein an al t
statement. If the cat ch operation isused in the accepting part of acal | operation, the information about port name
and sgnature reference to indicate the procedure which rose the exception is redundant, because this information
followsfrom thecal | operation. However, for readability reasons (e.g., in case of complex cal | satements) this
information shall be repeated.

Exceptions are specified as types and thus can be treated like messages e.g., templates can be used to distinguish
between different values of the same exception type.

MySyncPort. cat ch(MySi gnature, MyTenpl ate: {5, M/Var});

/] Catches an exception raised by a procedure with a signature Mysignature at port MySyncPort
/1 which fulfils the conditions defined by the tenplate MyTenpl ate with actual paraneters 5
/1 and MyVar.

The cat ch operation requires the port name, matching criteria for type and value, an optional f r omrestriction (i.e.,
selection of communication partner) and an optiona assignment of the matching exception and sender component to
variables. For example:

MySyncPort. cat ch(M/Si gnature, charstring:"Hello")from M/Partner;
/] Catches the 1 A5 string "Hello" raised by a procedure with a signature Mysignature at port
/1 MySyncPort froman entity with an address or conponent reference stored in MyPartner.

MySyncPort. catch(MySi gnature, MyType:*) from MyPartner -> value MyVar;

// Catches an exception with an arbitrary value of MyType (raised by a procedure with a

// signature Mysignature at port MySyncPort froma conponent with a reference stored in

/1 the variable MyPartner) which afterwards is assigned to the variable M/Var. M/Var has to be

/1 of the type MyType.

MySyncPort . catch(MySi gnature, MyTenplate (5, MyVarOne)) -> value MyVar Two sender MyPartner;

/] Catches an exception raised by a procedure with a signature Mysignature with a val ue which
// fulfils the conditions defined by the tenplate MyTenplate with actual parameters 5 and

/1 MyVarOne. Afterwards the exception is assigned to MyVarTwo. The address or reference of the
// sender entity is retrieved by the catch operation and assigned to MyPartner.

22.3.6.1 The Timeout exception

Thereisone special t i meout exception which is caught by the cat ch operation. Thet i neout exceptionisan
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time.
For example:

MyPort.catch(tinmeout); // Catches a tineout exception.

Catching t i meout exceptions shall be restricted to the exception handling part of a call. No further matching criteria
(including af r ompart) and no assignment part isallowed for acat ch operation that handlesat i meout exception.

ETSI

91 ETSI ES 201 873-1 V1.1.2 (2001-06)

22.3.6.2 Catch any exception

A cat ch operation with no argument list alows any valid exception to be caught. The most genera case iswithout
using the f r omkeyword and without an assignment part. This statement will also catch thet i meout exception. For

example:
MyPort . cat ch;
MyPort . catch from MyPartner;

MyPort.catch -> sender MySender Var;

22.3.6.3 Catch on any port

To cat ch an exception on any port use the any keyword. For example:

any port.catch(tineout)

22.3.7 The Check operation

The check operation isageneric operation that alows read access to the top e ement of message-based and
procedure-based incoming port queues without removing the top e ement from the queue. The check operation hasto
handle val ues of a certain type at message-based ports and to distinguish between callsto be accepted, exceptionsto be
caught and replies from previous calls at procedure-based ports.

Thereceiving operationsr ecei ve, get cal | , get r epl y and cat ch together with their matching and assignment
parts, are used by the check operation to define the condition which hasto be checked and to extract the value or
values of its parametersif required.

MyAsyncPort . check(receive(integer: 5));
/1 W1l check for an integer value of 5 as top nessage in the asynchronous port MyAsyncPort.

MyPort . check(getcal | (MProc: {5, MyVar}) from MyPartner);
/1 W1l check for a a call of M/Proc at MY/CL (with the in or inout parameters 5 and MyVar) from
// a peer entity with the address or conponent reference stored in the variable M/Partner.

MyPort . check(getrepl y(MyProc: {5, My/Var} value 20));
/] Checks for a reply fromprocedure MyProc at MyPort where the returned value is 20 and
// the values of the two out or inout paranmeters is 5 and the value of MyVar.

MySyncPort . check(cat ch(M/Si gnature, MyTenplate (5, M/Var)));
/1 Checks for an exception raised by a procedure with a signature Mysignature at port MySyncPort
/1 which fulfils the conditions defined by the tenplate MyTenpl ate with actual paraneters 5

/1 and MyVar.

It isthetop element of an incoming port queue that shall be checked (it is not possible to ook into the queue). If the
queueis empty the check operation fails. If the queueisnot empty, a copy of the top e ement is made and the
receiving operation specified in the check operation is performed on the copy. The check operation failsif the
receiving function failsi.e., the matching criteriaare not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the normal manner, i.e,, the next aternative to the check operation is
evaluated. The check operation is successful if the receiving function is successful.

Using thecheck operation in awrong manner, e.g., check for an exception at a message-based port shall cause atest
case error.

NOTE: In most casesthe correct usage of the check operation can be checked staticaly, i.e., before compilation.

EXAMPLE:

MyPort . check(getrepl y(MyProcl: {*, MyVar} value *) -> value MyReturnVal ue paran{MPar1l));
/1 In this exanple the returned value is assigned to variable M/ReturnVal ue and the val ue of
// the first out or inout paranmeter is assigned to variable MyParl.

MyPort . check(getcal | (M/Proc: {5, MyVar}) from MyPartner -> param (M/Par1lVar, MPar2Var));
/1 In this exanple both paraneters of MyProc are considered to be inout paranmeters and that
// their values are assigned to MyPari1Var and MyPar2Var.

MyPort . check(getcal | (M/Proc: {5, MyVar}) -> sender M/Sender Var);

// W1l accept a call of MyProc at MyCL with the in or inout paranmeters 5 and MyVar. The calling
/] party is retrieved and stored in MySender Var.

ETSI

92 ETSI ES 201 873-1 V1.1.2 (2001-06)

22.3.7.1 The Check any operation

A check operation with no argument list allows to check whether something waits for processing in an incoming port
gueue. The CheckAny operation allows to distinguish between different senders (in case of one-to-many connections)
by using af r omclause and to retrieve the sender by using a shorthand assignment part with a sender clause.

EXAMPLE:
MyPor t . check;
MyPort . check(from MyPartner);

MyPort . check(-> sender MySender Var);

22.4 Controlling communication ports

TTCN-3 operations for controlling message-based, procedure-based and mixed ports are:
» cl ear : remove the contents of an incoming port queue;
e start: start listening at and give access to a port;

* st op: stop listening and disallow sending operations at a port.

22.4.1 The Clear port operation

Thecl ear operation removes the contents of the incoming queue of the named port. If the port queueis already empty
then this operation shall have no action.

MyPort . cl ear; /'l clears port MyPort

22.4.2 The Start port operation

If aport is defined as alowing receiving operations such asr ecei ve, get cal | etc., thest art operation clearsthe
incoming queue of the named port and starts listening for traffic over the port. If the port is defined to alow sending
operations then the operations such assend, cal | , r ai se etc., are dso allowed to be performed at that port. For
example:

MyPort.start; I/ starts MyPort

By default, al ports of a component shall be started when a component starts execution.

22.4.3 The Stop port operation

If aport is defined as allowing receiving operations such asr ecei ve, get cal | thest art operation st op
operation causes listening at the named port to cease. If the port is defined to allow sending operations then st op port
disallowsthe operations such assend, cal | , r ai se etc., to be performed. For example:

MyPort . st op; /1 stops MyPort

ETSI

93 ETSI ES 201 873-1 V1.1.2 (2001-06)

22.5 Use of any and all with ports

The keywordsany and al | may be used with configuration operations asindicated in table 16.

Table 16: Any and All with ports

Operation Allowed Example
any all
Recei ve communi cation operations (receive, yes any port.receive
trigger, getcall, getreply, catch, check)
connect / nmap

Start yes all port.start
St op yes all port.stop
d ear yes all port.clear

23 Timer operations

TTCN-3 supports anumber of timer operations. These operations may be used in test cases, functions and in module
contral.

Table 17: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol
Start timer Start
Stop timer Stop
Read elapsed time Read
Check if timer running running
Timeout event timeout

23.1 The Start timer operation

Thest art timer operation is used to indicate that a timer should start running. Timer values shall be of typef | oat .
For example:

MyTinerl. start; /1 MyTinmerl is started with the default duration
MyTimer2.start (20E-3); // MyTiner2 is started with a duration of 20ns

The optional timer value parameter shall be used if no default duration isgiven, or if it is desired to override the default
value specified in the timer declaration. When atimer duration is overridden, the new value applies only to the current
instance of the timer, any later st ar t operationsfor this timer, which do not specify a duration, shall use the default
duration. Thetimer clock runsfrom the float value zero (0.0) up to maximum stated by the duration parameter.

23.2 The Stop timer operation

The st op operation is used to stop arunning timer and to remove it from thelist of running timers. A stopped timer
becomes inactive and its elapsed timeis set to the float value zero (0.0). If the timer name on the st op operation is
al |, thenall running (i.e., active) timers are stopped. For example:

My Ti mer 1. st op; /1 stops MyTinerl
all tinmer.stop; /1 stops all running tinmers

Stopping an inactive timer isavalid operation, athough it does not have any effect.

ETSI

94 ETSI ES 201 873-1 V1.1.2 (2001-06)

23.3 The Read timer operation

Ther ead operation is used to retrieve the time that has elapsed since the specified timer was started and to storeit into
the specified variable. This variable shall be of typef | oat . For example:

var float Myvar;
MyVar = MyTinerl.read; // assign to MyVar the tine that has el apsed since MyTinerl was started

Applying ther ead operation on an inactive timer will return the value zero.

23.4 The Running timer operation

Ther unni ng operation is used to check whether or not atimer isrunning (i.e., that it has been started and has neither
timed out nor been cancelled). The operation returnsthevaluet r ue if thetimer isrunning, f al se otherwise. For
example:

if (MTimerl.running) { ...}

23.5 The Timeout event

Thet i neout operation denotes the timeout of a previoudy started timer. Thet i meout operation can be used in
alternatives together with r ecei ve and get cal | , getrepl y, cat ch and ot her t i neout operations.

EXAMPLE:

MyTi mer 1. ti meout ; /1 checks for the tineout of the previously started tiner MyTinerl

Theany keyword isused to indicatethet i meout of any timer (rather than an explicitly named timer) started within
the scope of the timeout. For example:

any timer.timeout; // checks for the timeout of any previously started timer

23.6 Use of any and all with timers
The keywordsany and al | may be used with timer operations asindicated in table 18.

Table 18: Any and All with Timers

Operation Allowed Example
any all
start
stop yes All timer.stop
read
running yes if (any timer.running) {...}
timeout yes Any timer.timeout

24 Test verdict operations

Verdict operations allow to set and retrieve verdicts using the get and set operations respectively. These operations
shall only be used in test cases and functions.

Table 19: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol
Set local verdict Verdict.set
Get local verdict Verdict.get

ETSI

95 ETSI ES 201 873-1 V1.1.2 (2001-06)

Each test component of the active configuration shall maintain it's own local verdict. Thelocal verdict isan object
which is created for each test component at thetime of itsingantiation. It isused to track theindividual verdict in each
test component (i.e,, in the MTC and in each and every PTC).

NOTE: Unlike TTCN-2 assigning afinal verdict does not halt execution of the test component in which the
behaviour is executing. If required, this shall be explicitly done usng the st op statement.
24.1 Test case verdict

Additionally thereisa global verdict that is updated when each test component (i.e., the MTC and each and every PTC)
terminates execution. Thisverdict isnot accessibletotheget and set operations. The value of thisverdict shall be
returned by the test case when it terminates execution. If thereturned verdict isnot explicitly saved in the control part
(eg., assigned to avariable) then it islost.

Verdict returned y :
by_the tes_tcase
when it terminates
Mrc v PTCL [y PTCh [y

Figure 10: lllustration of the relationship between verdicts

NOTE: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.
24.2 Verdict values and overwriting rules

The verdict can have five different values: pass, fai | , i nconc, none and er r or i.e, the distinguished values of
theverdi ctt ype (seeclause6.1).

NOTE: i nconc meansan inconclusive verdict.

Theset operation shall only be used with the valuespass, f ai | , i nconc and none. For example:

verdi ct. set (pass);
verdi ct. set (i nconc);

The value of the local verdict may be retrieved using the get operation. For example:

M/Result := verdict.get; // Wiere M/Result is a variable of type verdicttype

When atest component isinstantiated, itslocal verdict object is created and set to the value none.

When changing the value of the verdict (i.e., using the set operation) the effect of this change shall follow the
overwriting rules listed in table 20. Thetest case verdict isimplicitly set on the termination of atest component. The
effect of thisimplicit operation shall also follow the overwriting rules listed in table 20.

Table 20: Overwriting rules for the verdict

Current Value of New verdict assignment value
Verdict pass inconc fail none
none pass inconc fail none
pass pass inconc fail pass
inconc inconc inconc fail inconc
fail fail Fail fail fail

ETSI

96 ETSI ES 201 873-1 V1.1.2 (2001-06)

EXAMPLE:

verdict.set(pass); // the local verdict is set to pass

verdict.set(fail); // until this line is executed which will result in the value
: /1 of the local verdict being overwitten to fail
// When the ptc terminates the test case verdict is set to fail

24.2.1 Error verdict

Theerror verdictis special inthat it is set by thetest system to indicate that atest case (i.e., run-time) error has
occurred. It shall not be set by the set operation. No other verdict value can override an er r or verdict. Thismeans
that an er r or verdict can only be aresult of an execut e test case operation.

25 SUT operations

In some testing situations where there may be no explicit interface to the SUT and it may be necessary that the SUT
should be made to initiate certain actions (e.g., send a message to the test system).

This action may defined as a string, for example:
sut.action("Send MyTenpl ate on lower PCO'); // Informal description of the SUT action
or asareference to atemplate which specifies the structure of the message to be sent by the SUT, for example:

sut.action(MyTenplate); // This is equivalent to the TTCN-2 I MPLICIT SEND st at enent .

In both casesthere is no specification of what is doneto or by the SUT to trigger this action, only an informal
specification of the required reaction itself.

SUT actions can be specified in test cases, functions, named alternatives and module control.

26 Module control part

Test cases are defined in the modul e definitions and executed in the module control. All variables, timers etc. (if any)
defined in the control part of a module shall be passed into the test case by parameterization if they areto be used in the
behaviour definition of that test casei.e., TTCN-3 does not support global variables of any kind.

At the start of each test case the test configuration shall bereset. Thismeansthat all cr eat e, connect , etc.
operations that may have been performed in a previous test case are not 'visible€' to the new test case.

26.1 Execution of test cases

A test caseiscalled using an execut e statement. Astheresult of the execution of a test case atest verdict of either
none, pass, i nconcl usi ve,fail orerror shdl bereturned and may be assigned to a variable for further
processing.

Optionally, the execut e statement allows supervision of atest case by means of atimer duration. If the test case does
not end within this duration, the result of the test case execution shall be an error verdict and the test system shall
terminate the test case.

EXAMPLE:
execut e(MyTest Casel()); /'l executes MyTestCasel, without storing the
/1 returned test verdict and without tine
/'l supervision
MyVerdi ct := execute(MTest Case2()); /1 executes MyTestCase2 and stores the resulting

/'l verdict in variable MyVerdict

ETSI

97 ETSI ES 201 873-1 V1.1.2 (2001-06)

MyVerdi ct : = execute(M/Test Case3(), 5E-3); /1 executes MyTestCase3 and stores the resulting
/1 verdict in variable MyVerdict. If the test case
/1 does not terminate within 5ms, MyVerdict wll
/1 get the value 'error'

26.2 Termination of test cases

A test case terminates with the termination of the MTC. After the termination of the MTC dl running parallel test
components shall be terminated by the means of testing (i.e., test system).

NOTE 1: The concrete mechanism for stopping all PTCsistool specific and therefore outside the scope of the
present document.

Thefinal verdict of atest caseis calculated based on the final local verdicts of the different test components according
to therules defined in clause 24. The actual local verdict of atest component becomesits final local verdict when the
test component terminatesitsalf or is stopped by the means of testing (i.e., test system).

NOTE 2: To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, the MTC
should ensurethat all PTCs have stopped (by means of the done statement) before it stops itself.

26.3 Controlling execution of test cases

Program statements, limited to those defined in table 11, may be used in the control part of a module to specify such
things asthe order in which the tests are to be executed or the number of times atest case may be run. For example:

nmodul e MyTest Suite

control

{ :
/!l Do this test 10 tines

count : =0;

while (count < 10)

{ execute (MSi npl eTest Casel());
count := count+1;

}

}

If no programming statements are used then, by default, the test cases are executed in the sequential order in which they
appear in the module control.

NOTE: Thisdoesnot preclude the possibility that certain tools may wish to override this default ordering to alow
auser or tool to select a different execution order.

Test casesreturn asingle value of typever di ctt ype soitispossibleto control the order of execution depending on
the outcome of atest case. For example:

if (MySinpl eTest Case() == pass) { |og("Success!") }

26.4 Test case selection

Bool ean expressions may be used to select and desel ect which test cases are to be executed. Thisincudes, of course, the
use of functionsthat return abool ean vaue.

NOTE: Thisisequivalent tothe TTCN-2 named test selection expressions.
EXAMPLE:

nmodul e MyTest Suite

{ :

control

{ _

if (MySel ectionExpressionl())

{ execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case2());
execut e(MySi npl eTest Case3());

ETSI

98 ETSI ES 201 873-1 V1.1.2 (2001-06)

if (MySel ecti onExpression2())

{ execut e(MySi npl eTest Case4())
execut e(MySi npl eTest Case5());
execut e(MySi npl eTest Case6())

}

Another way to execute test cases as a group isto collect them in a function and execute that function from the module
control. For example:

functi on MyTest CaseG oupl()
{ execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case2());
execut e(MySi npl eTest Case3());
}
function MyTest CaseG oup2()
{ execut e(MySi npl eTest Case4());
execut e(MySi npl eTest Case5());
execut e(MySi npl eTest Case6());
}
control
{ if (MySel ectionExpressionl()) { M/Test CaseG oupl(); }
if (MySel ectionExpressionl()) { M/Test CaseG oup2(); }

26.5 Use of timers in control

Timers may be used to control execution of test cases. Thismay be done using an explicit timeout in the execute
statement. For example:

M/ReturnVal := execute (M/TestCase(), 7E-3); // variable of verdicttype
/1 Where the return verdict will be error if the TestCase does not conpl ete execution
/1 within 7ms

The timer operations may also be used. For example:

/1 Exanple of the use of the running tiner operation
while (T1l.running or x<10) // Were Tl is a previously started tiner
{ execut e(MyTest Case());
X 1= X+1,
}

/1 Exanple of the use of the start and tineout operations
timer T1 := 1;

execut e(MyTest Casel());

Tl.start;

Tl.timeout; // Pause before executing the next test case
execut e(MyTest Case2());

ETSI

99 ETSI ES 201 873-1 V1.1.2 (2001-06)

27 Specifying attributes

Attributes can be associated with TTCN-3 language elements by means of thew t h statement. The syntax for the
argument of thewi t h statement (i.e., the actual attributes) is smply defined as a free text gring.

There are three kinds of attributes:
a) di spl ay: alowsthe specification of display attributes related to specific presentation formats;
b) encode: allows referencesto specific encoding rules;

c) ext ensi on: alows the specification of user-defined attributes.

27.1 Display attributes

All TTCN-3 language elements can have di spl ay attributes to specify how particular language elements should be
displayed in, for example, agraphical format.

Special attribute strings related to the display attributes for the tabular (conformance) presentation format can be found
in ES201873-2[1].

Specia attribute strings related to the display attributes for the graphical presentation format can be found in
TR 101 873-3[2].

Other di spl ay attributes may be defined by the user.

NOTE: Because user-defined attributes are not standardised the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

27.2 Encoding attributes

Encoding rules define how a particular value, template etc. is encoded and transmitted, usually as a bit stream, over a
communication por t . TTCN-3 does not have a default encoding mechanism. This means that encoding rules or
encoding directives are defined in some externa manner to TTCN-3.

The encode attribute allows the association of some referenced encoding rule or encoding directive to be madeto a
TTCN-3 type definitions (and to a type definitions only).

Special attribute strings related to ASN.1 encoding attributes can be found in annex E.

The manner in which the actua encoding rules are defined (e.g., prose, functions etc.) is outside the scope of the present
document. If no specific rules are referenced then encoding shall be a matter for individua implementation.

In most cases encoding attributes will be used in a hierarchical manner. Thetop-level isthe entire module, the next
level isagroup of types and thelowest isan individual type:

a) nodul e: encoding appliesto al types defined in the module, including TTCN-3 base types;
b) gr oup: encoding applies to agroup of user-defined type definitions;

c) type: encoding appliesto a single user-defined type;

d) field: encoding appliestoafieddinar ecord or set type;

EXAMPLE:

nmodul e MyTTCNnodul e

{ :
i mport type MyRecord from MySecondMbdul e with {encode "MyRule 1"}

/1 Al instances of MyRecord will be encoded according to M/Rule 1
iype charstring MyType; // Normally encoded according to the global rule

Qroup MyRecor ds
{ :

ETSI

100 ETSI ES 201 873-1 V1.1.2 (2001-06)

type record MyPDUL

i nt eger fieldl, /1 fieldl will be encoded according to Rule 3
bool ean field2, /1 field2 will be encoded according to Rule 3
M/t ype field3 /1 field3 will be encoded according to Rule 2

with {encode (fieldl, field2) "Rule 3"}
}
with {encode "Rule 2"}

with {encode "d obal encoding rule"}

27.2.1 Invalid encodings

If itis desired to specify invalid encoding rules then these shall be specified in areferenceable source externd to the
module in the same way that valid encoding rules are referenced.

27.3 Extension attributes

All TTCN-3 language elements can have ext ensi on attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

27.4 Scope of attributes

A w t h statement always associates attributes to single language e ements. It is also possible to associate attributesto a
number of language elements by associating awi t h statement to the surrounding scope unit or gr oup of language
elements.

Thewi t h statement follows the scoping rules as defined in clause 5.4, i.e., awi t h statement that is placed inside the
scope of another wi t h statement shall override the outermost wi t h. Thisshall also apply to the use of thewi t h
statement with groups. Care should be taken when the overwriting scheme is used in combination with references to
single definitions. The general ruleisthat attributes shall be assigned and overwritten according to the order of their
occurrence.

EXAMPLE:

/1 MyPDUL will be displayed as PDU
type record MyPDUL { ...} with { display "PDU'}

/1 MyPDU2 will be displayed as PDU with the application specific extension attribute M/Rule
type record MWPDU2 { ...}
with

di splay "PDU';
extensi on "M/Rul e"

}

// The follow ng group definition ...
group MyPDUs {

type record MyPDU3 { ...}

type record WWPDU4 { ...}

}
with {display "PDU'} /1 Al types of group MyPDUs wi ||l be displayed as PDU

/1 is identical to

group MyPDUs {
type record MyPDU3 { ...} with
type record MyPDU4 { ...} with

{ display "PDU"}
{ display "PDU'}
}

/| Exanple of the use of the overwiting scheme of the with statenment
group MyPDUs

type record MyPDUL { ...}
type record MWyPDU2 { ...}

ETSI

101 ETSI ES 201 873-1 V1.1.2 (2001-06)

group MySpeci al PDUs

{
type record MyPDU3 { ...}
type record WWPDW { ...}

}
wi th {extension "M/Special Rul e"} /1 MyPDU3 and MyPDU4 wi |l have the application
/'l specific extension attribute MySpecial Rul e

}
with
{
di splay "PDU'; /1 Al types of group MPDUs will be displayed as PDU and
extension "MyRule"; // (if not overwitten) have the extension attribute M/Rule
}
/1 is identical to ..
group MyPDUs
type record MyPDU1 { ...} with {display "PDU'; extension "M/Rule" }
type record WPDU2 { ...} with {display "PDU'; extension "M/Rule" }
group MySpeci al PDUs {
type record MWPDU3 { ...} with {display "PDU'; extension "M/Special Rul e" }
type record WPDU4 { ...} with {display "PDU'; extension "M/Special Rule" }
}
}

27.5 Overwriting rules for attributes

An attribute definition in alower scope unit will override a general attribute definition in ahigher scope. For example:

type record MyRecordA

} with {encode "Rul eA"}

// In the follow ng, M/RecordA is encoded according to Rul eA and not according to Rul eB
type record MyRecor dB

%i eld MyRecor dA
} with {encode "Rul eB"}

An attribute definition in alower scope can be overwritten in ahigher scope by usingtheover ri de directive. For
example:

type record MyRecordA

} with {encode "Rul eA"}

// In the follow ng, M/RecordA is encoded according to Rul eB
type record MyRecor dB

%i el dA MyRecor dA
} with {encode override "Rul eB"}

The override directive forces all contained types at all lower scopesto be forced to the specified attribute.

27.6 Changing attributes of imported language elements

In general, alanguage e ement isimported together with its attributes. In some cases these attributes may have to be
changed when importing the language element e.g., atype may be displayed in one module as ASP, then it isimported
by another module where it should be displayed as PDU. For such casesit isalowed to change attributes on the import
statement.

EXAMPLE:
I mport type MyType from MyModul e with {display "ASP'} // MyType will be displayed as ASP
I mport group MyGroup from MyModule with

di spl ay "ASP"; /1 By default all types will be displayed as ASP.
extensi on "M/Rul e"

ETSI

102 ETSI ES 201 873-1 V1.1.2 (2001-06)

Annex A (normative):
BNF and static semantics

A.1 TTCN-3 BNF

This annex defines the syntax of TTCN-3 using extended BNF (henceforth just called BNF).

A.1.1 Conventions for the syntax description
Table A.1 defines the metanotation used to specify the extended BNF grammar for TTCN-3:

Table A.1: The Syntactic Metanotation

n= is defined to be

abc xyz abc followed by xyz

| alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
() textual grouping

Abc the non-terminal symbol abc
abc a terminal symbol abc

"abc" a terminal symbol abc

A.1.2 Statement terminator symbols

In general all TTCN-3 language constructs (i.e., definitions, declarations, statements and operations) are terminated
with a semi-colon (;). The semi-colon is optional if the language construct ends with aright-hand curly brace (}) or the
following symbol isaright-hand curly brace (}), i.e., the language construct is the last statement in a statement bl ock.

A.1.3 Identifiers

TTCN-3 identifiers are case sensitive and may only contain lowercase letters (a-z) uppercase letters (A-Z) and numeric
digits (0-9). Use of the underscore () symbol isalso allowed. Anidentifier shall begin with aletter (i.e., not a number
and not an underscore).

A.1.4 Comments

Comments written in free text may appear anywhere in a TTCN-3 specification.

Block comments shall be opened by the symbol pair /* and closed by the symbol pair */. For example:

/* This is a block coment
spread over two lines */

Block comments shall not be nested.

/* This is not /* a legal */ comrent */

Line comments shall be opened by the symbol pair // and closed by a <newine>. For example:

/1 This is a line coment
/] spread over two |ines

ETSI

103

ETSI ES 201 873-1 V1.1.2 (2001-06)

Line comments may follow TTCN-3 program statements but they shall not be embedded in a statement. For example:

/1 The follow ng is not
const // This is MyConst

| egal
i nteger MyConst := 1,

/1 The following is |egal

const integer MyConst := 1; // This is MyConst

A.1.5 TTCN-3 terminals

TTCN-3 terminal symbols and reserved words are listed in table A.2 and table A.3.

Table A.2: List of TTCN-3 special terminal symbols

Begin/end block symbols { }
Begin/end list symbols ()
Alternative symbols [1]

To symbol (in a range) .

Line comments and Block comments > i
Line/statement terminator symbol ;

Arithmetic operator symbols + | -
String concatenation operator symbol &
Equivalence operator symbols I= == >= <=
String enclosure symbols ! '
Wildcard/matching symbols ?
Assignment symbol =
Communication operation assignment ->

Bitstring, hexstring and Octetstring values B HO
Float exponent E

The following lists the special identifiers reserved for the predefined functions defined in annex D:

char 2i nt, int2unichar, unichar2int,
str2int, lengthof, sizeof, ischosen,

i nt 2char,
oct 2int,

bi t 2i nt,
i spresent

ETSI

hex2i nt,

int2bit, int2hex, int2oct, int2str,

104 ETSI ES 201 873-1 V1.1.2 (2001-06)

Table A.3: List of TTCN-3 terminals which are reserved words

action fail named sel f
activate fal se none send
address f | oat nonr ecursi ve sender
al | for not set
alt from not 4b signature
and function nowai t start
and4b nul | stop
any get sut
get cal | objid system
bitstring getreply octetstring
bool ean goto of tenpl ate
group om t testcase
cal | on ti meout
catch hexstring opti onal timer
char or to
charstring i f or4b trigger
check i fpresent out true
cl ear i mport override type
conpl enent in
component i nconc param uni on
connect infinity pass uni versa
const i nout pattern unmap
contr ol i nt eger port
Create i nterl eave procedure val ue
val ueof
deactivate | abel rai se var
di sconnect | anguage read ver di ct
di spl ay | engt h recei ve verdi cttype
do | og record
done rem whi |l e
map r epeat with
el se mat ch reply
encode nmessage return xor
enuner at ed m xed runni ng xor 4b
error nod runs
exception nmodi fi es
execut e nodul e
expand ntc
ext ensi on
ext er nal

The TTCN-3 terminalslisted in table A.3 shal not be used as identifiersin a TTCN-3 module. These terminals shall be
written in adl lowercase letters.

A.1.6 TTCN-3 syntax BNF productions

A.1.6.1 TTCN Module

1. TTCN3Modul e :: = TTCN3Mbdul eKeyword TTCN3Modul el d [Modul ePar Li st]
Begi nChar
[Modul eDefinitionsPart]
[Modul eControl Part]
EndChar
[WthStatement] [Sem Col on]
TTCN3Modul eKeyword :: = "nodul e"
TTCN3Modul el d ::= Modul el dentifier [Definitiveldentifier]
Modul el dentifier ::= ldentifier
Definitiveldentifier ::= Dot ojectldentifierKeyword "{" DefinitiveQObjldConponentlList "}"
DefinitiveQhjldConmponentList ::= {DefinitiveCbjldConponent}+
DefinitiveQbjldConponent ::= NaneForm |
Defi nitiveNunber Form |
Def i ni ti veNaneAndNunber For m
8. DefinitiveNunber Form ::= Nunber
9. DefinitiveNanmeAndNunber Form ::= Identifier "(" DefinitiveNunberForm")"
10. Modul eParlList ::= "(" Mdul ePar {"," Modul ePar} ")"

NooRwWN

ETSI

105 ETSI ES 201 873-1 V1.1.2 (2001-06)

11. Modul ePar ::= [InParKeyword] Modul ePar Type Modul eParldentifier
[Assi gnnent Char Const ant Expr essi on]
/* STATIC SEMANTICS - The Val ue of the ConstantExpression shall be of the same type as the stated
type for the Paraneter */
12. Modul ePar Type ::= Type
13. Modul eParldentifier ::= Identifier

A.1.6.2 Module Definitions Part

14. WNodul eDefinitionsPart Modul eDef i ni tionsLi st
15. Mbdul eDefinitionsList : {Modul eDefinition [Sem Col on]}+
16. Modul eDefinition ::= (TypeDef |

Const Def |

Tenpl at eDef |

Functi onDef |

Si gnat ur eDef |

Test caseDef |

NanedAl t Def |

| nport Def |

G oupDef |

Ext Functi onDef |

Ext Const Def) [WthStat enent]

Al16.2.1 Typedef Definitions

17. TypeDef ::= TypeDef Keyword TypeDef Body
18. TypeDefBody ::= StructuredTypeDef | SubTypeDef
19. TypeDef Keyword ::= "type"
20. StructuredTypeDef ::= RecordDef | UnionDef | SetDef | RecordODef | SetOf Def | EnumDef |
Port Def | Conponent Def
21. RecordDef ::= RecordKeyword Struct Def Body
22. RecordKeyword ::= "record"
23. StructDefBody ::= (StructTypeldentifier [StructDefFormal ParList] | AddressKeyword)
Begi nChar
[Struct Fiel dDef {"," StructFieldDef}]
EndChar
24. StructTypeldentifier ::= Identifier
25. StructDefFornal ParList ::= "(" StructDef Formal Par {"," StructDef Formal Par} ")"
26. StructDef Formal Par ::= Fornmal Val uePar | Fornal TypePar
/* STATI C SENMANTI CS - Formal Val uePar shall resolve to an in paraneter */
27. StructFiel dDef ::= Type StructFieldldentifier [ArrayDef] [SubTypeSpec] [Opti onal Keywor d]
28. StructFieldldentifier ::= ldentifier
29. Optional Keyword ::= "optional"
30. Uni onDef ::= Uni onKeyword Uni onDef Body
31. Uni onKeyword ::= "union"
32. UnionDefBody ::= (StructTypeldentifier [StructDefFormal ParList] | AddressKeyword)
Begi nChar
Uni onFi el dDef {"," Uni onFi el dDef}
EndChar
33. UnionFiel dDef ::= Type StructFieldldentifier [ArrayDef] [SubTypeSpec]
34. SetDef ::= SetKeyword Struct Def Body
35. SetKeyword ::= "set"
36. RecordOr Def ::= RecordKeyword O Keyword [StringlLength] Struct Of Def Body
37. O Keyword ::= "of"
38. StructOfDefBody ::= Type (StructTypeldentifier | AddressKeyword) [SubTypeSpec]
39. Setf Def ::= SetKeyword Of Keyword [StringlLength] Struct O Def Body
40. EnunDef ::= EnunKeyword (EnuniTypel dentifier | AddressKeyword)
Begi nChar
NanedVal ueli st
EndChar
41. EnunKeyword ::= "enunerated"
42. Enuniypeldentifier ::= Identifier
43. NarmedVal ueLi st ::= NanmedVal ue {"," NanedVal ue}
44. NarmedVal ue ::= NanedVal ueldentifier ["(" Nunber ")"]
45. NamedVal uel dentifier ::= ldentifier
46. SubTypeDef ::= Type (SubTypeldentifier | AddressKeyword) [ArrayDef] [SubTypeSpec]
47. SubTypeldentifier ::= Identifier
48. SubTypeSpec ::= Al owedVal ues | StringLength
/* STATI C SEMANTICS - The val ues shall be of the sanme type as the field being subtyped */
49. Al owedVal ues ::= "(" ValueOrRange {"," Val ueOrRange} ")"
50. Val ueOrRange ::= | ntegerRangeDef | Singl eConst Expression
/* STATI C SENMANTI CS - | nterger RangeDef production shall only be used with integer based types */
51. IntegerRangeDef ::= LowerBound ".." UpperBound
52. StringLength ::= LengthKeyword "(" SingleConstExpression [".." UpperBound] ")"

/* STATIC SEMANTICS - StringLength shall only be used with String types or to limt set of and
record of */

53. Lengt hKeyword ::= "l ength"

54. PortType ::= [d obal Mbdul el d Dot] Port Typel dentifier

ETSI

106 ETSI ES 201 873-1 V1.1.2 (2001-06)

55. PortDef ::= PortKeyword Port Def Body
56. PortDefBody ::= PortTypeldentifier PortDefAttribs
57. PortKeyword ::= "port"
58. PortTypeldentifier ::= ldentifier
59. PortDefAttribs ::= MessageAttribs | ProcedureAttribs | MxedAttribs
60. MessageAttribs ::= MessageKeyword
Begi nChar
{MessageLi st [Seni Col on]}+
EndChar
61. Messagelist ::= Direction Al O Typeli st
62. Direction ::= InParKeyword | QutParKeyword | |nQutPar Keyword
63. MessageKeyword ::= "nessage"
64. Al O TypelList ::= Al Keyword | Typeli st
65. Al Keyword ::= "all"
66. Typelist ::= Type {"," Type}
67. ProcedureAttribs ::= ProcedureKeyword
Begi nChar
{ProcedurelLi st [Sem Colon]}+
EndChar
68. ProcedureKeyword ::= "procedure"
69. ProcedurelList ::= Direction Al OSignatureli st
70. AllOrSignatureList ::= Al Keyword | Signatureli st
71. SignaturelList ::= Signature {"," Signature}
72. M xedAttribs ::= M xedKeyword
Begi nChar
{M xedLi st [Seni Col on]}+
EndChar
73. M xedKeyword ::= "m xed"
74. M xedList ::= Direction ProcO Typeli st
75. ProcOrTypeList ::= All Keyword | (ProcOrType {"," ProcOr Type})
76. ProcOrType ::= Signature | Type
77. Conmponent Def ::= Conponent Keyword Conponent Typel dentifier
Begi nChar
[Component Def Li st]
EndChar
78. Conponent Keyword ::= "conponent"
79. Conponent Type ::= [d obal Modul el d Dot] Conponent Typel dentifier
80. Conmponent Typeldentifier ::= ldentifier
81. Conmponent Def Li st ::= {Conponent El ement Def [Sem Col on] } +
82. Component El ement Def ::= Portlnstance | Varlnstance | Tinmerlnstance | Const Def
83. Portlnstance ::= PortKeyword PortType PortEl ement {"," PortEl ement}
84. PortElement ::= Portldentifier [ArrayDef]
85. Portldentifier ::= ldentifier
A.1.6.2.2 Constant Definitions
86. ConstDef ::= ConstKeyword Type Const Li st
87. ConstList ::= SingleConstDef {"," SingleConstDef}
88. Singl eConstDef ::= Constldentifier [ArrayDef] AssignnentChar Constant Expression

/* STATI C SEMANTICS - The Val ue of the Constant Expression shall be of the same type as the stated
type for the constant */

89. ConstKeyword ::= "const"

90. Constldentifier ::= ldentifier

A.1.6.2.3 Template Definitions

91. Tenpl ateDef ::= Tenpl at eKeyword BaseTenpl ate [DerivedDef]
Assi gnment Char Tenpl at eBody
92. BaseTenplate ::= (Type | Signature) Tenplateldentifier ["(" TenplateFormal ParList ")"]
93. Tenpl at eKeyword ::= "tenpl ate"”
94. Tenpl ateldentifier ::= ldentifier
95. DerivedDef ::= ModifiesKeyword Tenpl at eRef
96. ModifiesKeyword ::= "nodifies"
97. Tenpl at eFor mal Par Li st ::= Tenpl at eFormal Par {"," Tenpl at eFor mal Par }
98. Tenpl at eFormal Par ::= Fornal Val uePar |

For mal Tenpl at ePar
/* STATI C SEMANTI CS - Formal Val uePar shall resolve to an in paraneter */

99. Tenpl ateBody ::= SinpleSpec | FieldSpecList |
ArrayVal ueOrAttrib
100. SinpleSpec ::= SingleValueOAttrib
/* STATI C SEMANTICS - Sinpl eSpec shall not be used for constructed types */
101. FieldSpecList ::= "{"[FieldSpec {"," FieldSpec}] "}"
102. Fiel dSpec ::= Fiel dReference Assignnment Char Tenpl at eBody
103. Fiel dReference ::= RecordRef | ArrayOrBitRef | ParRef
104. RecordRef ::= StructFieldldentifier
105. ParRef ::= SignatureParldentifier

/* OPERATI ONAL SEMANTI CS - SignatureParldentifier shall be a formal parameter ldentifier fromthe
associ ated signature definition */

ETSI

107 ETSI ES 201 873-1 V1.1.2 (2001-06)

106. SignatureParldentifier ::= ValueParldentifier

107. ArrayOrBitRef ::="[" FieldOBitNunber "]"

/* STATIC SEMANTICS - ArrayRef shall be optionally used for array types and ASN.1 SET CF and
SEQUENCE OF and TTCN record, record of, set and set ldentifier of. The same notation can be used for
a Bit reference inside an ASN.1 or TTCN bitstring type */

108. Fi el dOrBit Nunber ::= Singl eExpression
/* STATI C SEMANTI CS - Singl eExpression will resolve to a value of integer type */
109. SingleValueOrAttrib ::= Matchi ngSynbol [ExtraMatchingAttributes] |

Si ngl eExpressi on [ExtraMatchingAttributes] |

Tenpl at eRef Wt hPar Li st
/* STATIC SEMANTIC - Variabl el dentifier (accessed via singleExpression) may only be used in inline
tenpl ate definitions to reference variables in the current scope */

110. ArrayValueOrAttrib ::= "{" ArrayEl enent SpecList "}"

111. ArrayEl enent SpecLi st ::= ArrayEl enent Spec {"," ArrayEl enent Spec}

112. ArrayEl enent Spec :: = Not UsedSynbol | Tenpl at eBody

113. Not UsedSynbol ::= Dash

114. WMatchingSynbol ::= Conplenent | Omit | AnyValue | AnyOrQOmit | Val uelist |

I ntegerRange | BitStringvatch | HexStringhatch |
Cctet StringMatch | Char StringMatch

115. ExtraMatchingAttributes ::= LengthMatch | |fPresent Match

116. BitStringvatch ::= """ {BinOrMatch} "'" B

117. BinOMatch ::= Bin | AnyValue | AnyO Onit

118. HexStringvatch ::= """ {HexOrMatch} "'" H

119. HexOrMatch ::= Hex | AnyValue | AnyOrOnit

120. CctetStringvatch ::= """ {CctOrMatch} """ O

121. CctOrMatch ::= Cct | AnyValue | AnyOOnit

122. CharStringMvatch ::= PatternKeyword CharStringPattern {StringOp CharStringPattern}
/* STATIC SEMANTICS - all CharStringPatterns shall resolve to the same character or character string
type */

123. CharStringPattern ::= CharStringValue | Tenpl at eRef Wt hPar Li st

124. PatternKeyword ::= "pattern"

125. Conpl enent ::= Conpl enent Keyword (Si ngl eConst Expression | Val ueli st)

126. Conpl enent Keyword ::= "conpl enent"

127. Omit ::= OmtKeyword

128. OmitKeyword ::= "onmit"

129. Anyvalue ::= "?"

wxn

130. AnyOrOnit
131. Val ueli st

"(" SingleConstExpression {"," SingleConstExpression}+ ")"

132. LengthMatch ::= StringlLength

133. IfPresentMatch ::= | fPresent Keyword

134. |fPresentKeyword ::= "ifpresent"

135. IntegerRange ::= "(" LowerBound ".." UpperBound ")"

136. LowerBound ::
137. UpperBound ::

Si ngl eConst Expression | Mnus |nfinityKeyword
Si ngl eConst Expression | |nfinityKeyword

138. InfinityKeyword ::= "infinity"

139. Tenpl atelnstance ::= InLineTenpl ate

140. Tenpl ateRef Wt hParLi st ::= [d obal Modul el d Dot] Tenpl ateldentifier [TenplateActual ParList] |
Tenpl at ePar | denti fier

141. Tenpl ateRef ::= [d obal Modul eld Dot] Tenplateldentifier | Tenpl ateParldentifier

142. InLineTenplate ::= [(Type | Signature) Colon] [DerivedDef AssignnentChar] Tenpl at eBody

/* STATIC SEMANTICS - The type field may only be onitted when the type is inplicitly unanbi gous */

143. Tenpl at eActual ParList ::= "(" Tenpl ateActual Par {"," Tenpl at eActual Par} ")"

144. Tenpl at eAct ual Par ::= Tenpl at el nst ance

/* STATI C SEMANTICS - Wien the corresponding formal parameter is not of tenplate type the

Tenpl at el nstance production shall resolve to one or nore Singl eExpressions */

145. Tenpl ateOps ::= MatchOp | Val ueof Op

146. MatchOp ::= MatchKeyword "(" Expression "," Tenpl atel nstance")"

/* STATIC SEMANTICS - The type of the value returned by the expression shall be the same as the
tenpl ate type and each field of the tenplate shall resolve to a single value */

147. WMat chKeyword ::= "natch"

148. Val ueof Op ::= Val ueof Keyword "(" Tenpl at el nstance")"

149. Val ueof Keyword ::= "val ueof"

A.1.6.2.4 Function Definitions

150. FunctionDef ::= FunctionKeyword Functionldentifier
"("[FunctionFormal ParList] ")" [RunsOnSpec] [ReturnType]
Begi nChar
Funct i onBody
EndChar
151. FunctionKeyword ::= "function"
152. Functionldentifier ::= Identifier
153. Functi onFormal ParLi st ::= FunctionFormal Par {"," Functi onFormal Par}
154. FunctionFormal Par ::= Fornal Val uePar |

For mal Ti mer Par |
For mal Tenpl at ePar |
For mal Port Par
155. ReturnType ::= ReturnKeyword Type

ETSI

108 ETSI ES 201 873-1 V1.1.2 (2001-06)

156. ReturnKeyword ::= "return"

157. RunsOnSpec ::= RunsKeyword OnKeyword (Conponent Type | MICKeywor d)
158. RunsKeyword ::= "runs"

159. OnKeyword ::= "on"

160. MICKeyword ::= "ntc"

161. FunctionBody ::= [FunctionStat enent O Def Li st]

162. FunctionStatenent OrDefLi st ::= {FunctionStat ement O Def [Sem Col on]}+
163. FunctionStatenent O Def ::= FunctionLocal Def |

Functi onLocal I nst |
Funct i onSt at enent

164. FunctionlLocal Inst ::= Varlnstance |
Ti mer | nst ance
165. FunctionLocal Def ::= Const Def
166. FunctionStatenent ::= ConfigurationStatenents |

Ti mer St atenent s |

Conmmuni cati onSt at ement s |
Basi cSt at enent s |

Behavi our St at enent s |
Verdi ct Statenents |

SUTSt at ement s

167. Functionlnstance ::= FunctionRef "(" [FunctionActual ParList] ")"
168. FunctionRef ::= [d obal Modul eld Dot] Functionldentifier
169. FunctionActual ParList ::= FunctionActual Par {"," FunctionActual Par}
170. FunctionActual Par ::= TimerRef |

Tenpl at el nst ance |

Port |

Conponent Ref

/* STATI C SEMANTICS - Wien the corresponding formal parameter is not of tenplate type the
Tenpl at el nstance production shall resolve to one or nore Singl eExpressions i.e. eqgivelent to the
Expressi on production */

A.1.6.2.5 Signature Definitions

171. SignatureDef ::= SignatureKeyword Signatureldentifier
"("[SignatureFormal ParList] ")" [ReturnType]
[Excepti onSpec]

172. SignatureKeyword ::= "signature"

173. Signatureldentifier ::= ldentifier

174. SignatureFormal ParList ::= SignatureFornmal Par {"," SignatureFormal Par}
175. SignatureFornal Par ::= Fornal Val uePar

176. ExceptionSpec ::= ExceptionKeyword " (" ExceptionTypeList ")"

177. ExceptionKeyword ::= "exception"

178. ExceptionTypeList ::= Type {"," Type}

179. Signature ::= [d obal Modul eld Dot] Signatureldentifier

A.1.6.2.6 Testcase Definitions

180. TestcaseDef ::= TestcaseKeyword Testcaseldentifier
"("[TestcaseFornal ParList] ")" ConfigSpec
Begi nChar
Funct i onBody
EndChar
181. TestcaseKeyword ::= "testcase"
182. Testcaseldentifier ::= Identifier
183. Test caseFormal ParLi st ::= TestcaseFormal Par {"," TestcaseFormal Par}
184. Test caseFormal Par ::= Fornal Val uePar |
For mal Tenpl at ePar
185. ConfigSpec ::= RunsOnSpec [SystenBpec]
186. SystentBpec ::= SystenKeyword Conponent Type
187. SystenKeyword ::= "systent
188. Testcaselnstance ::= ExecuteKeyword " (" TestcaseRef "(" [TestcaseActual ParList] ")" [","
Ti mer Val ue] ")
189. ExecuteKeyword ::= "execute"
190. TestcaseRef ::= [d obal Modul el d Dot] Testcaseldentifier
191. TestcaseActual ParList ::= TestcaseActual Par {"," TestcaseActual Par}

192. TestcaseActual Par ::=
Tenpl at el nst ance
/* STATI C SENMANTICS - Wen the corresponding formal paranmeter is not of tenplate type the
Tenpl at el nst ance production shall resolve to one or nore SingleExpressions i.e. equivalent to the
Expr essi on production */

A.1.6.2.7 NamedAlt Definitions

193. NamedAl t Def ::= NamedKeyword AltKeyword NamedAltldentifier
"(" [NamedAl t For mal ParList] ")"
Begi nChar
Al t Guar dLi st EndChar

194. NamedKeyword ::= "naned"

ETSI

109 ETSI ES 201 873-1 V1.1.2 (2001-06)

195. NanedAltldentifier ::= Identifier
196. NanedAl t For nal ParLi st ::= NanedAl t Fornal Par {"," NanedAl t For nal Par}
197. NamedAl t Formal Par ::= Fornal Val uePar |

For mal Ti mer Par |
For mal Tenpl at ePar |
For mal Port Par

198. NanedAl tlInstance ::= NanedAltRef "(" [NanedAltActual ParList]")"
199. NanedAltRef ::= [d obal Modul eld Dot] NanedAltldentifier
200. NamedAl t Actual ParLi st ::= NamedAl t Actual Par {"," NamedAl t Actual Par}
201. NamedAl t Actual Par :: =

Ti mer Ref |

Tenpl at el nst ance |

Port |

Conponent Ref

/* STATI C SEMANTICS - Wien the corresponding formal paranmeter is not of tenplate type the
Tenpl at el nstance production shall resolve to one or nore Singl eExpressions i.e. equivalent to the
Expressi on production */

A.1.6.2.8 Import Definitions

202. InportDef ::= I nportKeyword | nport Spec
203. InportKeyword ::= "inport"
204. lInportSpec ::= InportAll Spec |

| mport Gr oupSpec |

| mpor t TypeDef Spec |
| mpor t Tenpl at eSpec |
| mpor t Const Spec |

| mpor t Test caseSpec |
| mpor t NanmedAl t Spec |
| mpor t Funct i onSpec |
| mpor t Si gnat ur eSpec

205. InmportAll Spec ::= Al Keyword [Def Keyword] | nportFronSpec
206. | nmport FronSpec ::= FronKeyword Mdul el d [NonRecur si veKeywor d]
207. Moduleld ::= d obal Mbdul el d [LanguageSpec]

/* STATI C SEMANTI CS - LanguageSpec may only be omitted if the referenced nodul e contains TTCN-3
not ation */

208. LanguageKeyword ::= "l anguage"

209. LanguageSpec ::= LanguageKeyword FreeText

210. d obal Mbdul el d ::= Mdul eldentifier [Dot njectldentifierValue]
211. Def Keyword ::= TypeDef Keyword |

Const Keyword |

Tenpl at eKeyword |

Test caseKeyword |

Functi onKeyword |

Si gnat ur eKeyword |
NamedKeywor d Al t Keywor d

212. NonRecursiveKeyword ::= "nonrecursive"

213. Inport GroupSpec ::= G oupKeyword Groupldentifier {"," Goupldentifier} |nportFronSpec

214. | nmport TypeDef Spec ::= TypeDef Keyword TypeDefldentifier {"," TypeDefldentifier} |nportFrontBpec
215. TypeDefldentifier ::= StructTypeldentifier |

EnuniTypel dentifier |

Port Typel dentifier |
Conponent Typel dentifier |
SubTypel denti fier

216. I nportTenpl at eSpec ::= Tenpl at eKeyword Tenpl atel dentifier {"," Tenplateldentifier}

I mpor t Fr onSpec

217. I nport Const Spec ::= ConstKeyword Constldentifier {"," Constldentifier} |nportFronSpec

218. InportTestcaseSpec ::= TestcaseKeyword Testcaseldentifier {"," Testcaseldentifier}

I npor t Fr onSpec

219. I nportFunctionSpec ::= Functi onKeyword Functionldentifier {"," Functionldentifier}

I npor t Fr onSpec

220. InportSignatureSpec ::= SignatureKeyword Signatureldentifier {"," Signatureldentifier}

I npor t Fr onSpec

221. I nport NamedAl t Spec ::= NanedKeyword Alt Keyword NanmedAltldentifier {"," NamedAltldentifier}

I mpor t Fr onSpec
A.1.6.2.9 Group Definitions

222. G oupDef ::= G oupKeyword G oupldentifier
Begi nChar
[Modul eDefinitionsPart]
EndG oupChar

223. G oupKeyword ::= "group"

224. EndG oupChar ::= "}"

225. Goupldentifier ::= ldentifier

ETSI

110 ETSI ES 201 873-1 V1.1.2 (2001-06)

A.1.6.2.10 External Function Definitions

226. ExtFunctionDef ::= ExtKeyword FunctionKeyword Ext Functionldentifier
"("[FunctionFormal ParList] ")" [ReturnType]

227. ExtKeyword ::= "external"

228. ExtFunctionldentifier ::= ldentifier

A.1.6.2.11 External Constant Definitions

229. Ext ConstDef ::= ExtKeyword Const Keyword Type Ext Constldentifier
230. ExtConstldentifier ::= ldentifier

A.1.6.3 Control Part

231. Modul eControl Part ::= Control Keyword
Begi nChar
Modul eCont r ol Body
EndChar
[WthStatenent] [Sem Col on]
232. Control Keyword ::= "control"
233. Modul eControl Body ::= [Control Statement O Def Li st]
234. Control Statenent O DeflList ::= {Control Statenment O Def [Sem Col on]}+
235. Control Statement OrDef ::= FunctionLocal |l nst |
Control Statement |
Funct i onLocal Def
236. Control Statement ::= TimerStatements |
Basi cStatenents |
Behavi our St at enent s |
SUTSt at ement s

A.1.6.3.1 Variable Instantiation

237. Varlnstance ::= VarKeyword Type VarLi st

238. VarlList ::= SingleVarlnstance {"," SingleVarlnstance}

239. SingleVarlnstance ::= Varldentifier [ArrayDef] [AssignnmentChar Varlnitial Val ue]
240. Varlnitial Value ::= Expression

241. VarKeyword ::= "var"

242. Varldentifier ::= ldentifier

243. VariableRef ::= (Varldentifier | ValueParldentifier) [ExtendedFi el dReference]

A.1.6.3.2 Timer Instantiation

244. Timerlnstance ::= TimerKeyword Tinmerldentifier [ArrayDef]
[Assi gnnment Char Ti ner Val ue]
245. TimerKeyword ::= "tinmer"
246. Timerldentifier ::= ldentifier
247. TimerVal ue ::= Singl eExpression
/* STATI C SEMANTI CS - Singl eExpression shall resolve to a value of type float */
248. TimerRef ::= Timerldentifier [ArrayOrBitRef]|

TimerParldentifier [ArrayOr Bit Ref]
A.1.6.3.3 Component Operations

249. ConfigurationStatenents ::= Connect Statenent |
MapSt at enent |
Di sconnect St at ement |
UnmapsSt at erent |
DoneSt at emrent |
Start TCSt at enent |
St opTCSt at enent

250. ConfigurationOps ::= CreateQp | SelfOp | Systemp | MICOp | Runni ngQp
251. CreateQp ::= Conponent Type Dot Creat eKeyword

252. SystenOp ::= "systent

253. SelfQp ::= "self"

254. MICOp ::= MICKeyword

255. DoneStatenent ::= Conponentld Dot DoneKeyword

256. Conponentld ::= Conponentldentifier | (AnyKeyword | All Keyword) Conponent Keyword
257. DoneKeyword ::= "done"

258. RunningQp ::= Conponentld Dot Runni ngKeyword

259. Runni ngkeyword ::= "runni ng"

260. CreateKeyword ::= "create"

261. Connect Statenent ::= Connect Keyword Port Spec

262. Connect Keyword ::= "connect"

263. PortSpec ::= "(" PortRef "," PortRef ")"

264. PortRef ::= Conponent Ref Col on Port

265. Component Ref ::= Conponentldentifier | SystenOp | SelfOp | MICOp

266. Di sconnect Statenent ::= Di sconnect Keyword Port Spec

ETSI

111 ETSI ES 201 873-1 V1.1.2 (2001-06)

267. DisconnectKeyword ::= "di sconnect"

268. MapStatenent ::= MapKeyword Port Spec

269. MapKeyword ::= "map"

270. UnmapStatenent ::= UnmapKeyword Port Spec

271. UnmapKeyword ::= "unmap"

272. StartTCStatenent ::= Conponentldentifier Dot StartKeyword "(" Functionlnstance ")"
/* STATIC SEMANTICS - The Function instance may only have in paranmeters */

273. StartKeyword ::= "start"

274. StopTCstatenent ::= StopKeyword

275. Componentldentifier ::= VariableRef | Functionlnstance

/* STATIC SEMANTICS - The variable associated with Variabl eRef or the Return type associated with
Functionl nstance shall be of conponent type */

A.1.6.3.4 Port Operations

276. Port ::= (Portldentifier | PortParldentifier) [ArrayOrBitRef]

277. Communi cationStatements ::= SendStatement | Call Statement | ReplyStatement | RaiseStatement |
Recei veStatenent | TriggerStatenent | GetCall Statenent |
Get Repl yStatement | CatchStatement | CheckStatement |
ClearStatement | StartStatement | StopStatenent

278. SendStatement ::= Port Dot PortSendQp

279. PortSendQp ::= SendOpKeyword " (" SendParaneter ")" [ToC ause]
280. SendOpKeyword ::= "send"

281. SendParaneter ::= Tenpl atel nstance

282. Tod ause ::= ToKeyword AddressRef

283. ToKeyword ::= "to"

284. AddressRef ::= VariableRef | Functionlnstance

/* STATI C SEMANTI CS - Vari abl eRef and Functionlnstance return shall be of address or conponent type
*/

285. Cal | St at enment Port Dot PortCall Op [PortCall Body]

286. PortCall OQp ::= Call OpKeyword " (" Call Paranmeters ")" [ToC ause]
287. Cal | OpKeyword ::= "call"
288. Call Paraneters ::= Tenplatelnstance ["," Call Ti merVal ue]
/* STATIC SEMANTICS - only out paranmeters may be onmited or specified with a matching attribute */
289. Call TimerValue ::= TimerValue | NowaitKeyword
/* STATI C SEMANTICS - Val ue shall be of type float */
290. Nowait Keyword ::= "nowait"
291. PortCal | Body ::= Begi nChar
Cal | BodySt at enent Li st
EndChar
292. Cal | BodySt atenment Li st ::= {Cal | BodyStatenment [Sem Col on]}+
293. Cal | BodyStatenment ::= Call BodyGuard StatenentBl ock
294. Cal |l BodyGuard ::= AltCGuardChar Call BodyOps
295. Cal |l BodyQps ::= CetReplyStatenment | CatchStatenent
296. ReplyStatenent ::= Port Dot PortRepl yOp
297. PortReplyQp ::= ReplyKeyword "(" Tenpl atel nstance [ReplyValue]")" [Tod ause]
298. Repl yKeyword ::= "reply"
299. Repl yVal ue ::= Val ueKeyword Expression
300. RaiseStatenent ::= Port Dot PortRai seQp
301. PortRaiseQ ::= RaiseKeyword "(" Signature "," Tenplatelnstance ")" [Tod ause]
302. Rai seKeyword ::= "raise"
303. ReceiveStatenent ::= Port O Any Dot PortRecei veOp
304. PortOrAny ::= Port | AnyKeyword Port Keyword
305. PortReceiveQ ::= Recei veOpKeyword ["(" ReceiveParaneter ")"] [FronC ause] [PortRedirect]

/* STATIC SEMANTICS - The PortRedirect option may only be present if the ReceiveParameter option is
al so present */

306. Recei veOpKeyword ::= "receive"

307. ReceiveParaneter ::= Tenpl at el nst ance

308. FronC ause ::= FronKeyword AddressRef

309. FronKeyword ::= "front

310. PortRedirect ::= PortRedirectSynbol (ValueSpec [SenderSpec] | Sender Spec)
311. PortRedirectSynbol ::="->"

312. Val ueSpec ::= Val ueKeyword Vari abl eRef

313. Val ueKeyword ::= "val ue"

314. Sender Spec ::= Sender Keyword Vari abl eRef

/* STATIC SEMANTICS - Variable ref shall be of address or conponent type */
315. Sender Keyword ::= "sender"

316. TriggerStatenent ::= PortOrAny Dot PortTriggerOp

317. PortTriggerQp ::= TriggerOpKeyword ["(" ReceiveParaneter ")"] [FronC ause] [PortRedirect]

/* STATIC SEMANTICS - The PortRedirect option may only be present if the ReceiveParameter option is
al so present */

318. Trigger OpKeyword ::= "trigger"
319. CetCall Statenent ::= PortOrAny Dot PortGetCall Qp
320. PortCetCall Op ::= GetCall OpKeyword ["(" ReceiveParaneter ")"] [FronC ause]

[Port Redi rect Wt hPar ani

/* STATI C SEMANTICS - The PortRedirect WthParam option may only be present if the ReceiveParaneter
option is also present */

321. GetCall OpKeyword ::= "getcal l"

ETSI

112 ETSI ES 201 873-1 V1.1.2 (2001-06)

322. PortRedirect WthParam :: = Port Redirect Synbol Redirect Spec
323. RedirectSpec ::= ValueSpec [ParaSpec] [SenderSpec] |
Par aSpec [Sender Spec] |
Sender Spec
324. ParaSpec ::= ParaKeyword ParaAssi gnnment Li st
325. ParaKeyword ::= "parani
326. ParaAssignmentList ::= "(" (AssignmentList | VariableList) ")"
327. AssignmentList ::= Variabl eAssignment {"," Variabl eAssi gnnment}
328. Variabl eAssignment ::= Variabl eRef Assignment Char Paraneterldentifier

/* STATIC SEMANTICS - The paraneterldentifiers shall be fromthe correspondi ng signature definition
*/
329. Paraneterldentifier ::= ValueParldentifier |

Ti mer Parl dentifier |

Tenpl at ePar | dentifier |

Port Parldentifier

330. VariablelList ::= VariableEntry {"," Variabl eEntry}

331. VariableEntry ::= Variabl eRef | Not UsedSynbol

332. CGetReplyStatenment ::= PortOrAny Dot Port Get Repl yOp

333. PortGetReplyOQp ::= GetRepl yOpKeyword ["(" ReceiveParaneter [ValueMatchSpec] ")"]

[FronmO ause] [Port Redirect Wt hPar ani
/* STATIC SEMANTICS - The PortRedirect WthParam option may only be present if the ReceiveParaneter
option is also present */
334. GetRepl yOpKeyword ::= "getreply"
335. Val ueat chSpec : Val ueKeywor d Tenpl at el nst ance
336. ChecksSt at ement Port Or Any Dot Port CheckQp
337. PortCheckOp ::= eckOpKeyword ["(" CheckParaneter ")"]

Vi Q@

338. CheckOpKeyword : "check"
339. CheckParaneter ::= PortReceiveOp | PortGetCallOp | PortGetReplyOp | PortCatchQp |
[FronmO ause] [PortRedirect Synbol Sender Spec]
340. CatchStatement ::= PortOrAny Dot Port CatchQOp
341. PortCatchQp ::= CatchOpKeyword ["("CatchOpParaneter ")"] [FronCl ause] [PortRedirect]

/* STATIC SEMANTICS - The PortRedirect option may only be present if the CatchOpParanmeter option is
al so present */

342. CatchOpKeyword ::= "catch"

343. CatchOpParaneter ::= Signature "," Tenplatelnstance | Ti meout Keyword

344. ClearStatement ::= PortOrAll Dot PortC earOp

345. PortOrAll ::= Port | Al Keyword PortKeyword

346. Portd earQ ::= O ear QpKeyword

347. C ear OpKeyword ::= "clear"

348. Start Stat ement Port OrAll Dot PortStartOp

349. PortStartQp ::= StartKeyword

350. StopStatement ::= PortOrAll Dot Port StopQOp
351. PortStopQp ::= StopKeyword

352. StopKeyword ::= "stop"

353. AnyKeyword ::= "any"

A.1.6.3.5 Timer Operations

354. TinmerStatenments ::= StartTimerStatenment | StopTinmerStatenent | Tinmeout Statement
355. TimerOps ::= ReadTinmerQ | RunningTi mer Op

356. StartTinmerStatenment ::= TinmerRef Dot StartKeyword ["(" TinerValue ")"]
357. StopTinmerStatenment ::= TinerRefOrAll Dot StopKeyword

358. TimerRefOrAll ::= TimerRef | Al Keyword Ti mer Keyword

359. ReadTinmerQp ::= TinerRef Dot ReadKeyword

360. ReadKeyword ::= "read"

361. RunningTimerOp ::= TimerRef Or Any Dot Runni ngKeyword

362. Tinmeout Statenent ::= TinmerRef Or Any Dot Ti meout Keyword

363. TimerRefOrAny ::= TinmerRef | AnyKeyword Ti mer Keyword

364. Tinmeout Keyword ::= "tinmeout"

A.1.6.4 Type

365. Type ::= PredefinedType | ReferencedType

366. PredefinedType ::= BitStringKeyword |

Bool eanKeywor d |

Char St ri ngKeyword |
Uni versal CharString |
Char Keywor d |

Uni ver sal Char |

I nt eger Keyword |
Cctet Stringkeyword |
oj ectl dentifierKeyword |
HexStri ngKeyword |
Ver di ct Keyword |

FI oat Keyword |

Addr essKeywor d
367. BitStringKeyword ::= "bitstring"
368. Bool eanKeyword :: = "bool ean"

ETSI

113 ETSI ES 201 873-1 V1.1.2 (2001-06)

369. IntegerKeyword ::= "integer"

370. CctetStringKeyword ::= "octetstring”

371. bjectldentifierKeyword ::= "objid"

372. HexStringKeyword ::= "hexstring"

373. VerdictKeyword ::= "verdict"

374. FloatKeyword ::= "float"

375. AddressKeyword ::= "address"

376. Char StringKeyword ::= "charstring"

377. Universal CharString ::= Universal Keyword Char StringKeyword
378. Universal Keyword ::= "universal"

379. CharKeyword ::= "char"

380. Universal Char ::= Universal Keyword Char Keyword

381. ReferencedType ::= [d obal Modul el d Dot] TypeReference [ExtendedFi el dRef erence]
382. TypeReference ::= Struct Typeldentifier[TypeActual ParlList] |

EnunTypel denti fier |
SubTypel dentifier |
TypePar I dentifier |
Conponent Typel denti fier

383. TypeActual ParList ::= "(" TypeActual Par {"," TypeActual Par} ")"

384. TypeActual Par ::= Singl eConstExpression | Type

A.l64.1 Array Types

385. ArrayDef ::= {"[" ArrayBounds [".." ArrayBounds] "]"}+

386. ArrayBounds ::= Singl eConst Expression

/* STATIC SEMANTICS - ArrayBounds will resolve to a non negative value of integer type */
A.1.6.5 Value

387. Value ::= PredefinedVal ue | ReferencedVal ue

388. PredefinedVvalue ::= BitStringVal ue |

Bool eanVal ue |

Char StringVal ue |

I nt eger Val ue |

Cctet StringVal ue |

oj ectl denti fierVal ue |
HexStringVal ue |

Ver di ct Val ue |

Enurrer at edVal ue |

Fl oat Val ue |

Addr essVal ue

389. BitStringValue ::= Bstring
390. Bool eanValue ::= "true" | false
391. IntegerVal ue ::= Nunber
392. CctetStringvalue ::= Ostring
393. bjectldentifiervValue ::= ObjectldentifierKeyword "{" bjldConponentlList "}"
/* STATI C SEMANTI CS - ReferencedVal ue shall be of type object ldentifer */
394. bj | dConmponent Li st ::= {Cbj | dConponent}+
395. Obj | dConponent ::= NameForm |
Nunber Form |
NaneAndNunber For m
396. Nunber Form ::= Nunber | ReferencedVal ue
/* STATI C SEMANTI CS - referencedVal ue shall be of type integer and have a non negative Val ue */
397. NameAndNumber Form ::= ldentifier NumberForm
398. NameForm ::= ldentifier
399. HexStringValue ::= Hstring
400. VerdictValue ::= "pass" | fail | inconc | none | error
401. Enurer at edVal ue :: = NanmedVal uel dentifier
402. CharStringValue ::= Cstring | Quadruple | ReferencedVal ue
/* STATI C SEMANTI CS - ReferencedVal ue shall resolve to a string type */
403. Quadruple ::="(" Goup "," Plane "," Row"," Cell ")"
404. Goup ::= Number
405. Pl ane ::= Number
406. Row ::= Number
407. Cell ::= Number
408. Fl oatValue ::= FloatDot Notation | FloatENotation
409. Fl oat Dot Notation ::= Nurmber Dot Deci mal Nunmber
410. Fl oatENotation ::= Nunber [Dot Deci nmal Nunber] Exponential [M nus] Nunber
411. Exponential ::= E
412. ReferencedVal ue ::= Val ueRef erence [Ext endedFi el dRef er ence]
413. Val ueReference ::= [d obal Modul el d Dot] Constldentifier |

Ext Constl dentifier |
Val uePar |l dentifier |
Modul ePar | dentifier |
Var | dentifier

414. Nunber ::= (NonZeroNum {Nun}) | O
415. NonZeroNum::=1] 2| 3| 4| 5| 6] 7] 8] 9
416. Deci mal Nunber ::= {Nun}

ETSI

417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.

U

430.

u |

431.

*/

432.
433.

114 ETSI ES 201 873-1 V1.1.2 (2001-06)

Num ::= 0 | NonZer oNum

Bstring ::= " {Bin} B

Bin::=0] 1

Hstring ::= """ {Hex} "'" H

Hex ::= Num| A| B| C| D| E| Ff a| b| c]| d| e]| f

Gstring ::= """ {Cct} """ O

Cct = Hex Hex

Cstring ::= """ {Char} "

Char ::=/* REFERENCE - A character defined by the relevant CharacterString type */

Identifier ::= A pha{ Al phaNum | Underscore}

Al pha ::= Upper A pha | LowerAl pha

Al phaNum :: = Al pha | Num

UpperAlpha ::=A| B| C| D| E| F| G| H|] I | J] K| L] M| N|] O] P|] Q] R|] S| T
V| W| X| Y| Z

LowerAlpha ::=a | b c| d] e|] f]l gl h]i]jl k]I] m|n]o|lplaglTr]s]t]
v]iwl x|yl z

Ext endedAl phaNum :: = /* REFERENCE - A character from any character set defined in |1SQO|EC 10646

FreeText ::= """ {Ext endedAl phaNun}
AddressValue ::= "nul|"

A.1.6.6 Parameterisation

434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444,
445,
446.

I nPar Keyword ::= "in"

Qut Par Keyword ::= "out"

I nQut Par Keyword ::= "inout"

For mal Val uePar ::= [(I nParKeyword | |nQutParKeyword | OutParKeyword)] Type Val ueParldentifier
Val uePar | dentifier ::= Identifier

For mal TypePar ::= [InPar Keyword] TypeParldentifier

TypeParldentifier ::= ldentifier

Formal Port Par ::= [InQutPar Keyword] PortTypeldentifier PortParldentifier
PortParldentifier ::= ldentifier

Formal Ti mer Par ::= [l nQut Par Keyword] Ti mer Keyword Ti nmerParldentifier
TimerParldentifier ::= Identifier

For mal Tenpl at ePar :: = [|nPar Keyword] Tenpl ateKeyword Type Tenpl at ePar | dentifier
Tenpl ateParldentifier ::= Identifier

A.1.6.7 With Statement

447.
448.
449.
450.
451.
452.

453.
454,
455.
456.
457.
458.
459.
460.

461.

WthStatement ::= WthKeyword WthAttribLi st

Wt hKeyword ::= "with"

W thAttribList ="{" MIltiWthAttrib "}"

Milti WthAttrib ::= {SingleWthAttrib [Sem Col on] }+

SingleWthAttrib ::= Attri bKeyword [OverrideKeyword] [AttribQualifier] AttribSpec
AttribKeyword ::= EncodeKeyword |

Di spl ayKeyword |
Ext ensi onKeywor d

EncodeKeyword :: = "encode"

Di spl ayKeyword ::= "displ ay"

Ext ensi onKeyword ::= "extension"
OverrideKeyword ::= "override"

AttribQualifier : "(" DefOrFieldRefList ")"

Def O Fi el dRef List ::= DefOrFieldRef {"," Def O Fiel dRef}
Def OrFi el dRef ::= DefinitionRef | FieldReference
DefinitionRef ::= StructTypeldentifier |

EnuniTypel dentifier |
Port Typel dentifier |
Conponent Typel dentifier |
SubTypel dentifier |
Const ldentifier |
Tenpl atel dentifier |
NarmedAl tl dentifier |
Testcasel dentifier |
Functionldentifier |
Si gnatureldentifier
AttribSpec ::= FreeText

A.1.6.8 Behaviour Statements

462.

Behavi our St at ements :: = Testcasel nstance |
Functi onl nst ance |
Ret ur nSt at enent |
Al t Construct |
Interl eavedConstruct |
Label St at emrent |
Cot oSt at enent |
Acti vat eSt at ement |

ETSI

115 ETSI ES 201 873-1 V1.1.2 (2001-06)

Deacti vat eSt at enent |

NarmedAl t | nst ance
/* STATIC SEMANTI CS - Testcasel nstance shall not be called fromw thin an existing executing
testcase or function chain called froma testcase i.e. testcases can only be instantiated fromthe
control part or fromfunctions directly called fromthe control part */

463. VerdictStatenments ::= SetlLocal Verdi ct
464. VerdictQps ::= CetlLocal Verdi ct
465. SetLocal Verdict ::= SetVerdictKeyword "(" SingleExpression ")"

/* STATI C SEMANTI CS - Singl eExpression shall resolve to a value of type verdict */
/* STATI C SEMANTI CS - The SetLocal Verdi ct shall not be used to assign the Value error */

466. Set Verdi ct Keyword ::= Verdi ct Keyword Dot Set Keyword

467. GetlLocal Verdict ::= Verdi ct Keyword Dot GCet Keyword

468. CetKeyword ::= "get"

469. SUTStatenents ::= SUTAction "(" (FreeText | TenplateRefWthParList) ")"
470. SUTAction ::= SUTKeyword Dot Acti onKeyword

471. SUTKeyword ::= "sut"

472. ActionKeyword ::= "action"

473. ReturnStatenent ::= ReturnKeyword [Expression]

474. A tConstruct ::= A tKeyword Begi nChar At GuardLi st EndChar

475. A tKeyword ::= "alt"

476. A tQuardList ::= {AltCQuardE enent [Sem Colon]}+ [ElseStatenment [Seni Colon]]
477. A tGQuardEl ement ::= CQuardStatenment | ExpandStat enent

478. CuardStatement ::= Al tCuardChar CuardOp StatenentBl ock

479. ExpandStatement ::= "["ExpandKeyword "]" NamedAl t|nstance

480. El seSt at enent "["El seKeyword "]" StatemnentBl ock

481. ExpandKeyword ::= "expand"
482. AltCGuardChar ::= "[" [Bool eanExpression] "]"
483. CuardQp ::= Tinmeout Statement | ReceiveStatement | TriggerStatement | CetCall Statenent |

CatchStatement | CheckStatement | GetReplyStatenment | DoneStat ement
/* STATIC SEMANTICS - CuardOp used within the nodule control part. Shall only contain the
timeout St at ement */

484. Statement Bl ock ::= Begi nChar [FunctionStatenment O DefList] EndChar

485. Interl eavedConstruct ::= Interl eavedKeyword Begi nChar |nterl eavedGuardLi st EndChar
486. Interl eavedKeyword ::= "interl eave"

487. Interl eavedGuardList ::= {Interl eavedGuar dEl ement [Sem Col on] }+

488. Interl eavedCuardEl ement ::= InterleavedCuard Interl eavedAction

489. InterleavedCuard ::="[" "]" CuardQOp

490. Interl eavedAction ::= StatenentBl ock

/* STATIC SEMANTICS - The StatemnentBl ock may not contain | oop statements, goto, activate,
deactivate, stop, return or calls to functions */

491. Label Statenment ::= Label Keyword Label | dentifier

492. Label Keyword ::= "I abel "

493. Label ldentifier ::= ldentifier

494. CotoStatenent ::= GotoKeyword (Labelldentifier | Al tKeyword)

/* STATIC SEMANTICS - The Al tKeyword option may only be used within an ALT construct */
495. Cot oKeyword ::= "goto"

496. ActivateStatement ::= ActivateKeyword "(" NamedAltList ")"

497. ActivateKeyword ::= "activate"

498. NamedAl tList ::= NamedAl tlnstance {"," NamedAl tlnstance}

499. DeactivateStatement ::= DeactivateKeyword ["(" NamedAltRefList ")"]

500. DeactivateKeyword ::= "deactivate"

501. NamedAl t RefList ::= NamedAltRef {"," NamedAl tRef}

A.1.6.9 Basic Statements

502. BasicStatenments ::= Assignnment | LogStatenment | LoopConstruct | Conditional Construct
503. Expression ::= SingleExpression | ConpoundExpression

/* STATI C SEMANTI CS - Expression shall not contain Configuration or verdict operations within the
nmodul e control part */

504. ConpoundExpression ::= Fiel dExpressionList | ArrayExpression

505. Fi el dExpr essi onLi st "{" Fiel dExpressionSpec {"," Fiel dExpressionSpec} "}"

506. Fi el dExpressionSpec ::= Fiel dRef erence Assi gnnment Char Expression

507. ArrayExpression ::= "{" [ArrayEl ement ExpressionList] "}"

508. ArrayEl ement ExpressionLi st ::= NotUsedOr Expression {"," NotUsedOr Expressi on}
509. Not UsedOr Expression ::= Expression | NotUsedSynbol

510. Constant Expression ::= Singl eConst Expressi on | ConmpoundConst Expressi on

511. Singl eConst Expression ::= Singl eExpression

/* STATI C SEMANTI CS - Si ngl eConst Expression shall not contain Variables or Mdul e paraneters and
shall resolve to a constant Value at conpile tine */

512. Bool eanExpressi on ::= Singl eExpression
/* STATI C SENMANTI CS - Bool eanExpressi on shall resolve to a Value of type Bool ean */
513. ConpoundConst Expressi on ::= Fi el dConst Expressi onLi st | ArrayConst Expressi on

514. Fi el dConst Expr essi onLi st
515. Fi el dConst Expr essi onSpec ::

"{" Fiel dConst Expressi onSpec {"," Fi el dConst Expr essi onSpec} "}"
Fi el dRef erence Assi gnnment Char Const ant Expr essi on

516. ArrayConst Expression ::= "{" [ArrayEl enent Const Expressi onList] "}"
517. ArrayEl ement Const Expr essi onLi st ::= Const ant Expression {"," Constant Expressi on}
518. Assignnent ::= VariableRef ":=" Expression

ETSI

116 ETSI ES 201 873-1 V1.1.2 (2001-06)

/* OPERATI ONAL SEMANTI CS - The Expression on the RHS of Assignnment shall evaluate to an explicit
Val ue of the type of the LHS. */

519. Singl eExpression ::= SinpleExpression {BitOp SinpleExpression}

/* OPERATI ONAL SEMANTICS - |If both SinpleExpressions and the BitOp exist then the SinpleExpressions
shal |l evaluate to specific values of conpatible types */

520. Sinpl eExpression ::= SubExpression [Rel Op SubExpression]

/* OPERATI ONAL SEMANTICS - |f both SubExpressions and the Rel Op exist then the SubExpressions shall
evaluate to specific values of conpatible types. */

/* OPERATI ONAL SEMANTICS - If RelOp is "<" | ">" | ">=" | "<=" then each SubExpression shall
evaluate to a specific integer, Enumerated or float Value (these values can beTTCN or ASN. 1 val ues)
*/

521. SubExpression ::= Product [ShiftOp Product]

/* OPERATI ONAL SEMANTI CS - Each Product shall resolve to a specific Value. If nore than one Product
exi sts the right-hand operand shall be of type integer and if the shift op is '<<' or '>> then the
| eft-hand operand shall resolve to either bitstring, hexstring, octetstring or integer type. If the
shift opis '<@ or '@' then the |eft-hand operand shall be of type bitstring, hexstring,
charstring or universal charstring */

522. Product ::= Term {AddOp Tern}

/* OPERATI ONAL SEMANTICS - Each Termshall resolve to a specific Value. If nore than one Term exists
then the Terms shall resolve to type integer or float. */

523. Term::= Factor {MiltiplyOp Factor}

/* OPERATI ONAL SEMANTI CS - Each Factor shall resolve to a specific Value. If nore than one Factor
exi sts then the Factors shall resolve to type integer or float. */

524. Factor ::= [UnaryOp] Primary
/* OPERATI ONAL SEMANTICS - The Primary shall resolve to a specific Value. If UnaryQp exists and is
"not" then Primary shall resolve to type BOOLEAN if the UnaryQp is "+" or "-" then Primary shall

resolve to type integer or float. If the UnaryOp resolves to not4b then the Primary shall resolve to
the type bitstring, hexstring or octetstring. */

525. Primary ::= OpCall | Value | "(" SingleExpression ")"

526. ExtendedFi el dReference ::= {(Dot StructFieldldentifier | ArrayOrBitRef)}+

527. OpCall ::= ConfigurationOps | VerdictOps | TimerOps | Testcasel nstance | Functionlnstance |
Tenpl at eOps

528. AddOp ::= "+" | "-"

/* OPERATI ONAL SEMANTI CS - Operands of the "+" or "-" operators shall be of type integer or
float(i.e., TTCN or ASN.1 predefined) or derivations of integer or float (i.e., subrange) */
529. MultiplyOp ::="*" | "/" | mod | rem

/* OPERATI ONAL SEMANTI CS - Operands of the "*", "/", remor nod operators shall be of type integer
or float(i.e., TTCN or ASN.1 predefined) or derivations of integer or float (i.e., subrange). */
530. UnaryQp ::= "+" | "-" | not | not4b

/* OPERATI ONAL SEMANTI CS - Operands of the "+" or "-" operators shall be of type integer or
float(i.e., TTCN or ASN.1 predefined) or derivations of integer or float (i.e., subrange). Operands
of the not operator shall be of type boolean (TTCN or ASN. 1) or derivatives of type Bool ean.
Operands of the not4b operator will be of type bitstring, octetstring or hexstring. */

531. RelQp ::= "==" | "<" | ">" | "!=" | ">=" | "<="
/* OPERATI ONAL SEMANTI CS - The precedence of the operators is defined in table 7 */
532. BitQp ::= "and4b" | xor4b |or4b | and | xor | or | StringQp

/* OPERATI ONAL SEMANTI CS - Operands of the and, or or xor operators shall be of type boolean (TTCN
or ASN. 1) or derivatives of type Bool ean. Operands of the and4b, or4b or xor4b operator shall be of
type bitstring, hexstring or octetstring (TTCN or ASN. 1) or derivatives of these types. */

/* OPERATI ONAL SEMANTI CS - The precedence of the operators is defined in table 7 */

533. StringQp ::= "&"

/* OPERATI ONAL SEMANTI CS - Operands of the string operator shall be bitstring, hexstring,
octetstring or character string */

534. ShiftQp ::="<<" | ">>" | "<@ | "@"

535. LogStatement ::= LogKeyword "(" [FreeText] ")"
536. LogKeyword ::= "lo0g"

537. LoopConstruct ::= For Statemnent |

Whi | eSt at ement |
DoWhi | eSt at enent

538. ForStatement ::= ForKeyword "(" Initial [Sem Colon] Final [Sem Colon] Step ")"
St at ement Bl ock
539. ForKeyword ::= "for"
540. Initial ::= Varlnstance | Assignnent
541. Final ::= Bool eanExpression
542. Step ::= Assignnent
543. Wil eStatement ::= Wil eKeyword " (" Bool eanExpression ")"
St at ement Bl ock
544. Wil eKeyword ::= "while"
545. DoWhi | eStatement ::= DoKeyword Statement Bl ock
Whi | eKeyword " (" Bool eanExpression ")"
546. DoKeyword ::= "do"
547. Conditional Construct ::= |fKeyword "(" Bool eanExpression ")"
St at ement Bl ock
{El sel f O ause} [El sed ause]
548. |fKeyword ::= "if"
549. ElselfC ause ::= El seKeyword |fKeyword "(" Bool eanExpression ")" StatenentBl ock
550. El seKeyword ::= "el se"
551. ElseCl ause ::= El seKeyword Statemnent Bl ock

ETSI

117 ETSI ES 201 873-1 V1.1.2 (2001-06)

A.1.6.10 Miscellaneous productions

552. Dot ::="."

553. Dash ::="-"

554. Mnus ::= Dash

555. Sem Colon ::=";"
556. Colon ::=":"

557. Underscore ::="_"
558. BeginChar ::= "{"
559. EndChar ::= "}"

560. Assignment Char ::= ":

ETSI

118 ETSI ES 201 873-1 V1.1.2 (2001-06)

Annex B (normative):
Operational semantics

This annex defines the meaning of a TTCN-3 behaviour in an intuitive and unambiguous manner. The operational
semanticsis not meant to be formal and therefore the ability to perform mathematical proofs based on this semanticsis
very limited.

This operational semantics provides a state oriented view on the execution of a TTCN module. Different kinds of states
areintroduced and the meaning of the different TTCN-3 constructsis described by (1) using state information to define
the preconditions for the execution of a construct and by (2) defining how the execution of a construct will change a
state.

The operational semanticsisrestricted to the meaning of behaviour in TTCN-3, i.e., functions, test cases, module
control and language constructs for defining test behaviour, e.g., send andr ecei ve operations, i f -el se-, or
whi | e- statements. The meaning of several TTCN-3 constructs is explained by replacing them with other language
constructs. For example, named alternatives are macros and their meaning is completely explained by replacing all
macro references by the corresponding macro definitions. This includes the handling of default behaviour.

In most cases, the definition of the semantics of alanguage is based on an abstract syntax tree of the code that shall be
described. This semantics does not work on an abstract syntax tree but requires a graphical representation of TTCN-3
behaviour descriptionsin form of flow graphs. A flow graph describes the flow of control in atest case, function or the
module control. The mapping of TTCN-3 behaviour descriptions onto flow graphsis straightforward.

B.1 Structure of this annex

Thisannex is structured into two parts:

1) Thefirst part (see clause B.2) defines the meaning of TTCN-3 shorthand and macro notations by their
replacement by other TTCN-3 language constructs. These replacementsin a TTCN-3 module can be seen as
pre-processing sep before the module can be interpreted according to the following operational semantics
description.

2) The second part (see clause B.3) describes the operational semantics of TTCN-3 by means of flow graph
interpretation and state modification.

B.2 Replacement of shorthand notations and macro calls

Shorthand notations have to be expanded and macro references have to be replaced by the corresponding definitions on
atextud level before this operational semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 shorthand notations are:
» stand-alonereceiving operations,
e trigger operations
» usages of the keyword any in timer and receiving operations,
e usages of thekeyword al | in timer and port operations;

e missingr et ur n and st op statements at the end of function and test case definitions.

ETSI

119 ETSI ES 201 873-1 V1.1.2 (2001-06)

TTCN-3 macros are named dternatives, i.e,, nanmed al t definitions. They are called:
* explicitly instead of an al t statement, i.e., they appear like a function call;
o explicitlyinal t statementsby using an expand keyword;
» implicitly in case they are referenced as default behaviour inact i vat e anddeact i vat e statements.

In addition to shorthand notations and macro calls, the operational semantics requires a special handling for module
parameters and global constants, i.e., constants that are defined in the module definitions part. All references to module
parameters and global constants shall be replaced by concrete values. Thismeans, it is assumed that the value of module
parameters and global constants can be determined before the operational semantics becomes relevant.

NOTE 1: Thehandling of module parameters and global constantsin the operationa semantics will be different
from their handling in a TTCN-3 compiler. The operationa semantics describes the meaning of TTCN-3
behaviour and isnot a guideline for the implementation of a TTCN-3 compiler.

NOTE 2: The operational semantics handles parameters of and local constants in test components, test cases,
functions and modul e contral like variables. The wrong usage of local constantsor i n, out andi nout
parameters has to be checked statically.

B.2.1 Order of replacement steps

The textual replacements of shorthand notations, macro calls, global constants and modul e parameters have to be done
in the following order:

1) adding st op and r et ur n statementsin module control, functions and test cases;
2) replacement of global constants and modul e parameters by concrete val ues;

3) embedding stand-aonereceiving operationsinto al t statements;

4) macro expansion of pure macro calls, thismeans.

- explicit expansions of al t statements which include theexpand keyword (and refersto ananed al t
definition);

- explicit expansion of calls of naned al t -definitions.
5) expansion of i nt er | eave statements,
6) expansion of default behaviour;
7) replacement of all t ri gger operations by equivalent r ecei ve operations and got o statements;
8) replacement of all usages of the keywordsany and al | in timer and port operations.

NOTE: Without keeping this order of replacement steps, the result of the replacements would not represent the
defined behaviour.

ETSI

120 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.2.2 Adding stop and return operations in behaviour descriptions

TTCN-3 allows leaving module contral, test cases and functions that do not return any value without specifying an
explicit st op or r et ur n operation. For the operational semanticsit isassumed that missing r et ur n and st op
operations are added, i.e,, st op operations are added in module control and test casesand r et ur n operationsare
added in functions.

EXAMPLE:

/1 Function and test case definition without explicit return and stop statenents at
/1 the end of their behaviour description

function MyFunction(inout integer MyPar) {
/'l MyFunction doesn't return a value but changes the val ue

MyPar := 10 * MyPar 1, /1 of MyPar which is passed in by refefernce
if (MyPar == 999) stop; /'l Stops execution if MyPar has the val ue 999
/1 IMPLICIT return if MyPar != 999

}

testcase MyTest Case() runs on MYMICtype {

MyMICbehavi our () ; /1 Function that defines MIC behavi or

/1 IMPLICIT stop after return of MyMrCbehavi our

/1 MyFunction and MyTest Case after adding explicit return and stop operations

functi on MyFunction(inout integer MyPar) {
// MyFunction doesn't return a value but changes the val ue

MyPar := 10 * MyPar1; /1 of MyPar which is passed in by refefernce
if (MyPar == 999) stop; /] Stops execution if MyPar has the val ue 999
return; /1 EXPLICIT return

}
testcase MyTest Case() runs on MYMICtype {
MyMrCbehavi our () ; /1 Function that defines MIC behavi or

st op; /1 EXPLICIT stop
}

B.2.3 Replacement of global constants and module parameters

Constants declared in the module definitions part are global for module control and all test components that are created
during the execution of a TTCN-3 module. Modul e parameters are meant to be global constants at run-time.

All references to global constants and module parameters shall be replaced by the actual values before the operational
semantics starts the interpretation of the module. If the value of a constant or module parameter is given in form of an
expression, the expression hasto be evaluated. Then, the result of the evaluation shall replace all references of the
constant or modul e parameter.

B.2.4 Embedding single receiving operations into alt statements

TTCN-3receiving operationsare: r ecei ve, tri gger,getcal | ,getreply, cat ch,check, ti meout, and
done.

NOTE: Theoperationsr ecei ve,trigger,getcall,getreply,catchandcheck operateon portsand
they allow branching due to the reception of messages, procedure calls, replies and exceptions. The
operationst i meout and done arenot real receiving operations, but they can be used in the same
manner asreceiving operations, i.e., asaternativesin al t statements. Therefore, the operational
semanticshandlest i meout and done like receiving operations.

ETSI

121 ETSI ES 201 873-1 V1.1.2 (2001-06)

A receiving operation can be used as stand-al one statement in a function, a named alternative or atest case. In such a
case thereceiving operation as considered to be shorthand for an al t statement with only one alternative defined by
thereceiving operation. For the operational semanticsan al t statement in which the receiving statement is embedded
shall replace all stand-alone occurrences of receiving operations.

EXAMPLE:

/1 The stand-al one occurrence of

M/CL. trigger(MyType: *);

/1 shall be replaced by
ait {
) [1 MCL.trigger (MType:*);

/1 or

M/PTC. done;

/1 shall be replaced by

ait {
[T MPTC. done;
}

B.2.5 Macro expansion

The macro expansion in TTCN-3 isrelated to the usage of named alternatives (naned al t definitions) in al t
statementsor instead of al t statements, i.e,, thenamed al t definition isreferenced similar to afunction call in a
sequence of statements.

B.2.5.1 Expansion of named alternatives in alternative statements

The expansion of named alternativesin al t statements isrelated to the alternative branches indicated by the expand
keyword in square brackets followed by areferencetoananed al t definition (as only statement of that branch). In
such a case the alternative branches of the referenced named alternative replace the branch with the expand keyword.
For the operational semanticsit isassumed that thisreplacement is done on a syntactical level. An example of this
expansion can be found in the main part of the present document.

B.2.5.2 Explicit call of a named alternative
Named alternatives can also be referenced similar to a function call in a sequence of statements. In this case the

reference shall be expanded by the corresponding naned al t definition. An example of this expansion can be found in
the main part of the present document.

ETSI

122 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.2.6 Replacement of the interleave construct

The meaning of thei nt er | eave statement is defined by its replacement by a series of nested al t statements that
have the same meaning. The algorithm for the congtruction of the replacement for ani nt er | eave statement is
described in this clause. The replacement shall be made on a syntactical level.

A seriesof nested al t statements can be described by means of atree. Tree nodes represent the gatementsin theal t
statements. A branching denotesan al t statement and statements in the same branch describe statements in the same
aternative. Thisis schematically shown in figure B.1. Figure B.1a) presents atree and figure B.1b) shows the
corresponding representation in form of a series of nested al t statements.

alt {
[1 A{
alt {
[] E;
® ® © © o
}
[] B
® ® (@ ® hete
a
i
O ®© O .
[1 X
H
} }
(a) Tree (b) TTCN-3 like representation of (a)

Figure B.1: Nested alt statements and a corresponding tree representation

In thefollowing the construction of atreerepresentation of ani nt er | eave satement is presented. The
transformation of the tree into the series of nested al t statements is straightforward and needs no further explanation.

Ani nt er | eave gatement can be seen asa partial ordered set POS of allowed TTCN-3 statements. Formally:
* POS=(S <)where
S isthe set of allowed TTCN-3 statements; and
<O(SX S describesthereflexive and transtive order relation.

Theterm allowed TTCN-3 statements refers to the fact that the control transfer statementsf or , whi | e, do-whi | e,
got 0, acti vat e, deact i vat e, st op, r et ur n and calls of user-defined functions which include communication
operationsarenot allowed tobeused ini nt er | eave statements. In addition, it isalso not allowed to guard branches
of ani nt er| eave statement with Boolean expressions, to expand i nt er | eave statements with named alternatives
or to specify el se branches.

For the construction algorithm the following functions need to be defined:

* The DISCARD function deletes an element s from a partially ordered set POS and returns the resulting partially

ordered set POS':
DISCARD(s, POS) = POS where:
POS =(S, <) ; and
S =3{s} ; and

< =<n (S{s x S{g}).

ETSI

123 ETSI ES 201 873-1 V1.1.2 (2001-06)

e The ENABLED function takes a partially ordered set POS = (S, <) and returns all e ements which have no
predecessorsin POS,

ENABLED(POS) ={ s|sOSO(<n (SX {s})=0)}
* The RECEIVING function takes a set of TTCN-3 statements S and returns al receiving satements from this set.

RECEIVING(S) ={ s|sOSOkind(s) O {recei ve, trigger, getcall, getreply, catch,
check, done, timnmeout}}

e The SELECT function selectsrandomly an element s from agiven set Sand returns s.
SELECT(S) =s wheresd S

NOTE: Thekind function in the RECEIVING function above is not defined formally. kind (or type) returnsthe
kind of a given TTCN-3 statement.

The construction algorithm of the tree is arecursive procedure where in each recursive call the successor nodes for a
given node is constructed. The procedureis provided in a C-like pseudo-code notation that uses the functions defined
above and some additional mathematical notation:

CONSTRUCT- SUCCESSORS (treeNode *predecessor, partiallyOrderedSet POS) {
/'l treeNode refers to the node type of the tree to be constructed
/1 partiallyOrderedSet denotes type for a partially ordered set of TTCN-3 statenents

var statenent nyStnt; /1 for the storage of a TTCN 3 statenent
var treeNode *newSonNode; /1 for the handling of new tree nodes

/1 RETRI EVING SETS OF TTCN- 3 STATEMENTS THAT HAVE NO PREDECESSORS I N ' POS
var statenentSet enabStnts := ENABLED(POS); /1 all statenents without predecessor
var statenent Set enabRecStmts : = RECEIVING enabStnts); // receiving statenents in 'enabStnts'
var statement Set enabNonRecStnmts : = enabStnts\enabRecStnts;
/1 non receiving statenments in 'enabStnts’

if (PCs == 0O)
return; /| TERM NATI ON CRI TERI ON OF RECURSI ON
el se {
if (enabNonRecStnts !'=0) { /1 Handling of non receiving statenents in 'enabStnts’
nyStm : = SELECT(enabNonRecStnts);

newSonNode : = create(nyStnt, predecessor);
// Creation of a new tree node representing 'nmyStnt' in the tree
// and update of pointers in 'newSonNode' and 'predecessor’.
CONSTRUCT- SUCCESSORS(newSonNode, DI SCARD(nyStnt, POS)); /1 NEXT RECURSI ON STEP

else { // Handling of receiving events, the tree will branch
for each (nmyStnt in enabRecStnts) {
newSonNode : = create(nyStnt, predecessor); // New tree node
CONSTRUCT- SUCCESSORS(newSonNode, DI SCARD(nyStnt, POS)); // NEXT RECURSI ON STEP(S)

Initially, the CONSTRUCT-SUCCESSORS function will be called with aroot node of an empty tree and the partially
ordered set of TTCN-3 statements describing thei nt er | eave statement that shall be replaced. After termination, the
root node can be used to access the constructed tree.

B.2.7 Expansion of defaults

The TTCN-3 default behaviour mechanism is defined by means of a macro expansion mechanism. The default
behaviour hasto be provided in form of naned al t definitions. A naned al t definition used as default behaviour is
referenced inan act i vat e statement. The scope of adefault is determined by an act i vat e statement and
corresponding deact i vat e statementsor by anact i vat e statement and the end of the function or test casein
which theact i vat e statement isused. Within this scope the alternatives of al al t statements are extended by the
behaviour specified in the activated nanmed al t definitions. The operational semantics assumes that thisextension is
done on the syntactical level. An example for the extension mechanism can be found in the main part of the present
document.

ETSI

124 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.2.8 Replacement of trigger operations

Thetri gger operation filters messages with a certain matching criterion from a stream of messages on a given port.
The semantics of thet r i gger operation can be described by its replacement with two r ecei ve operationsand a
got o statement. The operational semantics assumes that thisreplacement is done on the syntactical level.

EXAMPLE 1:
/1 The follow ng trigger operation ..

alt {

) [1 MCL.trigger (MType:*);
/1 shall be replaced by ...

alt {

[T MACL.receive (MyType:*);
[1

M/CL. recei ve {
goto alt

}
}

If thet ri gger statementisusedin amore complex al t statement, the replacement is donein the same manner.

EXAMPLE 2:
/1 The following alt statenment includes a trigger statenment ...
alt {

[T PCR.receive {
st op;
}

[T MWCL.trigger (MyType:*);
[T PCX®B.catch {

verdict.set(fail);
st op;

}
/1 which will be replaced by

alt {
[T PCR.receive {
st op;
}

[T MACL.receive (MType:*);
[T MACL.receive {
goto alt;

}
[] PC®.catch {
verdict.set(fail);
st op;

}
B.2.9 Replacement of the keywords ‘any' and ‘all’
The usage of the keyword any isallowed for:
» thetimer operationsr unni ngandti neout ;
» thereceving operationsr ecei ve,tri gger,get cal | ,getrepl y, cat ch, check.
The usage of the keyword al | isallowed for:
» thetimer operation st op;

» theport operationsst art, st op andcl ear.

ETSI

125 ETSI ES 201 873-1 V1.1.2 (2001-06)

The usage of both keywordsis allowed for:

e thedone andr unni ng operations for components.

B.2.9.1 Replacement of 'all' in timer and port operations

The application of timer and port operationsisrelated to the scope in which they are used. This means, the keyword
al | addresses all timers and ports known in the scope unit inwhich al | (+ operation) is used. The replacement of
al | usagesin timer and port operations is straightforward.

A usageofal | port inastart,stop,orcl ear operation shall bereplaced by a separatest art , st op, or
cl ear operation for each known port. A usageof al | ti mer inast op operation shall be replaced by a separate
st op operation for each known timer.

EXAMPLE:

/1 Assume the ports PCOL, PCO2 and the timers Tl and T2 are known
ail port.clear;
ail tinmer.stop;

/1 will be replaced by

PCOl. clear;
PC2. cl ear;

Ti. st op;
T2. st op;

B.2.9.2 Replacement of '‘any' in timer and receiving operations

The application of timer and receiving operationsisrelated to the scope in which they are used. This means, the
keyword any addresses all timers and ports (in case of receiving operations) known in the scope unit in which any
(+ operation) is used. The replacement of any usages in timer and receiving operationsis straightforward.

A usageof any port inareceive,trigger,getcall,getreply,catchorcheck operation shal be
replaced by separate alternative operations for each known and possible port. Possible meansthat an any
port .recei ve occurrence only isrelevant for message based ports.

A usageof any ti mer inati meout operation shall bereplaced by separate aternative operations for each known
timer in the scope unit.

EXAMPLE:
/1 Assune the ports PCOL, PCO2 and the tinmers Tl and T2 are known

alt {
[T PCR.receive {
aTest Step();
}

[T any port.receive {
verdict.set(fail);
st op;

[T any timer.timeout {

verdict.set(fail);
st op;

ETSI

/1 will be replaced by

alt {
[1

[]

}

PC2. recei ve {
st op;
}

PCOL. recei ve {

verdict.set(fail);

st op;

}
PCOL. recei ve {

verdict.set(fail);

st op;

}

Tl.receive {

verdict.set(fail);

st op;

T2.receive {

verdict.set(fail);

st op;

126

ETSI ES 201 873-1 V1.1.2 (2001-06)

A usageof any ti mer inar unni ng operation shall be replaced by separate r unni ng operations for each known

timer in the scope unit that are combined by means of or operators.

EXAMPLE:

/1 Assune the timers Tl and T2 are known in the scope unit

i f (any tiner.running) {
verdict.set(fail);
st op;

/1 will be replaced by

i f (T1.running or T2.running) {

verdict.set(fail);
st op;

B.2.9.3 The keywords 'any' and 'all' in 'done' and 'running’

The operationsany conponent .done, al | conponent .done, any conponent .r unni ng and al |
component .r unni ng can only be executed by the MTC. Due to dynamic test component crestion, the MTC may not
know all components that have been created during test case execution. Thus, the execution of these operations requires
communication with the means of testing. Therefore, any conponent .done, al | conponent .done, any
component .runni ngandal | conponent .r unni ng are assumed to be system commands, i.e., cannot be
replaced by other commands.

ETSI

127 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3 Flow graph semantics of TTCN-3

The operational semantics of TTCN-3 is based on the interpretation of flow graphs. In this clause flow graphs are
introduced (see clause B.3.1), the construction of flow graphs representing TTCN-3 module control, test cases,
functions and component type definitionsis explained (see clause B.3.2), module and component states for the
description of the execution states of a TTCN-3 module are defined (see clause B.3.3), the handling of messages,
remote procedure calls, replies to remote procedure calls and exceptionsis described (see clause B.3.4), the evaluation
procedure of module control and test cases is explained (see clause B.3.6) and the meaning of the different TTCN-3
statementsis described (see clause B.3.7).

B.3.1 Flow graphs

A flow graph isadirected graph that consists of labelled nodes and labelled edges. Walking through a flow graph
describes the flow of control during the execution of arepresented behaviour description.

B.3.1.1 Flow graph frame

A flow graph shall be put into aframe defining the border of the flow graph. The name of flow graph follows the
keywords flow graph (these are not TTCN-3 core language keywords) and shall be put into the upper left corner of the
flow graph. As convention it is assumed that the flow graph namerefersto the TTCN behaviour description represented
by the flow graph. A simple flow graphis shown in figure B.2.

fl ow graph
M/Si npl eFl owGr aph

Figure B.2: A simple flow graph

B.3.1.2 Flow graph nodes

Flow graphs consist of start nodes, end nodes, basic nodes and reference nodes.

B.3.1.2.1 Start nodes

Start nodes describe the starting point of a flow graph. A flow graph shall only have one start node. A start node is
shown in figure B.3a).

h 4 A

(a) Flow graph start node (b) Flow graph end node

Figure B.3: Start and end nodes

ETSI

128 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.1.2.2 End nodes

End nodes describe end points of a flow graph. A flow graph may have several end nodes or in case of loops no end
node. Basic nodes (see clause B.3.1.2.3) and reference nodes (see clause B.3.1.2.4) that have no successor nodes shall
be connected to an end node to indicate that they describe the last action of a path through a flow graph. An end nodeis
shown in figure B.3b).

B.3.1.2.3 Basic nodes

A basic node describes an execution unit, i.e., it is executed in one step. A basic node has a type and, depending on the
type, may have an associated list of attributes. A basic node is shown in figure B.4a).

In theinscription of a basic node the attributes of a node follow the node type and are put into round parentheses. Type
and attributes are used to determine the action to be performed during execution of the represented language construct.
The attributes describe information to be retrieved from the corresponding TTCN-3 construct.

Attributes have values and the operational semantics will retrieve these values by referring to the attribute name. If
required, it isallowed to assign explicit values in basic nodes by using assignment '=". An example isshown in
figure B.4b).

node-type

node-type
(attr,=5.0, attr,,

(attrq, attr, ...,
attr,)

() (b)
Figure B.4: Basic nodes with attributes

B.3.1.2.4 Reference nodes

Reference nodes refer to flow graph segments (see clause B.3.1.4) that are sub-flow graphs. The meaning of areference
node is defined by its replacement by the referenced flow graph segment in the flow graph. The node inscription of the
reference node provides the reference to aflow graph segment. A reference nodeis shown in figure B.5a).

segnent -ref erence;
OR

segnent - r ef erence segnent - r ef erence,
OoR
segnent -ref erence;

(a) Single reference node (b) OR combination of three reference nodes

Figure B.5: Reference node

B.3.1.24.1 OR combination of reference nodes

In some cases several flow graph segments may replace areference node. For these cases an OR operator may be used
to refer to several flow graph segments (figure B.5b). In the actual flow graph representing the module control, a test
case or afunction, one aternative is determined by the represented construct.

ETSI

129 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.1.24.2 Multiple occurrences of reference nodes

In some cases the same kind of reference node may occur zero, one or more timesin a flow graph. In regular
expressions the possible repetition of parts of aregular expression is described by using the operator symbols'+' (one or
more repetitions) and *' (zero or more repetitions). As shown in figure B.6, these operators have been adopted to flow
graphs by introducing doubl e-framed reference nodes with associated operator symbols. A single flow line shall replace
areference node, in case of zero occurrences (using a double-framed reference node with ™*'-operator).

B B

segment - segment -

Figure B.6: Repetition of reference nodes
An upper bound of possible repetitions of areference node can be given in form of an integer number in round

parenthesis following the*' or '+ symbol in the double framed reference node. The segment reference shown in
figure B.7 may occur from zero up to 5 times.

segment -

Figure B.7: Restricted repetition of a reference node

B.3.1.3 Flow lines

Flow lines are represented by means of arrows. A flow line has an inscription of true or false which indicates a
condition under which the flow line is chosen during the flow graph interpretation. As a short hand notation it is
allowed to omit the true inscription. Examples of flow lines are shown below.

false

>

true

> whichisidentical to >

To support the joining of several flow linesinto one flow line on a graphical level, a special join node is introduced.
The join node and an exampl e for its usage are shown below:

join node:

@
usage of join node: >. >

ETSI

130 ETSI ES 201 873-1 V1.1.2 (2001-06)

Drawing long flow linesin big diagrams asit is, for example, necessary to model the TTCN-3 constructs got o and
| abel , isawkward. For this purpose, labels for outgoing and incoming flow lines can be used. Examples are shown
bel ow.

Incoming flow line with label: in-labed ——p»
Outgoing flow line with label: —— out-label

An outgoing flow line with alabd is connected with an incoming flow line with alabd, if the [abels areidentical. The
flow linelabels for theincoming flow lines shall be unique. If there are several outgoing flow lines with the same labd,
thisis considered to be ajoin of lines to the incoming flow line with an identical 1abel.

B.3.1.4 Flow graph segments

Flow graph segments are sub-flow graphs. They arereferenced in reference nodes and define the meaning of that
reference node. Flow graph segments may include further reference nodes.

As shown in figure B.8, flow graph segments have precise interfaces that consist of incoming and outgoing flow lines.
Thereis only one unlabeled incoming and one or none unlabeled outgoing flow lines. In addition there might exist
several labelled incoming and outgoing flow lines. The labelled incoming and outgoing flow lines are needed to
describe the meaning of TTCN-3 got o statements.

Flow graph segments are put into a frame and the name of the flow graph segment shall follow the keyword segment
in the upper left corner of the frame. The flow lines describing the flow graph segment interface shall cross the flow
graph segment frame.

segnment i
|._.|.N >

segnent - r ef
v v i

Figure B.8: Schematical flow graph segment description

ETSI

131 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.1.5 Comments

To improve readability and coherence a special comment symbol can be used to associate comments to flow graph
nodes and flow lines. The comment symbol and its usage are shown in figure B.9.

Comment related to
flow line

Thisisacomment in
,,,,,,,,,,,,,,,,,,,,,,,,, acomment symbol Comment related to
basic node
(&) Comment symbol (b) Usage of comment symbols

Figure B.9: Flow graph representation of comments

B.3.1.6 Handling of flow graph descriptions

The evaluation procedure of the operational semantics traverses flow graphs that only consist of basic nodes, i.e., all
reference nodes are expanded by the corresponding flow graph segment definitions. The NEXT function isrequired to
support this traversal. NEXT is defined in the following manner:

<actualNodeRef>.NEXT (<bool>) = <successorNodeRef> where:
<actualNodeRef> isthereference of a basic flow graph node;
<successor NodeRef>is the reference of a successor node of the node referenced by <actual NodeRef>;

<bool> isaBoolean expressing whether atrue or afalse successor isreturned (see clause B.3.1.3).

B.3.2 Flow Graph Representation of TTCN-3 behaviour

The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e., for each TTCN-3 behaviour description a separate flow graph hasto be constructed.

The operational semanticsinterprets the following kinds of TTCN-3 definitions as behaviour descriptions:
a) module contral;
b) test case definitions,
¢) function definitions,
d) component type definitions.

The module control specifiesthetest campaign, i.e., the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Function definitions describe behaviour to be executed by the
module control or by the test components. Component type definitions are assumed to be behaviour descriptions
because they specify the creation, declaration and initialization of ports, constants, variables and timers during the
creation of an instance of a component type.

ETSI

132 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.2.1 The flow graph construction procedure

The flow graphs presented in the figures B.10 and B.11 and the flow graph segments presented in clause B.3.6 are only
templates. They include placeholders for information that has to be provided in order to produce a concrete flow graph
or flow graph segment. The placeholders are marked with '<' and "> parenthesis.

The construction of a flow graph representation of a TTCN-3 moduleis donein three steps:

1) For each TTCN-3 statement in module control, test cases, functions and component type definitions a concrete
flow graph segment is constructed.

2) For the module control and for each test case, function and component type definition a concrete flow graph
(with reference nodes) is constructed.

3) In astepwise procedure al reference nodes in the concrete flow graphs are replaced by corresponding flow graph
segment definitions until all flow graphs only include one start node, end nodes and basic flow graph nodes.

NOTE 1: Basic flow graph nodes describe basic indivisible execution units. The operational semantics for TTCN-3
behaviour isbased on the interpretation of basic flow graph nodes. clause B.4 presents execution methods
for basic flow graph nodes only.

Thereplacement of areference node by the corresponding flow graph segment definition may lead to unconnected parts
in aflow graph, i.e., partswhich cannot be reached from the start node by traversing through the flow graph along the
flow lines. The operational semantics will ignore unconnected parts of a flow graph.

NOTE 2: An unconnected part of aflow graph isaresult of the mechanical replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements
also has to be taken into consideration. However, the goal of thisannex isto provide a correct and
complete semantics, not an optimal flow graph representation.

B.3.2.2 Flow graph representation of module control

Schematically, the syntactical structure of a TTCN-3 moduleis:

nmodul e <identifier> (<paranmeter>) <nodul e-definitions-part> control <statenent-bl ock>

For the flow graph behaviour representation the following information isrelevant only:

nodul e <identifier> <statenent-bl ock>

Thisis comparable to a function definition and therefore the flow graph representation of module control is Smilar to
the flow graph representation of a function (see clause B.3.2.4). The semantics will access the flow graph representing
the module control by using the module name.

NOTE: The meaning of the module definitions part is outside the scope of this operational semantics. Module
parameters are defined as global constants at run-time. References to module parameters have to be
replaced by their concrete values on a syntactical level (see clause B.2.3).

B.3.2.3 Flow graph representation of test cases

Schematically, the syntactical structure of a TTCN-3 test case definition s

testcase <identifier> (<paraneter>) <testcase-interface> <statenent-bl ock>

The<t est case-i nt er f ace> above refers to the (mandatory) r uns on and the (optional) syst emclausesin the
test case definition. The flow graph description of a test case describes the behaviour of the MTC. Theinformation
provided by the <t est case-i nt er f ace> isnot relevant for the MTC. It will be used by the execut e statement,
but needs not to be represented in the flow graph representation of atest case. Thus, for the flow graph representation
the following information isrelevant only:

testcase <identifier> (<paraneter>) <statenent-block>

Thisis comparable to a function definition and therefore the flow graph representation of a test caseis similar to the
flow graph representation of a function (see clause B.3.2.4). The semantics will access the flow graphs representing test
cases by using the test case names.

ETSI

133 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.2.4 Flow graph representation of functions

Schematically, the syntactical sructure of a TTCN-3 function is:

function <identifier> (<parameter>) [<function-interface>] <statenent-bl ock>

Theoptional <f uncti on-i nt er f ace> abovereferstother uns on andther et ur n clausesin the function
definition. The information provided by the <f unct i on-i nt er f ace> isnot relevant for the behaviour description.
It will be used for static semantics checks, but needs not to be represented in the flow graph. Thus, for the flow graph
representation the following information isrelevant only:

function <identifier> (<paraneter>) <statenent-bl ock>
The semantics will access flow graphs representing functions by using the function names.

The scheme of the flow graph representation of a function is shown in figure B.10. The flow graph name
<i denti fi er > refersto the name of the represented function (or module control or test case). The nodes of the flow
graph have associated comments describing the meaning of the different nodes.

flow graph <identifier>

- Actual paraneter values are assuned to
be in the value stack

< - i > .
par anet er - handl i ng - Formal paraneters are handled |ike
! | ocal variables and | ocal tiners.

The function body is a statenent bl ock.
The function will terminate inside the
<st at ement - bl ock> statenment block either by a stop operation or

a return statenent.

Figure B.10: Flow graph representation of functions

ETSI

134 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.2.5 Flow graph representation of component type definitions

Schematically, the syntactica structure of a TTCN-3 component type definition is:
type conmponent <identifier> <port-constant-variable-tinmer-declartions>
The semantics will access flow graphs representing types by using the component type names.

The scheme of the flow graph representation of a component type definition is shown in figure B.11. The flow graph
name<i dent i f i er > refers to the name of the represented component type.

fl ow graph <identifier>

/1 The conponent scope is initialised

<i ni t - conponent - scope>

l

+
<port-decl arati on>

oR

- Ports are created

<const ant - decl ar ati on>
OoR

<vari abl e-decl arati on> - Constants, variables and tiners are
R declared and initialised

<ti mer-decl aration>

- The 'father' conponent waits for the
conpl eti on of the conmponent creation,
i.e., isin a'blocking' state.

- The created conponent gives the control
back to the 'father' conponent

<finalise-conponent-init>

- The new conponent goes into a 'blocking'

state and waits to be started

Figure B.11: Flow graph representation of component type definitions

B.3.2.6 Retrieval of start nodes of flow graphs
For theretrieval of the start node reference of a flow graph the following function isrequired:

The GET-FLOW-GRAPH function: GET-FLOW-GRAPH (<flow-graph-identifier>)

The function returns areference to the start node of a flow graph with the name <flow-graph-identifier>. The
<flow-graph-identifier> refers to the module name for the contral, to test case names, to function names and to
component type definitions.

ETSI

135 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.3 State definitions for TTCN-3 modules

During the interpretation of flow graphs representing TTCN-3 behaviour, module states are manipulated. A module
state is a structured state that congsts of several sub-states describing the states of test components and ports. Module
states, component states and port states are introduced in this clause. In addition, functions to retrieve information from
and to manipulate states are defined.

B.3.3.1 Module state

Asshown in figure B.12 amodule state is structured into a list of entity states, alist of port states, areference to an
MTC and a TC-VERDICT. Thelist of entity states describes the state of the module control and during the execution of
atest case the gates of the ingantiated test components. Thelist of port states, the MTC reference and the
TC-VERDICT are only relevant during test case execution. Thelist of port states describes the states of the different
ports. MTC provides areference to the MTC, TC-VERDICT stores the actua global test verdict of atest case and
DONE is a counter that counts the number of updates of TC-VERDICT.

NOTE 1: Thenumber of updates of TC-VERDICT isidentica to the number of test components that have
terminated.

The behaviour of module control (M-CONTROL in figure B.12) ishandled like a normal test component and its stateis
thefirg element in the list of entity states of a module state.

list of entity states list of port states MTC TC-VERDICT | DONE

M-CONTROL | ES; | ... | ES, Pr | ...| Pn

Figure B.12: Structure of a module state

NOTE 2: Port states may be considered to be part of the entity states. However, by connect and map portsare
made visible for other components and therefore they are handled on thetop level of a module state.

B.3.3.1.1 Accessing the module state

The MTC, SYSTEM, TC-VERDICT and DONE are parts of amodule state are handled like global variables, i.e, the
keywords MTC and TC-VERDICT can be used to retrieve and to change the values of the corresponding modul e state.

NOTE 1: Thereonly exists one module state during the interpretation of a TTCN-3 module. Therefore the
keywords MTC and TC-VERDICT can be considered as unique identifiers for the evaluation procedure.

For the handling of the list of entity statesand the list of port states, the list operations append, delete, first and length
can be used.

NOTE 2: Thelist operations append, delete, first and length have the following meaning:
o <list>.append(<item>) appends <iterm> as last dement into thelist <list>;
o <lig>.ddete(<item>) deletes <item> from thelist <lis>;
o <lig>first() returnsthefirst element of <list>;
o <ligt>.length() returnsthe length of <list>;

o <lig>.next(<iterr) returns the e ement that follows <item> in thelist, or NULL if <iten> isthelast
eementinthelid.

ETSI

136 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.3.2 Entity states

Entity states are used to describe the actual states of module control and test components. The structure of an entity state
isshown in figure B.13.

<identifier> | STATUS | CONTROL-STACK | Data state | timer state | VALUE-STACK | E-VERDICT

Figure B.13: Structure of an entity state

The <identifier> isaunique identifier of an entity, i.e., module control of test component, in thetest system. Such
unique identifiers are created implicitly for the module control, the nt ¢ and thetest syst emwhen amodule starts
execution or atest caseis executed by means of the execut e statement. The identifier is used to identify and address
entitiesin the test system, e.g., in case of send operationswith t o clauses or r ecei ve operations with f r omclauses.

The STATUS describes whether the module control or atest component is ACTI VE or BLOCKED. Module control is
blocked during the execution of atest case. Test components may be blocked during the creation of other test
components, i.e., during the execution of acr eat e operation.

The CONTROL-STACK isastack of flow graph node references. The top element in CONTROL -STACK is the flow
graph node that has to be interpreted next. The stack isrequired to model function calls in an adequate manner.

The data Sateis considered to be alist of lists of variable bindings. The list of lists structure reflects nested scope units
due to nested function calls. Each list in thelist of lists of variable bindings describes the variable bindingsin a certain
scope unit. Entering or leaving a scope unit corresponds to adding or deleting alist of variable bindings from the data
state. A more detailed description of the data state part of an entity state can be found in clause B.3.3.2.2.

Thetimer stateis considered to be alist of lists of timer sates. Thelist of lists structure reflects nested scope units due
to nested function calls. Each list in thelist of lists of timer states describes the timer bindings (known timers and their
status) in a certain scope unit. Entering or leaving a scope unit correspondsto adding or deleting alist of timer states
from thetimer state. A more detailed description of the timer state part of an entity state can be found in

clause B.3.3.2.3.

The VALUE-STACK isastack of values of all possible types that allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, theresult of the evaluation of an expression or the result of
the it ¢ function will be pushed onto the VALUE-STACK. In addition to the values of all data types known in amodule
we define the specia value MARK to be part of the stack a phabet. When leaving a scope unit, the MARK is used to clean
VALUE-STACK.

The E-VERDICT storesthe actual local verdict of atest component. The E-VERDICT isignored if an entity state
represents the module control.
B.3.3.2.1 Accessing entity states

The STATUSand E-VERDICT parts of an entity state are handled like global variables, i.e., the values of STATUSand
E-VERDICT can beretrieved or changed by using the 'dot’ notation <identifier>.STATUS and <identifier>.E-VERDICT.
The <identifier> in the 'dot’ notation refers to the unique identifier of an entity.

The CONTROL-STACK and VALUE-STACK of an entity state can be addressed by using the 'dot’ notation
<identifier>.CONTROL-STACK and <identifier>.VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operations push, pop, top,
clear and clear-until.

NOTE: The stack operations push, pop, top, clear and clear-until have the following meaning:

* <stack>.push(<itenm™) pushes <iterm> onto <stack>;
e <stack>.pop() pops the top item from <stack>;
o <stack>.top() returnsthetop element of <stack> or NULL if <stack> is empty;

e <stack>.clear() clears <stack>, i.e., pops al items from <stack>;

ETSI

137 ETSI ES 201 873-1 V1.1.2 (2001-06)

* <stack>.clear-until(<iten™) popsitemsfrom <stack> until <item> isfound or <stack> isempty.
For the creation of a new entity state the function NEW-ENTITY is assumed to be available:
NEW-ENTITY (<entity-identifier>, <flow-graph-node-reference>)
creates anew entity state and returnsitsreference. The components of the new entity state have the following values:
o <entity-identifier> is the unique identifier;
o STATUSissetto ACTIVE;
» <flow-graph-node-reference> isthe only (top) e ement in CONTROL-STACK;

e (data state and timer state are empty lists;
* VALUE-STACK isan empty stack;

» E-VERDICT issettonone.

During the traversal of aflow graph the CONTROL-STACK changes its val ue often in the same manner: the top element
is popped from and the successor node of the popped node is pushed onto CONTROL -STACK. This series of stack
operations is encapsulated in the NEXT-CONTROL function:

<identifier>.NEXT-CONTROL (boolean <bool>) {
FlowGraphNodeType successorNode := <identifier>.CONTROL-STACK.NEXT(<bool>).top();
<identifier>.CONTROL-STACK.pop();
<identifier>.CONTROL -STACK.push(successorNode).

}
B.3.3.2.2 Data state and variable binding

Asshown in figure B.14 adata state isaligt of lists of variable bindings. Each ligt of variable bindings defines the
variable bindingsin a certain scope unit. Adding anew list of variable bindings corresponds to entering anew scope
unit, e.g., afunction is called. Deleting alist of variable bindings corresponds to |eaving a scope unit, e.g., a function
executes ar et ur n statement.

VariableBinding, VariableBinding,

v v
v v

VariableBinding, VariableBinding,

Figure B.14: Structure of the data state part of an entity state

The structure of a variable binding is shown in figure B.15. A variable has aname <var-name>, alocation and avalue.
<var-name> identifies a variable in a scope unit. The location isaunique identifier of the storage location of the value
of the variable. The value part of a variable binding describes the actual value of a variable.

NOTE: Uniquelocation identifiers shall be provided automatically when avariable is declared.

<var-name> location value

Figure B.15: Structure of a variable binding

ETSI

138 ETSI ES 201 873-1 V1.1.2 (2001-06)

The diginction between variable name and location has been made to modd function calls and the execution of test
cases with value and reference parameterization in an appropriate manner:

a) aparameter passed in by value is handled like the declaration of anew variable, i.e., anew variable binding is
appended to the list of variable bindings of the scope of the called function or executed test case. The new
variable binding uses the formal parameter name as <var-name>, receives a new location and gets the value that
is passed into the function or test casg;

b) aparameter passed in by reference also leads to a new variable binding in the scope of the called function or
executed test case. The new variable binding also uses the formal parameter name as <var-name>, but receives
no new location and no new value. The new variable binding gets a copy of location and value of the variable
that is passed in by reference.

When updating a variable value, e.g., in case of an assignment to a variable, the variable name is used to identify a
location and all variable bindings with the same location are updated at the same time. Thus, when leaving the scope
unit, the list of variables belonging to this scope unit can be del eted without further update. Due to the update
procedure, variables passed in by reference automatically have the correct value.

B.3.3.2.3 Timer state and timer binding

Asshown in figure B.16 and figure B.17 atimer state and a data state in an entity state are comparable. Both arealist
of lists of bindings and each list of bindings defines the valid bindingsin a certain scope. Adding anew list corresponds
to entering a new scope unit and deleting alist of bindings corresponds to leaving a scope unit.

TimerBinding, TimerBinding,

v v
v v

TimerBinding, TimerBinding,

Figure B.16: Structure of the timer state part of an entity state

The structure of atimer binding is shown in figure B.17. The meaning of <timer-name> and location is similar to the
meaning of <var-name> and location for a variable binding (figure B.15).

<timer-name> location STATUS DEF-DURATION | ACT-DURATION | TIME-LEFT

Figure B.17: Structure of a timer binding

STATUS denotes whether atimer isactive, inactive or hastimed out. The corresponding STATUSvaluesare | DLE,
RUNNI NG and TI MEQUT. DEF-DURATION describes the default duration of atimer. ACT-DURATION stores the
actual duration with which arunning timer has been started. TIME-LEFT describes the actual duration arunning timer
has to run before it times out.

NOTE: DEF-DURATION isundefined if atimer is declared without default duration. ACT-DURATION and
TIME-LEFT are set to 0.0 if atimer is stopped or times out. If atimer is started without duration, the
value of DEF-DURATION is copied into ACT-DURATION. A dynamic error occursif atimer is started
without a defined duration.

ETSI

139 ETSI ES 201 873-1 V1.1.2 (2001-06)

Timer can be only passed by reference into functions, i.e., the mechanism issimilar to the mechanism for variables
described in clause B.3.3.2.2. Thismeans anew timer binding (with the formal parameter name as <timer-name>) is
created which gets copies of location, STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT from the timer
that is passed in by reference. When updating <timer-name> all timer bindings with the same location are updated at
the sametime.

B.3.3.24 Accessing timer and data states

The value of a variable can beretrieved by using the dot notation <identifier>.<var-name> where <identifier> refers
to the unique identifier of an entity. For changing the value of a variable, the VAR-SET function has to be used:

<identifier>.VAR-SET (<var-name>, <value>)

sets the value of variable <var-name> in the actual scope of an entity with the unique identifier <identifier>. In addition,
the value of all variables with the same location as variable <var-name> will also be set to <value>.

The values of STATUS DEF-DURATION, ACT-DURATION and TIME-LEFT of atimer <timer-name> can be
retrieved by using the dot notation:

<identifier>.<timer-name>.STATUS

<identifier>.<timer-name>.DEF-DURATION,;

<identifier>.<timer-name>.ACT-DURATION;
<identifier>.<timer-name>.TIME-LEFT.

For changing the values of STATUS DEF-DURATION, ACT-DURATION and TIME-LEFT of atimer <timer-name>, a
generic TIMER-SET operation has to be used, for example:

<identifier>.TIMER-SET(<timer-name>, STATUS <value>)

sets the STATUSvalue of timer <timer-name> in the actual scope of an entity with the unique identifier <identifier> to
the value <value>. In addition, the STATUS of all timers with the samelocation astimer <timer-name> will also be set
to <value>. The TIMER-SET function can also be used to change the values of DEF-DURATION, ACT-DURATION
and TIME-LEFT.

For the handling of variables, timers and scope units the following functions have to be defined:
a) TheINIT-VAR function: <identifier>.INIT-VAR (<var-name>, <value>)

creates anew variable binding for a variable <var-name> with theinitial value <value> in the actual scope unit
of an entity with the uniqueidentifier <identifier>. Using the keyword NONE as <value> means that a variable
with undefined initial valueis created.

b) TheINIT-TIMER function: <identifier>.INIT-TIMER (<timer-name>, <duration>)

creates anew timer binding for atimer <timer-name> with the default duration <duration> in the actual scope of
an entity with the unique identifier <identifier>. Using the keyword NONE as <duration> meansthat a timer
without default duration is crested.

¢) The GET-VAR-LOC function: <identifier>.GET-VAR-LOCATION (<var-name>)

retrieves the location of variable <var-name> owned by an entity with the unique identifier <identifier>

d) The GET-TIMER-LOC function: <identifier>.GET-TIMER-LOCATION (<timer-name>)

retrieves the location of timer <timer-name> owned by an entity with the unique identifier <identifier>
€) TheINIT-VAR-LOC function: <identifier>.INIT-VAR-LOC (<var-name>, <location>)

creates anew variable binding for a variable <var-name> with the location <location> in the actual scope unit of
an entity with the unique identifier <identifier>. The variable will be initialized with the value of another
variable with the location <location>.

ETSI

140 ETSI ES 201 873-1 V1.1.2 (2001-06)

NOTE 1: Variableswith the samelocation are aresult of parameterization by reference. Due to the handling of
reference parameters as described in clause B.3.3.2.2 al variables with the same location will have
identical values during their lifetime.

f) TheINIT-TIMER-LOC function: <identifier>.INIT-TIMER-LOC (<timer-name>, <location>)

creates anew timer binding for atimer <timer-name> with the location <location> in the actual scope unit of an
entity with the unique identifier <identifier>. The timer will be initialized with the values of STATUS
DEF-DURATION, ACT-DURATION and TIME-LEFT of another timer with the location <location>.

NOTE 2: Timerswith the same location are aresult of parameterization by reference. Dueto the handling of timer
reference parameters as described in clause B.3.3.2.3 dl timers with the same location will have identical
values for STATUS DEF-DURATION, ACT-DURATION and TIME-LEFT during their lifetime.

g) TheINIT-VAR-SCOPE function: <identifier>.INIT-VAR-SCOPE ()

initializes anew variable scope in the data state of entity with the unique identifier <identifier>, i.e., an empty
list isappended asfirst list in thelist of lists of variable bindings.

h) The INIT-TIMER-SCOPE function: <identifier>.INIT-TIMER-SCOPE ()

initializes anew timer scope in thetimer state of entity with the uniqueidentifier <identifier>, i.e., an empty list
isappended asfirg list in the ligt of lists of timer bindings.

i) The DEL-VAR-SCOPE function: <identifier>.DEL-VAR-SCOPE ()

deletes a variabl e scope of the data state of entity with the unique identifier <identifier>, i.e, thefirst list in the
list of lists of variable bindingsis del eted.

j) The DEL-TIMER-SCOPE function: <identifier>.DEL-TIMER-SCOPE ()

deletes a timer scope of the timer state of entity with the unique identifier <identifier>, i.e,, thefirs listin thelist
of lists of timer bindingsis deleted.

B.3.3.3 Port states

Port states are used to describe the actual states of ports. The structure of a port gateis shown in figure B.18. The
<port-name> refers to the port name that is used by the test component <owner> that owns the port to identify the port.
STATUS provides the actual status of the port. A port may either be STARTED or STOPPED.

NOTE: A portinatest system isuniquely identified by the owning test component <owner> and by the port
name <port-name> local to <owner>.

Thelist of connections part of a port state keeps track of the connections between the different portsin the test system.
The mechanism isexplained in clause B.3.3.2.1.

The queue of values part of a port state includes the dataitems that are received at this port but not yet consumed.

<port-name> <owner> STATUS list of connections | queue of values

Figure B.18: Structure of a port state

ETSI

141 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.3.3.1 Handling of connections between ports

A connection between two test componentsis made by connecting two of their ports by means of aconnect
operation. Thus, acomponent can afterwards useitslocal port name to address the remote queue. As shown in

figure B.19, connection is represented in the states of both connected queues by a pair of <remote-entity>and
<remote-port-name>. The <remote-entity> is the unique identifier of the test component that owns the remote port. The
<remote-port-name> refers to the local name used by the <remote-entity> to address the queue. TTCN-3 supports
one-to-many connections of ports and therefore all connections of a port are organized in alist.

NOTE 1: Connections made by map operations are aso handled in the list of connections. The map operation:

map (PTC1:MyPort, syst emPCO1) leadsto anew connection (syst em PCOL1) in the port state of
MyPort owned by PTC1. Theremote side to which PCOL1 is connected to resides ingde the SUT. Its
behaviour is outside the scope of this semantics.

NOTE 2: The operational semantics handles the keyword syst emasa symbolic address. A connection (syst em

<port-name>) in the list of connections of a port it indicates that the port is mapped onto the port
<port-name> in the test system interface.

<remote-entity> <remote-port-name>

Figure B.19: Structure of a connection

B.3.3.3.2 Handling of ports states

The handling of port states is supported by the following methods:

a)

b)

0

The NEW-PORT function: NEW-PORT(<owner>,<port-name>)

creates anew port and returnsits reference. The new port isowned by <owner> and has the name <port-name>
to the port identified by the test component <owner> and the port name <port-name>. The status of the new port
is STARTED and bath, the list of connections and the queue of values are empty.

The GET-PORT function: GET-PORT(<owner>, <port-name>)

returns areference to the port identified by the test component <owner> that owns the port and the port name
<port-name>.

The GET-REMOTE-PORT function: GET-REMOTE-PORT(<owner>, <port-name>, <remote-entity>)

returns the reference to the port that is owned by test component <remote-entity> and connected to a port
identified by <owner> and <port-name>. The symbolic address SY STEM isreturned, if the remote port is
mapped onto a port in the test system interface.

NOTE 1: GET-REMOTE-PORT returns NULL if there isno remote port or if the remote port cannot be identified

d)

e

f)

uniquely. The specia value NONE can be used as value for the <remote-entity> parameter if the remote
entity isnot known or not required, i.e., there exits only a one-to-one connection for this port.

The STATUS of a port is handled like avariable. It can be addressed by qualifying STATUSwith a GET-PORT
call:

GET-PORT (<owner>,<port-name>).STATUS
The ADD-CON function: ADD-CON(<owner>, <port-name>, <remote-entity>, <remote-port-name>)

adds a connection (<remote-entity>, <remote-port-name>) to thelist of connections of port <port-name> owned
by <owner>.

The DEL-CON function: DEL-CON(<owner>, <port-name>, <remote-entity>, <remote-port-name>)

deletes connection (<remote-entity>, <remote-port-name>) from the list of connections of port <port-name>
owned by <owner>.

The queue of valuesin a port state can be accessed and manipulated by using the known queue operations enqueue,
dequeue, first and clear. Using a GET-PORT or a GET-REMOTE function references the queue that shall be accessed.

ETSI

142 ETSI ES 201 873-1 V1.1.2 (2001-06)

NOTE 2: The queue operations enqueue, dequeue, first and clear have the following meaning:
e <queue>.enqueue(<iterm>) puts <iterm> aslast item into <queue>;
e <queue>.dequeue() deletesthefirg item from <queue>;
o <queue>first() returnsthefirst item in <queue> or NULL if <queue> isempty;

e <queue>.clear() removes al eements from <queue>.

B.3.3.4 General functions for the handling of module states
The operational semantics assumes the existence of the following functions for the handling of module states.

NOTE: During theinterpretation of a TTCN-3 module, there only exists one module state. It is assumed that the
components of the module state are stored in global variables and not in a complex data object. Thus, the
following functions are assumed to work on global variables and do not address a specific modul e state
object.

a) TheDEL-ENTITY function: DEL-ENTITY (<entity-identifier>)
deletes an entity with the unique identifier <entity-identifier>. The deletion comprises:
- the deletion of the entity state of <entity-identifier>;
- deletion of all ports owned by <entity-identifier>;
- deletion of all connectionsin which <entity-identifier> is involved.
b) The EXISTING function: EXISTING(<entity-identifier>)
returnstrueif an entity state for the entity identified by <entity-identifier> exists. Otherwiseit returns false.

¢) The UPDATE-REMOTE-REFERENCES function:

UPDATE-REMOTE-REFERENCES (<source-entity>, <target-entity>)

the UPDATE-REMOTE-REFERENCES updates variables and timers with the same location in both entities. The
values that will be used for the update are the values of variables and timers owned by <source-entity>.

B.3.4 Messages, procedure calls, replies and exceptions

The exchange of information among test components and between test components and the SUT isrdated to messages,
procedure calls, replies to procedure calls and exceptions. For communication purposes these items have to be
constructed, encoded and decoded. The concrete encoding, i.e., mapping of TTCN-3 data types to bits and bytes, and
decoding, i.e., mapping of bits and bytes to TTCN-3 data types, is outside the scope of the operational semantics. In the
present document messages, procedure calls, repliesto procedure calls and exceptions are handled on a conceptual
level.

ETSI

143 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.4.1 Messages

Messages are related to asynchronous communication. Values of all (pre- and user-defined) data types can be
exchanged among the entities that communicate. As shown in figure B.20, the operational semantics handles a message
as structured object that consist of a sender and a value part. The sender part identifies the sender entity of a message
and the value part defines the message value.

sender Value

Figure B.20: Structure of a message

NOTE: The operational semantics only presents amodd for the concepts of TTCN-3. Whether and how the
sender information is or has to be sent and/or received depends on the implementation of the test system,
e.g., in some cases the sender information may be part of the value part of a message and thereforeisno
Separate part of the message structure.

B.3.4.2 Procedure calls and replies

Procedure calls and replies to procedures arerelated to synchronous calls. They are defined like values of arecord with
components representing the parameters. The operational semantics also handles procedure callsand repliesto
procedure callslike values in structured types. The structure of a message call and the structure of areply are presented
in figure B.21 and figure B.23.

The sender and the procedure reference part have the same meaning in both figures. The sender part refersto the sender
entity of acall or thereply to a procedure call. The procedure reference refers to the procedure to which call and reply
bel ong. The parameter part of the procedure call in figure B.21 refersto thei n parametersand i nout parameters and
the parameter part of thereply in figure B.22 refersto thei nout parametersand out parameters of the procedure to
which call and reply belong. In addition, thereply has avalue part for the return values in thereply to a procedure.

NOTE 1: Asdtated in the previous note, the operational semantics only presents amodel for the concepts of
TTCN-3. Whether and how the information described in figure B.21 and figure B.22 is or has to be sent
and/or received depends on the implementation of the test system.

NOTE 2: For aprocedure call, out parametersare of no relevance and are omitted in figure B.21. For areply toa
procedure call, i n parametersare of no relevance and are omitted in figure B.22.

sender procedure reference parameter part

in-or-inout-parameter; “ in-or-inout-parameter,

Figure B.21: Structure of a procedure call

sender | procedure reference parameter part value

inout-or-out-parameter; ‘ ‘ inout-or-out-parametern

Figure B.22: Structure of areply to a procedure call

B.3.4.3 Exceptions

Exceptions are also rel ated to synchronous communication. The structure of an exception is shown in figure B.23. It
consists of three parts. The sender part identifies the sender of the exception; the procedure reference part refersto the
procedure to which the exception belongs and the value part provides the value of the exception. The type of the value
of an exception isdefined in the signature of the procedure referred to in the procedure reference part. In general it can
be of any pre- or user-defined TTCN-3 data type.

Sender procedure reference value

Figure B.23: Structure of an exception

ETSI

144 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.4.4 Construction of messages, procedure calls, replies and exceptions

The operations for sending amessage, a procedure call, areply to a procedure call or an exception aresend, cal |,
reply andr ai se. All these sending operations are built up in the same manner:

<port - name>. <sendi ng- oper ati on>(<send- specification>) [to <receiver>]

The <port-name> and <sending-operation> define port and operation used for sending an item. In case of one-to-many
connections a <receiver> entity needs to be specified. The item to be sent is constructed by using the
<send-specification>. The send specification may use concrete values, template references, variable values, constants,
expressions, functions, etc. to construct and encode the item to be sent.

The operational semantics assumes that there exists a generic CONSTRUCT-ITEM function:

CONSTRUCT-ITEM(< sender>, <sending-operation>, <send-specification>)

returns amessage, a procedure call, areply to a procedure call or an exception depending on the
<sending-operation> and the <send-specification>. The <sender> information is also assumed to be part of the
item to be sent (figures B.20 to B.23).

B.3.4.5 Matching of messages, procedure calls, replies and exceptions

The operations for receiving a message, a procedure call, areply to a procedure call or an exception arer ecei ve,
get cal | ,getreply and cat ch. All thesereceiving operations are built up in the same manner:

<port - name>. <r ecei vi ng- oper ati on>(<mat chi ng- part>) [from <sender>] [<assi gnnent-part>]

The <port-name> and <receiving-operation> define port and operation used for the reception of an item. In case of one-
to-many connectionsa f r omclause can be used to select a gpecific sender entity <sender>. Theitem to be received has
to fulfil the conditions specified in the <matching-part>, i.e., it has to match. The <matching-part> may use concrete
values, template references, variable values, constants, expressions, functions, etc. to specify the matching conditions.

The operational semantics assumes that there exists a generic MATCH-ITEM function:
MATCH-ITEM(<itemto-check>, <matching-part>, <sender>)
returnstrueif <item-to-check> fulfilsthe conditions of <matching-part> and if <item-to-check> has been sent by
<sender>, otherwise it returnsfalse.

B.3.4.6 Retrieval of information from received items

Information from received messages, procedure calls, repliesto procedure calls and exceptions can be retrieved in the
<assignment-part> (see clause B.3.4.3) of thereceiving functionsr ecei ve, get cal | ,get repl y andcat ch. The
<assignment-part> describes how the parameters of procedure calls and replies, return values encoded in replies,
messages, exceptions and theidentifier of the <sender> entity are assigned to variables.

The operational semantics assumes that there exists a generic RETRIEVE-INFO function:

RETRIEVE-INFO(<item-received>, <assignment-part>, <receiver>)

all valuesto be retrieved according to the <assignment-part> areretrieved and assigned to the variables listed in
the assignment part. Assignments are done by means of the VAR-SET operation, i.e., variables with the same
location are updated at the same time.

B.3.5 Call records for functions and test cases

Functions and test cases are called (or executed) by their name and alist of actual parameters. The actua parameters
provide references for reference parameter and concrete values for the value parameter as defined by the formal
parametersin the function or test case definition. The operational semantics handles function calls and calls of test cases
by using call records as shown in figure B.24. The value of BEHAVIOUR-ID is the name of a function or test case,
value parameters provide concrete values <parld;> ... <parld,> for the formal parameters<parld,> ... <parld.>.
Reference parameters provide references to locations of existing variables and timers. Before a function or test case can
be executed an appropriate call record hasto be constructed.

ETSI

145 ETSI ES 201 873-1 V1.1.2 (2001-06)

BEHAVIOUR-ID

value parameter reference parameter
<parld> | ... | <parld> <parld;> |...| <parld,>
value; value, loc, loc,

Figure B.24: Structure of a call record

B.3.5.1 Handling of call records

The function or test case name and the actual parameter values can be retrieved by using the dot notation, e.g.,
<myRecord>.<parld,> or <myRecord>BEHAVIOUR-ID where <myRecord> isapointer to a cal record.

For the construction of a call the function NEW-CALL-RECORD is assumed to be available:

NEW-CALL-RECORD(<behaviour-name>)

creates anew call record for function or test case <behaviour-name> and returns a pointer to the new record. The
parameter fields of the new call record have undefined values.

<call-record>.INIT-CALL-RECORD()

creates variables and timers for the handling of value and reference parameters in the actual scope of a function
or test case. The variables for the handling of value parameters are initialized with the corresponding values
provided in the call record. The variables and timersfor the handling of reference parameters get the provided
location. In addition, they get a value of an existing variable or timer in another scope unit of the component in
which the call record was created.

B.3.6 The evaluation procedure for a TTCN-3 module

B.3.6.1 Evaluation phases

The evaluation procedure for aTTCN-3 module is structured into (1) initialization phase, (2) update phase, (3)
selection phase and (4) execution phase. The phases (2), (3) and (4) are repeated until module control terminates. The
evaluation procedureis described by means of a mixture of informal text, pseudo-code and the functions introduced in

the previous clauses.

B.3.6.1.1 Phase I: Initialization

The initialization phase includes the following actions:

a) Declaration and initialization of variables:

INIT-FLOW-GRAPHS);

- Entity :=NULL,;

- AllEntities= NULL;
- AllPorts= NULL;

- MTC:=NULL;

- TC-VERDICT:= none;

- DONE:=0;

Il Initialization of flow graph handling. INIT-FLOW-GRAPHS s
Il explained in clause B.3.5.1.

// Entity will be used to refer to an entity state. An entity state either
/1 represents modul e control or atest component.

I/l AllEntitieswill be alist of entity states
/I AllPortswill be alist of port states
[MTC will refer to the MTC when atest caseisrunning

// TC-VERDICT will storethe actual test case verdict
I/ when atest caseisrunning

// During the execution of atest case DONE counts the number
/1 of test components that have terminated.

ETSI

146 ETSI ES 201 873-1 V1.1.2 (2001-06)

NOTE: Theglobal variables AllEntities, AllPorts, MTC, TC-VERDICT and DONE form the module state that is
manipulated during the interpretation of a TTCN-3 module.

b) Creation and initialization of module control

Entity:= NEW-ENTITY (GET-UNIQUE-ID(),GET-FLOW-GRAPH (<modul el d>));
Il A new entity state is created and initialized with the start node of the
/I flow graph representing the behaviour of the control of the module
I/ with the name <moduleld>. GET-UNIQUE-ID will be explained in

/I clause 3.5.1.
- Entity.INIT-VAR-SCOPE(); /I New variable scope
- Entity.INIT-TIMER-SCOPE(); // New timer scope

- Entity. VALUE-STACK.push(M ARK); // A mark is pushed onto the value stack

- AllEntities.append(Entity); I/l The new entity is put into the module Sate.

B.3.6.1.2 Phase II: Update

The update phaseisrelated to all actionsthat are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:

a) Timeprogress. All running timers are updated, i.e., the TIME-LEFT values of running timers are (possibly)
decreased, and if due to the update atimer expires, the corresponding timer bindings are updated, i.e.,
TIME-LEFT isset to 0.0 and STATUSis set to TI MEQUT;

b) Behaviour of the SUT: Messages, remote procedure calls, replies to remote procedure calls and exceptions
(possibly) received from the SUT are put into the port queues at which the corresponding receptions shal take
place.

NOTE: Thisoperational semantics makes no assumptions about time progress and the behaviour of the SUT.

B.3.6.1.3 Phase IlI: Selection
The sdlection phase consists of the following two actions:
a) Selection: Sdect anon-blocked entity, i.e., an entity that has the STATUSvalue ACTIVE;

b) Storage: Storetheidentifier of the selected entity in the global variable Entity.

B.3.6.1.4 Phase 1V: Execution
The execution phase consists of the following two actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of Entity;

b) Check termination criterion: Stop execution if module control hasterminated, i.e., the list of entity statesis
empty, otherwise continue with Phase 1.

NOTE: The execution step of the selected entity can be seen as a procedure call. The check of the termination
criterion is done when the execution step terminates, i.e., returns the control.

B.3.6.2 Global functions

The evaluation procedure uses the global functions INIT-FLOW-GRAPHS and GET-UNIQUE-ID:

a) INIT-FLOW-GRAPHS s assumed to be the function that initializes the flow graph handling. The handling may
include the creation of the flow graphs and the handling of the pointersto the flow graphs and flow graph nodes.

b) GET-UNIQUE-ID isassumed to be a function that returnsa unique identifier each timeit is caled. The unique
identifier may be implemented in form of a counter variable that isincreased and returned each time
GET-UNIQUE-ID iscalled.

ETSI

147 ETSI ES 201 873-1 V1.1.2 (2001-06)

The pseudo-code used the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, * ** DYNAM C- ERROR* * * :

c) CONTINUE-COMPONENT the actud test component continues its execution with the node lying on top of the
control stack, i.e, the control is not given back to the modul e eval uation procedure described in this clause.

d) RETURN returns the control back to the modul e eval uation procedure described in this clause. The RETURN is
the last action of the 'execution step of the selected entity' of the execution phase.

e ***DYNAM C- ERROR*** refersto the occurrence of a dynamic error. The error handling procedureitself is
outside the scope of the operationa semantics. If a dynamic error occurs all following behaviour of the moduleis
meant to be undefined.

NOTE: The occurrence of a dynamic error isrelated to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g., wrong usage or race condition.

B.3.7 Flow graph segment definitions for TTCN-3 constructs

The operational semantics represents TTCN-3 behaviour in form of flow graphs. The construction algorithm for the
flow graphsrepresenting behaviour is described in clause B.3.2.1. It is based on templates for flow graphs and flow
graph segments that have to be used for the construction of concrete flow graphs for module control, test cases,
functions and component type definitions defined in a TTCN-3 module. The definitions of the templates for the flow
graph segments can be found in this Clause. They are presented in an a phabetical order and not in alogical order.

The flow graph segment definitions are provided in the form of figures. The flow graph nodes are presented on the | eft
side of the figures and comments associated to nodes and flow lines are shown on theright side. Descriptive comments
are presented for reference nodes and commentsin form of pseudo-code are associated to basic nodes. The pseudo-code
describes how a basic nodeisinterpreted, i.e., changes the module state. It make use of the functions defined in the
previous parts of clause B.3 and the global variables declared and initialized in the evaluation procedure for TTCN-3
modules (Clause B.3.6). An overall view of all functions and keywords used by the pseudo-code can also be found in
clause B.3.7.

B.3.7.1 Alt statement

The flow graph representation of al t statement in figure B.25 distinguishes between al t statements that have an
el se branchand al t statementsthat haveno el se branch.

segnent <alt-stnt> l

<alt-with-el se>
R /1 An alt statenent nay or nay not
<alt-without-else> [/1 have an el se branch

v

Figure B.25: Flow graph segment <alt-stmt >

The flow graph segments<al t - wi t h- el se>and<al t -wi t hout - el se> are shown in figure B.26 and
figure B.27. The el se branchis a statement block that needs no further explanation. However, both flow graph
segments are very similar with the difference that the el se branch provides a definite exit for theal t statement,
whereasan al t statement without el se branch may loop.

Both flow graph segments have an entry node and beside one incoming flow line, an additional flow line with alabel
<altld>. Thisisasymbolic label for theal t statement. It identifiesthetarget of got 0 al t statements and also defines
theloopinginthe<al t - wi t hout - el se> flow graph segment. Both flow graph segments a so have a defined exit
point by means of the label <altldExit>and theal t - exi t node.

ETSI

148 ETSI ES 201 873-1 V1.1.2 (2001-06)

segnment <alt-with-el se>

<altld> >‘
Enti ty. NEXT- CONTROL(t r ue) ;
>>>>>>>>>>>> RE-I—URN;

<recei vi ng- branch> L p <altldExit>

'

<st at ement - bl ock> - p <altldExit>

<altldExit>
alt-exit Ent i ty. NEXT- CONTROL(tr ue);
,,,,,,,,,,,, RETURN:
v

Figure B.26: Flow graph segment <alt-with-else>

ETSI

149 ETSI ES 201 873-1 V1.1.2 (2001-06)

segnment <alt-without-el se>

Entity. NEXT- CONTROL(true);
,,,,,,,,,,,, RE-I—URN;
Bl

<r ecei vi ng- br anch> L » <altldExit>

Entity. NEXT- CONTROL(true);
............ RE'I'URN;

<altldExit>

<altld> i
alt-exit Entity. NEXT- CONTROL(true);
AAAAAAAAAAAA RETURN:

v

Figure B.27: Flow graph segment <alt-without-else>

ETSI

150 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.1.1 Flow graph segment <receiving-branch>

The execution of the flow graph segment <r ecei vi ng- br anch> isshown in figure B.28.

segment <recei vi ng- branch> ¢

/'l Bool ean expression that
<expressi on> /1 guards a branch

Entity. NEXT- CONTROL(Entity. VALUE- STACK. top());
Entity. VALUE- STACK. pop()
RETURN;

true

<recei ve-op> OR

<getcal |l -op> OR
<getrepl y-op> OR 4‘
<cat ch-op> OR fal se

<ti neout - op> OR
<done- conmponent - op>

'

<st at enent - bl ock>

/1 Continue with
/'l next alternative

v

<altldExit>

Figure B.28: Flow graph segment <receiving-branch>

ETSI

151 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.2 Assignment statement
The syntactica structure of an assi gnnment statementis:
<varl d> : = <expression>

The value of the expression <expression> isassigned to variable <varld>. The execution of an assignment statement is
defined by the flow graph segment <assignment-stmt> in figure B.29.

segment <assi gnnment - st nt > l

/1 The expression is evaluated and the
/1 result is pushed onto the val ue stack

<expressi on>

Entity. VAR-SET(varld, Entity.VALUE-STACK top());
Entity. VALUE- STACK. pop();

assi gnment - st nt
(varldy) Entity. NEXT- CONTROL(true);

RETURN,

\4

Figure B.29: Flow graph segment <assignment-stmt>

B.3.7.3 Call operation

The syntacticd structure of the call operationis

<portld>. call (<call Spec> [<blocking-info>]) [to <conmponent expression>]
[<cal | -reception-part >]

The optional <bl ocki ng- i nf 0> conssts of either the keyword nonbl ocki ng or aduration for atimeout
exception. The optional <conponent _expr essi on> inthet o clauserefersto thereceiver entity. It may be
provided in form of a variable value or thereturn value of a function. The optional <call-reception-part> denotes the
alternative receptionsin case of ablocking cal | operation.

The operational semantics distinguishes between blocking and anon-blocking cal | operations. A cal | is
non-blocking if it expects no replies or if the keyword nonblocking isused. A blocking cal | hasa
<cal | -recepti on-part>.

The flow graph segment <cal | - op> in figure B.30 defines the execution of acal | operation. It reflects the
distinction between blocking and non-blocking calls.

segnent <call - op> i
<bl ocki ng-cal | - op>
R /1 A call operation nay be bl ocking
<non- bl ocki ng-cal I -op> [T /1 or non-bl ocking
v

Figure B.30: Flow graph segment <call-op>

ETSI

152

ETSI ES 201 873-1 V1.1.2 (2001-06)

For blocking and non-blocking call operations areceiver entity may be specified in form of an expression. The

possibilities are shown in figure B.31 and figure B.32.

segnent <bl ocki ng-cal | - op> i

<b-call -w th-receiver>
R

<b-cal | -wi t hout - recei ver >
(034
<b-call -wi th-rec-dur>
R
<b-cal | -w t hout -rec-dur>

/1 A blocking call may or nay not
/1 have a receiver specification

v

Figure B.31: Flow graph segment <blocking-call-op>

I
segnment <non- bl ocki ng-cal | - op> l

<nb-cal | -w t h-recei ver >
R
<nb-cal | -w t hout -recei ver >

/1 A non-blocking call may or may
/'l not have a receiver
/] specification

\4

Figure B.32: Flow graph segment <non-blocking-call-op>

ETSI

153

B.3.7.3.1 Flow graph segment <nb-call-with-receiver>

ETSI ES 201 873-1 V1.1.2 (2001-06)

The flow graph segment <nb- cal | - wi t h- r ecei ver > in figure B.33 defines the execution of a non-blocking

cal | operation where thereceiver is specified in form of an expression.

segnment <nb-call-w th-receiver>

v

<expressi on> /1 to a conponent reference

/1 The expression shall eval uate

nb-cal | -wi th-receiver
(portld, call Spec)

Entity. NEXT- CONTROL(true);
RETURN,;

let {

recei ver := Entity. VALUE- STACK top();

remotePort := CGET- REMOTE- PORT(Entity, portld, receiver);

if (remotePort == NULL) {

*** DYNAM C- ERROR***; // Renote port cannot be found

renot ePor t . enqueue(CONSTRUCT- | TEM Entity, call, call Spec));
} /1 end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /'l clean val ue stack

Figure B.33: Flow graph segment <nb-call-with-receiver>

ETSI

154 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.3.2 Flow graph segment <nb-call-without-receiver>

The flow graph segment <nb- cal | - wi t hout - r ecei ver > in figure B.34 defines the execution of a non-blocking
cal | operation without at o-clause.

segment <nb-cal | -wi t hout -recei ver>

nb-cal | -wi t hout -r ecei ver
(portld, call Spec)

let {
recei ver := Entity. VALUE- STACK top();
remotePort := CGET- REMOTE- PORT(Entity, portld, NONE);
if (renmotePort == NULL) {

*** DYNAM C- ERROR***; // Renote port cannot be found

renot ePor t . enqueue(CONSTRUCT- | TEM Entity, call, call Spec));

} /1 end of scope of receiver and renotePort

Entity. VALUE- STACK. pop(); /'l clean val ue stack
Entity. NEXT- CONTROL(true);
RETURN,

\4

Figure B.34: Flow graph segment <nb-call-without-receiver>

ETSI

155 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.3.3 Flow graph segment <b-call-with-receiver>

Blocking calls are modelled by anon-blocking call followed by an al t statement. The flow graph segment
<b-cal | -w t h-recei ver > describes the execution of ablocking call, without a duration as timer guard, but with
areceiver description for the call. The flow graph segment is shown in figure B.35.

segnment <b-call-with-receiver>

Non- bl ocki ng-call with receiver
description

~ -
~

<nb-cal | -w t h-recei ver >

<al t - st at t> /1 At statement to capture the
att-statemen /1 different receive alternatives
/1 for the call

\4

Figure B.35: Flow graph segment <b-call-with-receiver>

B.3.7.3.4 Flow graph segment <b-call-without-receiver>

The flow graph segment <b- cal | - wi t hout - r ecei ver > describes the execution of a blocking call, without a
duration astimer guard and without areceiver specification for the call. The flow graph segment is shown in
figure B.36.

segnent <b-cal |l -w thout-receiver>

. . /1 Non-bl ocki ng-call w thout
<nb-cal | -wi t hout -recei ver > /1 receiver description

| / At statement to capture the
<alt-statement > /1 different receive alternatives
/1 for the call

v

Figure B.36: Flow graph segment <b-call-without-receiver>

ETSI

156 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.3.5 Flow graph segment <b-call-with-rec-dur>

Blocking calls guarded by timers are modelled by a non-blocking call followed by an al t statement. For the duration a
special system timer SYS-TI is started. The catch timeout branch inthe al t statement refersto the system timer. The
flow graph segment <b- cal | - wi t h- r ec- dur > describes the execution of a blocking call, with a duration as timer
guard and areceiver description for the call. The flow graph segment is shown in figure B.37.

NOTE: Thehandling of the system timer isonly handled in an informal manner. Theimplementation is
proprietary to the test equipment.

segnent <b-call-w th-rec-dur>

/1 Non-bl ocking-call with receiver

<nb-cal | -w t h-recei ver > /1 description

SET(SYS-Tl, duration);
,,,,,,,,,,,,,,,,,,,,,,,, Entity. NEXT- CONTROL(true);
RETURN,

(duration)

/1 At statement to capture the
/1 different receive alternatives
/1 for the call

<al t - st at enent >

\4

Figure B.37: Flow graph segment <b-call-with-rec-dur>

ETSI

157 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.3.6 Flow graph segment <b-call-without-rec-dur>

The flow graph segment <b- cal | - wi t hout - r ec- dur > describes the execution of a blocking call, with aduration
astimer guard and without a receiver description for the call. The flow graph segment is shown in figure B.38.

segnment <b-cal | -wi thout -rec-dur>

) . /1 Non-bl ocking-call wth receiver
<nb-cal | -w t hout -recei ver > /1 description

SET(SYS-TI, duration);
,,,,,,,,,,,,,,,,,,,,,,,, Entity. NEXT- CONTROL(true);
RETURN,;

(duration)

| /1 At statement to capture the
<alt-statement > /1 different receive alternatives
/1 for the call

\ 4

Figure B.38: Flow graph segment <b-call-without-rec-dur>

B.3.7.4 Catch operation
The syntactical structure of the catch operation is:
<portl d>. catch (<matchingSpec>) [from <conponent_expression>] -> [<assignnmentPart >]

The optional <conponent _expr essi on> inthef r omclauserefers to the sender of the exception. It may be
provided in form of a variable value or thereturn value of afunction, i.e,, it isassumed to be an expression. The
optional <assi gnnent Part > denotes the assignment of catched information if the catched exception matchesto the
matching specification <mat chi ngSpec> and to the (optional) f r omclause.

The flow graph segment <cat ch- op> in figure B.39 defines the execution of acat ch operation.

I
segnment <cat ch-op> i

<cat ch-wi t h- sender >
R /1 Distinction due to the optional
<cat ch-w t hout -sender> [/1 fromclause

\4

Figure B.39: Flow graph segment <catch-op>

ETSI

B.3.7.4.1

158 ETSI ES 201 873-1 V1.1.2 (2001-06)

Flow graph segment <catch-with-sender>

The flow graph segment <cat ch- wi t h- sender > in figure B.40 defines the execution of acat ch operation where

the sender is specified in form of an expression.

segnent
<cat ch-wi t h- sender >

11
11
11

<expressi on>

The Expression shal
to a conponent
result

eval uat e
reference. The
is pushed onto the val ue stack

let {

port Ref
port

sender
entity

del eting sender

no match

el se {

sender)) {

gqueue does not

Entity. VALUE- STACK. pop();

if (PortRef. first() == NULL) {

CGET-PORT(Entity, portld); // Reference to actua

Entity. VALUE- STACK. top(); // Reference to sender

/1
ref erence

/1 Port queue is enpty

Entity. NEXT- CONTROL(fal se);

if (MATCH | TEM portRef.first(), matchingSpec

/1 The exception in the queue matches
Entity. NEXT- CONTROL(true)

el se {
mat ch

/1 The exception in the

Entitwv NEXYT. ONTDA 7/ fal ca) -

cat ch-w t h- sender

(port 1D, natchi ngSpec)

true

*(1)

<recei ve- assi gnnent >

/1 optional value

/| assignent

renove- f
(por

rom port
t1d)

/1 Renoval
port
CGET- PORT(Entity, portld).dequeue();

of received exception from

Entity. NEXT- CONTROL(true)

fal se

\4

Figure B.40: Flow graph segment <catch-with-sender>

ETSI

159 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.4.2 Flow graph segment <catch-without-sender>

The flow graph segment <cat ch- wi t h- sender > in figure B.41 defines the execution of acat ch operation
without af r omclause.

segnment <cat ch-wi t hout - sender >

let {
portRef := CGET-PORT(Entity, portld); // Reference to actual
port
if (PortRef. first() == NULL) { /1 Port queue is enpty,
no match
Entity. NEXT- CONTROL(fal se);
el se {
if (MATCH I TEM portRef.first(), matchingSpec, NULL)) {
/1 The exception in the queue matches
Entity. NEXT- CONTROL(true);
el se { /'l The exception in the
gueue does not natch
Entity. NEXT- CONTROL(fal se);
}
1

cat ch-w t hout - sender
(port 1D, natchi ngSpec)

true

*(1)

/1 optional value

. . /| assignent
<r ecei ve- assi gnnent >

renmove-from port
(portld)

/1 Renove received exception from port
CGET- PORT(Entity, portld).dequeue();

Entity. NEXT- CONTROL(true);
RETURN,

fal se

v

Figure B.41: Flow graph segment <catch-without-sender>

ETSI

B.3.7.5 Clear port operation

160 ETSI ES 201 873-1 V1.1.2 (2001-06)

The syntactica structure of thecl ear port operationis

<portld>. clear

The flow graph segment <clear-port-op> in figure B.42 defines the execution of thecl ear port operation.

segnment <cl ear - port-op>

cl ear-port-op
(portld)

/1 The port nane <portld> is copied
/1 into the node attribute ‘portld’

cl ear (GET- PORT(Entity, portid));

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure B.42: Flow graph segment <clear-port-op>

ETSI

161 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.6 Connect operation

The syntactical structure of athe connect operationis:

connect (<conponent _expr essi on;>. <port | d1>, <conponent _expr essi ony>. <portl d2>)

Theidentifiers<por t | d1>and <por t | d2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<conponent _expressi on,;>and <conponent expressi on,>. Thereferences may be stored in variables or
isreturned by a function. For smplicity we consider them as expressions which evaluate to a component reference.
Thus, the value stack isused for storing the component references.

The execution of theconnect operation isdefined by the flow graph segment <connect - op> shown in figure B.43.
In the flow graph description the first expression to be evaluated refers to <conmponent _expr essi on;> andthe
second expressionto <conponent _expr essi ony>, i.e, the<conponent _expr essi ony> isontop of the
value stack when the connect - op nodeisexecuted.

segment <connect - op> l
let {
. conp2 = Entity. VALUE- STACK top();
<expression> /1 Local variable to store the owner
of portld2
Entity. VALUE- STACK. pop();
conpl = Entity. VALUE- STACK top();
/1 Local variable to store the owner
<expressi on> of portld2
Entity. VALUE- STACK. pop();
ADD- CON(conpl, portldl, conp2, portld2)
ADD- CON(conp2, portld2, conpl, portldl)
t-
(porctolndnlecporotpl (317) WRR—— } /1 end of scope of conpl and conp2

\4

Figure B.43: Flow graph segment <connect-op>

ETSI

162 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.7 Declaration of a constant

The syntacticd structure of a constant declaration is:

const <const Type> <constld> : = <const Type- expressi on>
The value of a constant is considered to be an expression that evaluatesto a value of the type of the constant.

NOTE: Global constants arereplaced by their valuesin a preprocessing step before this semanticsis applied
(clause B.2.3). Local constants aretrested like variable declarations with initialization. The correct usage
of constants, i.e., constants shall never occur on the left side of an assignment, shall be checked during the
static semantics analysis of a TTCN-3 module.

The flow graph segment <constant-declaration> in figure B.44 defines the execution of a constant declaration where the
value of the constant is provided in form of an expression.

segnent <constant - decl arati on>

. /'l The expression shall eval uate
<expressi on> /1 to a value of the type of the
/'l variable that is declared.

Entity. | N T- VAR(const1d, Entity.VALUE- STACK.top());

Entity. VALUE- STACK. pop(); /1 cl ean VALUE- STACK
var-decl aration-init
(const | d) Entity. NEXT- CONTROL(true);
RETURN;

Figure B.44: Flow graph segment <constant-declaration>

ETSI

163 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.8 Create operation

The syntacticd structure of thecr eat e operation is:

<conponent Typel d>. creat e

The flow graph segment <create-op> in figure B.45 defines the execution of the cr eat e operation.

segnent <create-op>

create-op
(conponent Typel d)

/1 The identifier for the newentity is created and pushed
/1 onto the value stack of the 'father' entity
Entity. VALUE- STACK. push(GET- UNI QUE-1 X)) ;

/1 New entity state is created and pushed onto the value stack of the
/] 'father' entity

Entity. VALUE- STACK. push(NEW ENTI TY(Entity. VALUE- STACK top(),
conponent Typel D)) ;

/1 The identifier of the 'father' entity is pushed onto the
/1 value stack of the new entity
Entity. VALUE- STACK. t op(). VALUE- STACK. push(Entity);

/1 The new entity is put into the nodule state (AllEntities is a global variable)
All Entities.append().Entity. VALUE- STACK top();

/1 The new entity state is renmoved fromthe value stack of the 'father' entity
/1 The 'father' entity goes into a blocking state and the control is returned
/1 to the nmodul e eval uati on procedure

Entity. VALUE- STACK. pop();
Entity. STATUS : = BLOCKED;
Entity. NEXT- CONTROL(true);
RETURN,

Figure B.45: Flow graph segment <create-op>

ETSI

164 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.9 Declaration of a port
The syntacticd structure of a port declaration is:
<port Type> <port Name>

Port declarations can be found in component type definitions. The effect of a port declaration isthe creation of a new
port. The flow graph segment <port-declaration> in figure B.46 defines the execution of a port declaration.

segnent <port-decl aration>

/1 The tinmer reference <portNanme> is copied
/1 into the node attribute ‘portNane’

port-declaration) Al l Ports. append(NEW PORT(Entity, portNane);
(port Nane)

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure B.46: Flow graph segment <port-declaration>

B.3.7.10 Declaration of a timer
The syntactical structure of atimer declaration is:
timer <timerld> [:= <fl oat_expressi on>]

The effect of atimer declaration is the creation of anew timer binding. The declaration of a variable with a default
duration is optional. The default value is considered to be an expression that evaluatesto a value of thetypef | oat .

The flow graph segment <timer-declaration> in figure B.47 defines the execution of the declaration of atimer.

segnent <timer-decl aration> $

<ti mer-decl -defaul t >
R
<ti mer - decl - no- def >

l

Figure B.47: Flow graph segment <timer-declaration>

/1 A tinmer may be declared with
/1 o

r without a default duration

ETSI

165 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.10.1 Flow graph segment <timer-decl-default>

The flow graph segment <timer-decl-default> in figure B.48 defines the execution of atimer declaration where a default
duration in form of an expression is provided.

segnent <timer-decl -defaul t>

. /1 The expression shall eval uate
<expressi on> Il to a value of type float

Entity. INIT-TI MER(tinerld, Entity.VALUE- STACK. top());

Entity. VALUE- STACK. pop(); /1 cl ean VALUE- STACK
timer-decl -def aul t
(tinerld) Entity. NEXT- CONTROL(true);
RETURN;

Figure B.48: Flow graph segment <timer-decl-default>

B.3.7.10.2 Flow graph segment <timer-decl-no-def>

The flow graph segment <timer-decl-no-def> in figure B.49 defines the execution of a timer declaration where no
default duration is provided, i.e., the default duration of the timer is undefined.

segnent <ti mer-decl - no- def >

Entity. | NIT-TIMER(tinerid, NONE);

timer-decl - no- def Entity. NEXT- CONTROL(true);
(timerld) RETURN,

\4

Figure B.49: Flow graph segment <timer-decl-no-def>

ETSI

166 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.11 Declaration of a variable
The syntactica structure of a variable declaration is:
var <varType> <varld> [:= <var Type_expressi on>]

Theinitialization of a variable by providing an initial valueis optional. Theinitial valueis considered to be an
expression that evaluates to a value of the type of the variable.

The flow graph segment <variable-declaration> in figure B.50 defines the execution of the declaration of a variable.

segnent <vari abl e-decl arati on>

<var-declaration-init>
oRrR /1 A variable nay be declared with
<var - decl ar at i on- undef > /'l or without initial value

Figure B.50: Flow graph segment <variable-declaration>

B.3.7.11.1 Flow graph segment <var-declaration-init>

The flow graph segment <var-declaration-init> in figure B.51 defines the execution of a variable declaration where an
initial value in form of an expression is provided.

segnent <var-declaration-init>

. /1 The expression shall eval uate
<expressi on> /1 to a value of the type of the
/1 variable that is declared.

Entity. | NI T- VAR(varld, Entity.VALUE-STACK. top());

Entity. VALUE- STACK. pop(); /1 cl ean VALUE- STACK;
var-declaration-init
(varld) Entity. NEXT- CONTROL(true);
RETURN,

Figure B.51: Flow graph segment <var-declaration-init>

ETSI

167 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.11.2 Flow graph segment <var-declaration-undef>

The flow graph segment <var-declaration-undef> in figure B.52 defines the execution of a variable declaration where
noinitial valueisprovided, i.e., the value of the variable is undefined.

segnment <var-decl arati on- undef >

Entity. | NI T-VAR(varld, NONE);

var - decl ar at i on- undef Entity. NEXT- CONTROL(true);
(varld) RETURN;

\4

Figure B.52: Flow graph segment < var-declaration-undef >

B.3.7.12 Disconnect operation

The syntactical structure of athe di sconnect operationis:

di sconnect (<conmponent _expr essi on;>. <portl d1>, <conponent _expressi ony,>. <portld2>)

Theidentifiers<por t | d1> and <por t | d2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<conponent _expressi on,;>and <conponent _expr essi on,>. Thereferences may be stored in variables or
isreturned by a function. For simplicity we consider them as expressions which evaluate to a component reference.
Thus, the value stack isused for storing the component references.

The execution of thedi sconnect operation isdefined by the flow graph segment <di sconnect - op> shown in
figure B.53. In the flow graph segment the first expression to be evaluated refersto <conponent _expr essi on;>
and the second expression to <component _expr essi on,>, i.e, the<conponent _expr essi on,> isontop of
the value stack when thedi sconnect - op nodeis executed.

segnent <di sconnect - op> l
let {
. conp2 = Entity. VALUE- STACK top();
<expression> /'l Local variable to store the owner
of portld2
Entity. VALUE- STACK. pop();
conpl = Entity. VALUE- STACK top();
/'l Local variable to store the owner
<expressi on> of portld2
Entity. VALUE- STACK. pop();
DEL- CON(conpl, portldl, conp2, portld2)
DEL- CON(conp2, portld2, conpl, portldl)
di sconnect - op
(portidl, portid2)) } /1 end of scope of conpl and conp2

\{

Figure B.53: Flow graph segment <disconnect-op>

ETSI

168 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.13 Do-while statement

The syntactical structure of the do-whi | e Satement is:
do <stat enent - bl ock>
whi | e (<bool ean_expressi on>)

The execution of ado-whi | e statement is defined by the flow graph segment <do- whi | e- st nt > shown in
figure B.54.

segnent <do-whil e-stnt>

<st at enent - bl ock>

l

<expressi on>

if (Entity.VALUE- STACK top()== true) {
Entity. NEXT- CONTROL(true);

el se {
Ent i ty. NEXT- CONTROL(tr ue) ;
}
true Entity. VALUE- STACK. pop();
decision N\..... RETURN,
fal se
\/

Figure B.54: Flow graph segment <do-while-stmt>

ETSI

169 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.14 Done-all-components operation

Thedone-al | -conponent s operation refers to the usage of thekeywordsal | conmponent inthe done operation
(Clause B.7.16). Thedone-al | -conponent s operation can only be called by thent c. It allows to check whether all
parallel test components of atest case have terminated. The syntactical structure of thedone-al | -conponent s
operation is:

al | conponent. done;

The execution of thedone- al | - conponent s operation is defined by the flow graph segment
<done- al | - conp- op>in figure B.55.

segment <done- any- conp- op>

done- any- conp- op

if (Entity 1= MIQ ({
*** DYNAM C- ERROR* * *
/1 Entity is not allowed to call the
operation
””” i}f (AllEntities.length() == 2) {
/1 only ntc and control exist
Entity. NEXT- CONTROL(true);

}

el se {
Entity. NEXT- CONTROL(fal se);
}

RETURN,;

fal se / \ true

Figure B.55: Flow graph segment <done-all-comp-op>

ETSI

170 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.15 Done-any-component operation

Thedone-any-conponent operation refers to the usage of the keywords any conponent inthe done operation
(Clause B.7.16). Thedone-any-conponent operation can only be called by the nt c. It allows to check whether a
parald test component of atest case has already terminated. The syntactica structure of the done- any- conponent
operation is:

any conponent . done;

The execution of the done-any-conponent operation is defined by the flow graph segment
<done- any- conp- op> in figure B.56.

segment <done- any- conp- op>

done- any- conp- op

if (Bntity 1= MIC) {

*** DYNAM C- ERROR* * *

/1 Entity is not allowed to call the
operation

}
if (DONE = 0) {
/] at |least one ptc has terninated

Entity. NEXT- CONTROL(true);
}

el se {
Entity. NEXT- CONTROL(fal se);

}
RETURN,

fal se / x true

Figure B.56: Flow graph segment <done-any-comp-op>

ETSI

171 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.16 Done component operation
The syntactica structure of the done component operation is:
<conponent _expressi on>. done

The done component operation checks whether a component isrunning or has stopped. Depending on whether a
checked component isrunning or has stopped the done operation decides how the flow of control continues. Using a
component reference identifies the component to be checked. The reference may be stored in a variable or be returned
by a function. For simplicity thisis considered to be an expression that evaluates to a component reference.

The flow graph segment <done-component-op> in figure B.57 defines the execution of the done component operation.

segnent
<done- conmponent - op>

/| The Expression shall eval uate
/ to a conponent reference. The
/ result is pushed onto VALUE- STACK

<expressi on>

if (EXISTING Entity.VALUE- STACK top() == true) {
Entity. VALUE- STACK. pop();
Entity. NEXT- CONTROL(true);
done-conmponent-op). I —
el se {
Entity. VALUE- STACK. pop();
Entity. NEXT- CONTROL(fal se);
}

RETURN,

fal se true

Figure B.57: Flow graph segment <done-component-op>

B.3.7.17 Execute statement
The syntactica structure of the execut e statement is:

execut e(<t est Casel d>([<act-par,> .., <act-par,>)]) [, <float_expression>])

Theexecut e satement describes the execution of atest case <t est Casel d> with the (optional) actua parameters
<act - par,> ..., <act-par,>. Optionaly the execute statement may be guarded by a duration provided in form
of an expression that evaluatesto afloat. If within the specified duration the test case doesn't return a verdict, a timeout
exception occurs, the test caseis stopped and an er r or verdict isreturned. However, TTCN-3 hasno real-time
semantics and, thus, the decision whether atimeout exception occurs or not ismodelled in form of a non-deterministic
choice.

NOTE: The operational semantics only model s the non-deterministic choice. The<f | oat _expr essi on> is
not evaluated.

If due to the non-deterministic choice no timeout exception occurs, the nt ¢ is created, the control instance
(representing the control part of the TTCN-3 module€) is blocked until the test case terminates, and for the further test
case execution the flow of control isgiven tothent c. Theflow of contral is given back to the control instance when
thent c terminates.

ETSI

172 ETSI ES 201 873-1 V1.1.2 (2001-06)

The flow graph segment <execut e- st it > in figure B.58 defines the execution of an execut e statement.

segnent <execute-stnt> l
<execute-ti meout >
orR /1 An execute statement may or may
<execute-wi thout-tinmeout> [/1 not be guarded by a tinmeout
v

Figure B.58: Flow graph segment <execute-stmt>

B.3.7.17.1 Flow graph segment <execute-timeout>

The flow graph segment <execut e-t i meout > in figure B.59 defines the execution of an execut e statement that
is guarded by a timeout value.

segnent <execute-tineout>

/1 The path is randomy

/1 chosen

.................. Entity. NEXT- CONTROL(randon);
RETURN;

random choi ce

fal se

Entity. VALUE- STACK. push(error);
Entity. NEXT- CONTROL(true);
RETURN,

<execut e-w t hout - ti meout >

execut e-ti meout

®-

\{

Figure B.59: Flow graph segment <execute-timeout>

ETSI

173 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.17.2 Flow graph segment <execute-without-timeout>

The execution of atest case startswith the creation of the nt c. Then the mtc is started with the behaviour defined in the
test case definition. Afterwards, the modul e control waits until the test case terminates. The creation and the start of the
mtc can be described by using cr eat e and st art statements:

ntcType MYMIC : = ntcType. create;
MyMIC. st art (Test CaseNane(P1..Pn);

The flow graph segment <execut e- wi t hout -t i meout > in figure B.60 defines the execution of an execut e
statement without the occurrence of a timeout exception by using the flow graph segments of the cr eat e and the
start operations.

segnment <execute-w t hout -

/] Creation of the MIC

<cr eat ¢- op>

\4

MIC : = Entity. VALUE- STACK top();
TC- VERDI CT : = none;
DONE : = 0;

init-test-case-state
Entity. NEXT- CONTROL(true);
RETURN;

<start-conponent - op> I/ Start of MIC

Entity. STATUS : = BLOCKED;

wai t-for-term nation)
»»»»» Entity. NEXT- CONTROL(true);

RETURN:

Figure B.60: Flow graph segment <execute-without-timeout>

ETSI

174 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.18 Expression
For the handling of expressions, the following four cases have to be distinguished:
a) Theexpressonisaliteral value (or a constant);
b) Theexpressonisavariable
¢) Theexpression isan operator applied to one or more operands;
d) Theexpressionisafunction or operation call.

The syntactical structure of an expression is:

<lit-val> | <var-val> | <func-op-call> | <operand-appl >

where:
<lit-val> denotes aliteral value;
<var-val > denotes a variable value;
<func-op-cal | > denotes a function or operation call;

<oper at or - appl > denotes the application of arithmetic operatorslike +, -, nat, etc.

The execution of an expression is defined by the flow graph segment <expr essi on> shown in figure B.61.

segment <expressi on> i
<lit-val ue>
R /1 The four alternatives
<var - val ue> /| describe the four
R /1l possibilities for
<func-op-cal |l > /| expressions as
R /1 described in this
<oper at or - appl > /] section.
v

Figure B.61: Flow graph segment <expression>

B.3.7.18.1 Flow graph segment <lit-value>

The flow graph segment <lit-value> in figure B.62 pushes aliteral value onto the value stack of an entity.

segnment <lit-val ue>

Entity. VALUE- STACK. push(val ue);

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure B.62: Flow graph segment <lit-value>

ETSI

175 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.18.2 Flow graph segment <var-value>

The flow graph segment <var-value> in figure B.63 pushes the value of a variable onto the value stack of an entity.

segnent <var-val ue>

Entity. VALUE- STACK. push(Entity. var-nane);

Enti ty. NEXT- CONTROL(t r ue);
RETURN:

v
Figure B.63:

Flow graph segment <var-value>

B.3.7.18.3 Flow graph segment <func-op-call>

The flow graph segment <f unc- op- cal | > in figure B.64 refersto calls of functions and operations, which return a
value that is pushed onto the value stack of an entity. All these calls are considered to be expressions.

segnment <func-op-cal |l > ¢

<r ead-

<runn

<create-op> OR <done-conponent - op> OR
<done-al | -op> OR <done-any. op> OR

<verdi ct. get-op> OR <execute-stnt>

<fuction-call> OR <ntc-op> OR
timer-op> OR <running-tinmer-op> OR
<r unni ng- conponent - op> OR
i ng-al |l -op> OR <runni ng-any-op> OR
<sel f-op> OR <system op> OR

v

Figure B.64: Flow graph segment <func-op-call>

ETSI

176 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.18.4 Flow graph segment <operator-appl>

The flow-graph representation in figure B.65 directly refers to the assumption that reverse polish notation is used to
evaluate operator expressions. The operands of the operator are cal culated and pushed onto the evaluation stack. For the
application of the operator, the operands are popped from the evaluation stack and the operator is applied. Theresult of
the operator application isfinally pushed onto the evaluation stack.

segment <operat or - appl >
/1 For an n-nary operator,
/1 n operands in form of
+ .
»»»»»»»»»»»»»»»»»»»»»»»»» /1 eval uat ed expressions have
/1 to be pushed onto the
<expressi on> /'l val ue stack

Entity. APPLY- OPERATOR(operator);

oper at or - appl Entity. NEXT- CONTROL(t r ue);
(operator) RETURN

v

Figure B.65: Flow graph segment <operator-appl>

B.3.7.19 Flow graph segment <finalize-component-init>

The flow graph segment <f i nal i ze- conponent - i ni t > ispart of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure B.66:

segnent

<finali se- component -i ni t > /1 Control is given back to the 'father' entity.

/1 ldentifier of '"father' entity is deleted.
Entity. VALUE- STACK. top(). STATUS : = ACTI VE;
Entity. VALUE- STACK. pop();

finalise-conponent-init ™\ |
/1 A mark is pushed on the val ue stack, the

/1 entity goes into a blocking state (waits for
/1 being started) and control is given back to
/1 the nodul e eval uation procedure

Entity. VALUE- STACK. push(MARK) ;

Entity. STATUS : = BLOCKED,

/1 No node is pushed onto the control stack
/1 a return statement will be a stop
RETURN,;

v

Figure B.66: Flow graph segment <finalize-component-init>

ETSI

177 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.20 Flow graph segment <init-component-scope>

The flow graph segment <i ni t - conponent - scope> is part of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure B.67:

segnent <init-conponent-scope>

/1 A new variabl e scope and a new
/1 timer scope are created
Entity. | NI T- VAR- SCOPE() ;

| nit-conponent-scope N, . Entity. TNIT-TI MER- SOOPE() ;

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure B.67: Flow graph segment <init-component-scope>

ETSI

178 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.21 For statement

The syntacticd structure of thef or -st at enent is:

for (<assignment>, <bool ean_expressi on> <assignnment>) <statenent-bl ock>

Theinitiaization of theindex variable and the corresponding manipulation of the index variable are considered to be
assignments to the index variable. The<bool ean_expr essi on> describes the termination criterion of the loop
specified by the f or -st at ement and the<st at enent - bl ock> describes the loop body.

The execution of the for statement is defined by the flow graph segment <f or - st nt > shown in figure B.68. The
initial <assi gnnment > describes the initialization of the index variable. The <assi gnment > inthet r ue branch of
thedeci si on node describes the manipulation of theindex variable.

|
segnment <for-stnt> i

<assi gnment >

<expressi on>

deci Si 0N s

true

if (Entity.VALUE- STACK top()== true) {

- >
<statement - bl ock Enti ty. NEXT- CONTROL(LT U€) ;

}
Entity. VALUE- STACK. pop();
RETURN;

el se {
i Entity. NEXT- CONTROL(true);

<assi gnment >

v

Figure B.68: Flow graph segment <for-stmt>

ETSI

179 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.22 Function call

The syntactica structure of afunction call is:
<functi on-nane>([<act - par-desc;>, ..., <act-par-desc,>])

The <function-name> denotes to the name of a function and <act - par - descr ;>, ..., <act - par - descr >
describe the description of the actual parameter values of the function call. In case of a value parameter the description
of an actua parameter may be provided in form of an expression that hasto be evaluated before the call can be
executed.

It is assumed that for each <act - par - desc;> the corresponding formal parameter identifier <f - par -1 d;> is
known, i.e., we can extend the syntactical structure above to:

<functi on-name>((<f-par-1d,> <act-par-desc;>), .., (<f-par-1d,>,
<act - par - descy>))

The flow graph segment <function-call> in figure B.69 defines the execution of a function call. The execution is
structured into three steps. In thefirst step a call record for the function <function-name> is created. In the second step
the values of the actual parameter are cal culated and assigned to the corresponding field in the call record. In the third
step, the contral of the behaviour that callsthe function is transferred.

segnent
<function call>

Entity. VALUE- STACK. push(NEW CALL- RECORD(f uncti on- nane));
Entity. NEXT- CONTROL(true);
RETURN;

construct-call-record
(functi on- nane)

* /'l For each pair (<f-par-ldi> <act-paraneter-desc;>) the
/1 value of <act-paraneter-desc; is cal cul ated and
»»»»»» /'l assigned to the corresponding field <f-par-Id>

<val ue- par-cal cul ati on> /1 in the call record. The call record is assuned to be
/1 the top elenent in the val ue stack.

N

<ref-var-par-calc> OR
<ref-timer-par-cal c>>

-~

Retrieves the locations for variables and tiners
used as reference paraneters

-~
~ -

/1 Storage of return address

Entity. NEXT- CONTROL(true);

/1 Control is transferred to called function

control -trans-to-function Entity. CONTROL- STACK. push(GET- FLOW GRAPH(f uncti on- nane)) ;
(functi on- nane)

RETURN:

Figure B.69: Flow graph segment <function-call>

ETSI

180 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.23 Flow graph segment <value-par-calculation>

The flow graph-segment <val ue- par - cal cul at i on> isused to calculate actua parameter values and to assign

them to the corresponding fieldsin call records for functionsand test cases.

It isassumed that a call record isthe top element of the value stack and that a pair of:

(<f-par-1d;> <act-paraneter-desc;>)

hasto behandled. <act - par anet er - desc;> that hasto be evaluated and <f - par - | d; > istheidentifier of a

formal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <val ue- par - cal cul at i on>isshown in figure B.70.

segnent
<val ue- par-cal cul ati on>

<expressi on>

/1 The expression represents <act- paraneter-desc;>
/1 The result of the evaluation of the expression
/1 is pushed onto the val ue stack

par amet er - assi gnnent
(f-par-1d)

let {
parVal = Entity. VALUE- STACK top();
/] parVal is a
| ocal variabl e that
/'l stores the value
of the expression

Entity. VALUE- STACK. pop();
/1 Renoval of
expressi on val ue
/1l Afterwards the
call record is
// again top of the
val ue stack

Entity. VALUE- STACK top().f-par-1d:=
par Val ;
/1 Val ue assi gnnent

\4

Figure B.70: Flow graph segment <value-par-calculation>

ETSI

181 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.24 Flow graph segment <ref-par-var-calc>

The flow graph-segment <r ef - par - var - cal ¢> isused to retrieve the locations of variables used as actual
reference parameters and to assign them to the corresponding fields in call records for functions and test cases.

It isassumed that a call record isthetop element of the value stack and that a pair of:
(<f-par-1d;> <act-par;>)

hastobehandled. <act - par;> is the actual paraneter forwhichthelocation hasto beretrieved and
<f - par - | d; > istheidentifier of aformal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <r ef - par - var - cal ¢> isshown in figure B.71.

segnent
<ref - par-var-cal c>

let {
location := Entity. GET- VAR- LOCATI ON(act - par) ;
par anet er - assi gnment Entity. VALUE- STACK. top().f-par-1d:=
(f-par-1d, act-par) location: —
/1 Val ue assignnent to call
record

} // end of scope for location

Entity. NEXT- CONTROL(true);
RETURN;

\4

Figure B.71: Flow graph segment <ref-par-var-calc>

ETSI

182 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.25 Flow graph segment <ref-par-timer-calc>

The flow graph-segment <r ef - par -t i mer - cal ¢> isused toretrieve the locations of timers used as actual
reference parameters and to assign them to the corresponding fields in call records for functions and test cases.

It isassumed that a call record isthetop element of the value stack and that a pair of:
(<f-par-1d;> <act-par;>)

hastobehandled. <act - par;> is the actual paraneter forwhichthelocation hasto beretrieved and
<f - par - | d; > istheidentifier of aformal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <r ef - par -t i ner - cal ¢>isshown in figure B.72.

segnent
<ref-par-tiner-cal c>

let {
location := Entity. GET- TI MER- LOCATI O\(act - par) ;
par anet er - assi gnnent Entity. VALUE- STACK. top().f-par-1d:= location;
(f-par-1d, act-par) /1 Val ue assignnent to call record

} // end of scope for location

Entity. NEXT- CONTROL(true);
RETURN;

\4

Figure B.72: Flow graph segment <ref-par-timer-calc>

B.3.7.26 Flow graph segment <parameter-handling>

The flow graph-segment <par anet er - handl i ng> isused in the beginning of function calls. It initializesanew
scope and creates variables and timers for the handling of parameters. It is assumed that the call record of the called
function islying on top of the value stack.

The execution of flow graph-segment <par anet er - handl i ng> isshown in figure B.73.

segnent
<par anet er - handl i ng>

Entity. NI T-VAR-SCOPE(); // new variabl e scope
Entity. NI T-TI MER- SCOPE(); // new timer scope

, Entity. VALUE- STACK top().| N T- CALL- RECORD();

par amet er - handl i ng /1 paraneters are initialized
Entity. VALUE- STACK. pop(); // renoval of call record
Entity. VALUE- STACK push(MARK); // for scope

Entity. NEXT- CONTROL(true);
RETURN;

\4

Figure B.73: Flow graph segment <parameter-handling>

ETSI

183

B.3.7.27 Getcall operation

The syntactica structure of the getcall operation is:

<portld>.getcall (<matchingSpec>) [from <conponent_expressi on>]

The optional <conponent _expr essi on> inthef r omclause refers to the sender of the call that is handled by the
get cal | operation. It may be provided in form of a variable value or the return value of afunction, i.e, it isassumed

ETSI ES 201 873-1 V1.1.2 (2001-06)

to be an expression. The optional <assi gnment Par t > denotes the assignment of received information if the
received call matches to the matching specification <mat chi ngSpec> and to the (optional) f r omclause.

The flow graph segment <get cal | - op> in figure B.74 defines the execution of aget cal | operation.

segnment <getcal | - op>

|

<getcal | -wi t h- sender >
oR
<get cal | -wi t hout - sender >

// Distinction due to the optional
/1 fromclause

\ 4

Figure B.74: Flow graph segment <getcall-op>

ETSI

-> [<assi gnnent Part >]

184

B.3.7.27.1 Flow graph segment <getcall-with-sender>

ETSI ES 201 873-1 V1.1.2 (2001-06)

The flow graph segment <get cal | - wi t h- sender > in figure B.75 defines the execution of aget cal | operation

where the sender is specified in form of an expression.

segment
<getcal | -wi t h- sender >

<expressi on>

The Expression shall evaluate
to a conponent reference. The
result is pushed onto the val ue stack

del eting sender

enpty,

let {

portRef := CGET-PORT(Entity, portld); // Reference to
actual port

sender := Entity. VALUE- STACK. top(); // Reference to sender
entity

Enti ty. VALUE- STACK. pop() ; M

ref erence

if (PortRef . first() == NULL) {
no match
Entity. NEXT- CONTROL(f al se);

/1 Port queue is

el se {

if (MATCH I TEM portRef.first(), matchingSpec,

sender)) {

getcal | -wi t h- sender
(port 1D, matchi ngSpec)

/1 The call in the queue natches
Entity. NEXT- CONTROL(true);
el se { /1 The call in the
gueue does not natch
Entity. NEXT- CONTROL(f al se);
}
RETURN;
} /1 End of scope of portRef and sender
true
*(1)
/1 optional value
. . /| assignent
<r ecei ve- assi gnnent >
renmove-from port
(portid)y e
/1 Renoval of received call from port

CGET- PORT(Entity, portld).dequeue();

Entity. NEXT- CONTROL(true);
RETURN;

fal se

\{

Figure B.75: Flow graph segment <getcall-with-sender>

ETSI

185 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.27.2 Flow graph segment <getcall-without-sender>

The flow graph segment <get cal | - wi t h- sender > in figure B.76 defines the execution of aget cal | operation
without af r omclause.

segment <getcal | -wi t hout - sender >

let {

portRef := CGET-PORT(Entity, portld); // Reference to actual
port

if (PortRef. first() == NULL) { /1 Port queue is enpty,
no match

Entity. NEXT- CONTROL(fal se);

el se {
if (MATCH I TEM portRef . first(), matchingSpec, NULL)) {
/1 The call in the queue matches
Entity. NEXT- CONTROL(true);

el se { /1 The call in the queue
does not natch
Entity. NEXT- CONTROL(f al se);

getcal | -w t hout - sender
(port 1D, matchi ngSpec)

true

*(1)
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA /1 optional value

. . /| assignent
<r ecei ve- assi gnnent >

renmove-from port
(portld)

/1 Renoval of received call from port
CGET- PORT(Entity, portld).dequeue();

Entity. NEXT- CONTROL(true);
RETURN,

fal se

v

Figure B.76: Flow graph segment <getcall-without-sender>

ETSI

186 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.28 Getreply operation
The syntactical structure of the get r epl y operationis:
<portld>.getreply (<matchi ngSpec>) [from <conponent _expression>] -> [<assignnmentPart >]

The optional <conponent _expr essi on> inthef r omclauserefersto the sender of thereply that is handled by
theget r epl y operation. It may be provided in form of a variable value or thereturn value of afunction, i.e, itis
assumed to be an expression. The optional <assi gnrent Par t > denotes the assignment of the received information
if the reply matches to the matching specification <mat chi ngSpec> and to the (optional) f r omclause.

The flow graph segment <get r epl y- op> in figure B.77 defines the execution of aget r epl y operation.

segnent <getreply-op> l

<getrepl y-wi t h-sender >
R /1 Distinction due to the optional
/1 fromclause

<getrepl y-wi t hout - sender >

v
Figure B.77: Flow graph segment <getreply-op>

ETSI

187 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.28.1 Flow graph segment <getreply-with-sender>

The flow graph segment <get r epl y- wi t h- sender > in figure B.78 defines the execution of aget repl y
operation where the sender is specified in form of an expression.

segment
<getreply-w th-sender>

<expressi on>

The Expression shall evaluate
to a conponent reference. The
/1 result is pushed onto the val ue stack

let {

portRef := CGET-PORT(Entity, portld); // Reference to actua
port

sender := Entity.VALUE-STACK top(); // Reference to sender
entity

Entity. VALUE- STACK. pop(); 11
del eting sender reference

if (PortRef . first() == NULL) { /1 Port queue is enpty
no match

sender)) {

gueue does not natch

RETURN:

Entity. NEXT- CONTROL(f al se);

el se {
if (MATCH I TEM portRef.first(), matchingSpec

/1 The reply in the queue natches
Entity. NEXT- CONTROL(true)

}

el se { /1 The reply in the
Entity. NEXT- CONTROL(f al se);

}

/1 End of scope of portRef and sender

getrepl y-wi t h- sender
(port 1D, matchi ngSpec)

true

*(1)

<recei ve- assi gnnent >

/1 optional val ue
/1 assignent

renmove-from port
(portld)

/1 Reroval of received reply from port
CGET- PORT(Entity, portld).dequeue();

Entity. NEXT- CONTROL(true)
RETURN,

fal se

\4

Figure B.78: Flow graph segment <getreply-with-sender>

ETSI

188 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.28.2 Flow graph segment <getreply-without-sender>

The flow graph segment <get r epl y- wi t h- sender > in figure B.79 defines the execution of aget r epl y
operation without af r omclause.

segment <getrepl y-w t hout - sender >

let {

portRef := CGET-PORT(Entity, portld); // Reference to actual
port

if (PortRef. first() == NULL) { /1 Port queue is enpty,
no match

Entity. NEXT- CONTROL(fal se);

el se {
if (MATCH I TEM portRef . first(), matchingSpec, NULL)) {
/1 The reply in the queue natches
Entity. NEXT- CONTROL(true);

el se { /1 The reply in the queue
does not match
Entity. NEXT- CONTROL(f al se);

getrepl y-wi t hout - sender
(port 1D, matchi ngSpec)

true

*(1)
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA /1 optional value

. . /| assignent
<r ecei ve- assi gnnent >

renmove-from port
(portld)

/1 Reroval of received reply from port
CGET- PORT(Entity, portld).dequeue();

Entity. NEXT- CONTROL(true);
RETURN,

fal se

v

Figure B.79: Flow graph segment <getreply-without-sender>

ETSI

189 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.29 Goto statement
The syntacticd structure of the got o statement is:
goto <l abelld>

The flow graph segment <goto-stmt> in figure B.80 defines the execution of the got o statement.

segnent <got o- st nt >

/1 ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
(9107« T WV — RETURN;

<l abel | d>

Figure B.80: Flow graph segment <goto-stmt>
NOTE: The<labdld> parameter of the got o statement indicates the transfer of control to the place at which a
label <I abel | d> isdefined (see dso clause B.3.7.31).
B.3.7.30 If-else statement

The syntactical structureof thei f -el se-st at enent is:

i f (<bool ean_expressi on>) <statenent-bl ock,;>

[el se <statenent-bl ock,>]

The dse part of thei f -el se statement is optional.

The flow graph segment <if-else-stmt> in figure B.81 defines the execution of thei f -el se statement.

segnment <if-el se-stnmt> i
<if-wth-el se-branch> Il An if-else state may or
orR /1 may not have an el se
<i f-without-el se-branch> /'l branch.
v

Figure B.81: Flow graph segment <if-else-stmt>

ETSI

190 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.30.1 Flow graph segment <if-with-else-branch>

Figure B.82 describes the execution of ani f -el se statement that includes an else branch. The

<st at enent - bl ock> inthet r ue branch of the decision node in figure B.82, corresponds to

<st at enment - bl ock,> in the syntactical structure above. The other <st at enent - bl ock> correspondsto
<st at enent - bl ock,> above.

segnent <if-wth-el se-branch> l

<expressi on>

if (Entity.VALUE- STACK top()== true) {
Entity. NEXT- CONTROL(true);

el se {
Enti ty. NEXT- CONTROL(tr ue);
,,,,,,,,,,,,,,,,, }
@ Entity. VALUE- STACK. pop();
RETURN,;
true fal se D
<st at enent - bl ock> <st at enent - bl ock>

-®

\4

Figure B.82: Flow graph segment <if-with-else-branch>

ETSI

191 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.30.2 Flow graph segment <if-without-else-branch>

Figure B.83 describes the execution of ani f -el se statement that includes no e se branch. The
<st at enent - bl ock> inthet r ue branch of the decision node in figure B.82, corresponds to
<st at enent - bl ock;> in the syntactical structure above.

segnent <jf-w thout-el se-branch> i

<expressi on>

if (Entity.VALUE- STACK top()== true) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(true);

deci sion

Entity. VALUE- STACK. pop();

RETURN,
true -

<st at enent - bl ock>

@

\4

Figure B.83: Flow graph segment <if-without-else-branch>

B.3.7.31 Label statement

The syntactical structure of thel abel statementis:
| abel <l abel | d>

The flow graph segment <label-stmt> in figure B.84 defines the execution of thel abel statement.

segnent <l abel -stnt >

<l abel I d> »‘

/1 ‘nop’ means ‘no operation’
Entity. NEXT- CONTROL(true);
nop Ve RETURN,
v

Figure B.84: Flow graph segment <label-stmt>

NOTE: The<labeld> parameter of the label statement indicates the possibility that alabel can bethetarget for a
jump by means of agot o statement (see also clause B.3.7.29).

ETSI

192 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.32 Log statement

The syntactical structure of thel og statement is:

| og (<informnal -description>)

The flow graph segment <log-stmt> in figure B.85defines the execution of the | og statement.

segnent <l og-stnt>

/1 inscription ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
nop e RETURN;

v

Figure B.85: Flow graph segment <log-stmt>

NOTE: The<informal description> parameter of the |l og statement has no meaning for the operational semantics
and istherefore not represented in the flow graph segment.

B.3.7.33 Map operation

The syntactica structure of athe map operation is:
map(<conponent _expressi on>. <port|dl>, system <port|d2>)

Theidentifiers<port | d1> and <por t | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The components to which the <portld1> belongs isreferenced by means of the component
reference <conponent _expr essi on>. Thereference may be stored in variables or isreturned by a function. For
simplicity it is considered to be an expression that evaluates to a component reference. Thus, the value stack is used for
storing the component reference.

NOTE: Thermap operation does not care whether thesy st em<portld> statement appears asfirst or as second
parameter. For smplicity it isassumed that it is always the second parameter.

The execution of the map operation is defined by the flow graph segment <map- op> shown in figure B.86.

segnent <map- op> l
let {

<expr essi on> conpl = Entity. VALUE- STACK. top();
P /'l Local variable to store the owner

of portldl
Entity. VALUE- STACK. pop();

. ADD- CON(conpl, portldl, SYSTEM portld2)
} /1 end of scope of conpl

p-op
(portldi, portld2).

Entity. NEXT- CONTROL(true);

Figure B.86: Flow graph segment <map-op>

ETSI

193 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.34 MTC operation
The syntactical structure of the nt ¢ operation is:
ntc

The flow graph segment <mtc-op> in figure B.87 defines the execution of the nt ¢ operation.

segnent <ntc-op>
Entity. VALUE- STACK. push(MIC);
Entity. NEXT- CONTROL(true);
MC-0p Voo RETURN;

Figure B.87: Flow graph segment <mtc-op>

B.3.7.35 Raise operation
The syntactical structure of ther ai se operation is:
<portld>.rai se (<exceptSpec>) [to <conponent expressi on>]

The optional <conponent _expr essi on> intheto clauserefersto thereceiver entity. It may be provided in form
of avariable value or the return vaue of a function.

The flow graph segment <r ai se- op> in figure B.88 defines the execution of ar ai se operation.

segnent <rai se-op> l

<reply-w t h-receiver-op>
R /1 A reply operation nay or nmay not
/1 have a receiver description.

<repl y-w t hout - recei ver - op>

v

Figure B.88: Flow graph segment <raise-op>

ETSI

194

B.3.7.35.1

ETSI ES 201 873-1 V1.1.2 (2001-06)

Flow graph segment <raise-with-receiver-op>

The flow graph segment <r ai se-wi t h-recei ver - op> in figure B.89 defines the execution of ar ai se operation

where thereceiver is specified in form of an expression.

segnment <raise-with-receiver-op>

v

/' The expression shall
// to a conponent

<expressi on>

eval uat e
reference

rai se-with-receiver-op
(portld, exceptSpec)

if (renotePort NULL) {
*** DYNAM C- ERROR** * ;
}

if (renotePort SYSTEM {
/1 Port is mapped onto a port

/'l the scope of the operational

}

el se {

let {
receiver := Entity. VALUE- STACK. t op(
renotePort := GET- REMOTE- PORT(Entit

/1 Renote port

of the test
/'l reception of the exception by the SUT is outside

renot ePor t . enqueue(CONSTRUCT- | TEM Entity,

)
y, portld, receiver);
be found

cannot

system The

semantics

raise,

sendSpec));

Entity. VALUE- STACK. pop();
} /1 end of scope of

Entity. NEXT- CONTROL(true);
RETURN;

recei ver and renot ePort

/'l clean val ue stack

Figure B.89: Flow graph segment <raise-with-receiver-op>

ETSI

195 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.35.2 Flow graph segment <raise-without-receiver-op>

The flow graph segment <r ai se- wi t hout - r ecei ver - op> in figure B.90 defines the execution of araise
operation without t o-clause.

segnment <rai se-wi thout-receiver-op>

rai se-without-receiver-op
(portld, exceptSpec)

let {
remotePort := GET- REMOTE- PORT(Entity, portld, NONE);
if (remptePort == NULL) {
DYNAM G- ERROR; // Renote port cannot be found
}
if (renptePort == SYSTEM {

/1 Port is mapped onto a port of the test system The
/'l reception of the exception by the SUT is outside
/'l the scope of the operational senmantics
}
el se {

renot ePort . enqueue(CONSTRUCT- | TEM Entity, raise,

sendSpec));

}
Entity. VALUE- STACK. pop(); /'l clean val ue stack
} /1 end of scope of renotePort

Entity. NEXT- CONTROL(true);
RETURN,;

\4

Figure B.90: Flow graph segment <raise-without-receiver-op>

ETSI

196 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.36 Read timer operation

The syntacticd structure of ther ead timer operation is:

<tinmerld>.read

The flow graph segment <read-timer-op> in figure B.91 defines the execution of ther ead timer operation.

segnent
<read-timer-op>

/1 The tinmer reference <timerld>is copied into

/1 the node attribute ‘timerld

Entity. VALUE- STACK. push(

»»»»»»»»»» Entity.tinmerld. ACT-DURATION — Entity.tinmerld. Tl VE-
LEFT)

Entity. NEXT- CONTROL(true);

RETURN,;

read-tinmer-op
(tinerld)

Figure B.91: Flow graph segment <read-timer-op>

B.3.7.37 Receive operation
The syntactical structure of ther ecei ve operation is:
<portld>.receive (<matchingSpec>) [from <conponent_expressi on>] -> [<assi gnment Part >]

The optional <conponent _expr essi on> inthef r omclauserefers to the sender entity. It may be provided in
form of avariable value or thereturn value of afunction, i.e,, it isassumed to be an expression. The optional

<assi gnnment Par t > denotes the assignment of received information if the recelved message matches to the
matching specification <mat chi ngSpec> and to the (optional) f r omclause.

The flow graph segment <r ecei ve- op> in figure B.92 defines the execution of ar ecei ve operation.

segnent <receive-op> l

<recei ve-w t h- sender >
R /1 Distinction due to the optional
<recei ve-w t hout -sender> [/'l fromclause

v

Figure B.92: Flow graph segment <receive-op>

ETSI

197

B.3.7.37.1 Flow graph segment <receive-with-sender>

ETSI ES 201 873-1 V1.1.2 (2001-06)

The flow graph segment <r ecei ve- w t h- sender > in figure B.93 defines the execution of ar ecei ve operation

where the sender is specified in form of an expression.

segnent
<recei ve-w t h- sender >

The Expression shall
/ to a conponent
result

<expressi on>

eval uat e
ref erence.
is pushed onto VALUE- STACK

The

Enti ty. VALUE- STACK. pop();

Entity. VALUE- STACK. top(); // Reference to sender

| et
{ portRef := CET-PORT(Entity, portld);
port
sender : =
entity

del eti ng sender reference
if (PortRef . first() == NULL) {
no nmatch
Entity. NEXT- CONTROL(fal se);
el se {

if (MATCH I TEM portRef.first(),

/| Reference to actual

11

/1 Port queue is enpty,

mat chi ngSpec,

sender)) {

/1 The nessage in the queue natches
Entity. NEXT- CONTROL(true);

el se { /1 The message in the
gueue does not natch
Entity. NEXT- CONTROL(f al se);
}
}
RETURN;
} /1 End of scope of portRef and sender

recei ve-wt h-sender
(port!1 D, matchi ngSpec)

true

*(1)

<recei ve- assi gnnent >

/1 optional value

/] assignent

renmove-from port
(portld)

/1 Renoval of

RETURN:

GET- PORT(Entity,

Entity. NEXT- CONTROL(true);

recei ved nessage from port
portld).dequeue();

false¢ v

Figure B.93: Flow graph segment <receive-with-sender>

ETSI

198 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.37.2 Flow graph segment <receive-without-sender>

The flow graph segment <r ecei ve- wi t h- sender > in figure B.94 defines the execution of ar ecei ve operation
without af r omclause.

segnment <recei ve-w t hout - sender >

let {

portRef := CGET-PORT(Entity, portld); // Reference to actual
port

if (PortRef. first() == NULL) { /'l Port queue is enpty,
no match

Entity. NEXT- CONTROL(fal se);

el se {
if (MATCH I TEM portRef . first(), matchingSpec, NULL)) {
/1 The nessage in the queue natches
Entity. NEXT- CONTROL(true);

el se { /'l The message in the
gueue does not natch
Entity. NEXT- CONTROL(fal se);

1

recei ve-wi t hout - sender
(port 1D, natchi ngSpec)

true

*(1)
/1 optional value

. . /] assignent
<r ecei ve- assi gnnent >

renmove-from port
(portld)

/1 Renoval of received nessage from port
CET- PORT(Entity, portld).dequeue();

Entity. NEXT- CONTROL(true);
RETURN;

fal se l
v

Figure B.94: Flow graph segment <receive-without-sender>

ETSI

199 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.37.3 Flow graph segment <receive-assignment>

The flow graph segment <r ecei ve- assi gnnment > in figure B.95 defines theretrieval of information from
received messages and their assignment to variables.

segnment

<r ecei ve- assi gnnent > let {
port Ref := GET-PORT(Entity, portld);

/'l Reference to actual port

RETRI EVE- | NFQ(port Ref . first(), assignnmentPart,
Entity);

} /1 End of scope of port Ref

recei ve- assi gnnment
(portld, assignmentPart)

\4

Figure B.95: Flow graph segment <receive-assignment>

B.3.7.38 Reply operation
The syntactica structure of ther epl y operationis:
<portld>.reply (<replySpec>) [to <conponent _expressi on>]

The optional <conponent _expr essi on> intheto clauserefersto therecever entity. It may be provided in form
of avariable value or thereturn value of a function.

The flow graph segment <r epl y- op> in figure B.96 defines the execution of ar epl y operation.

|
segnent <repl y-op> l

<reply-w t h-receiver-op>
/1 A reply operation nay or nmay not
/1 have a receiver description.

<repl y-w t hout -recei ver - op>

v
Figure B.96: Flow graph segment <reply-op>

ETSI

B.3.7.38.1

200

Flow graph segment <reply-with-receiver-op>

ETSI ES 201 873-1 V1.1.2 (2001-06)

The flow graph segment <r epl y-wi t h-r ecei ver - op> in figure B.97 defines the execution of ar epl y operation
where thereceiver is specified in form of an expression.

segment <reply-w th-receiver-op>

v

<expressi on>

/1 The expression shall eval uate
/1 to a conponent reference

reply-with-receiver-op
(portld,

repl ySpec)

let {
receiver := Entity. VALUE- STACK. t op(
t

renot ePort := GET- REMOTE- PORT(Enti

if (remtePort == NULL) {
*** DYNAM C- ERROR***; // Renote port

}
if (remotePort == SYSTEM {

else { // sending of reply

repl ySpec));
} /1 end of scope of receiver and renotePort
Entity. VALUE- STACK. pop(); /'l clean val

Entity. NEXT- CONTROL(true);
RETURN,;

)
y, portld, receiver);

/1 Port is mapped onto a port of the test system
/1 reception of the reply by the SUT is outside
/1 the scope of the operational senmantics

remot ePor t . enqueue(CONSTRUCT- | TEM Entity, reply,

cannot be found

ue stack

Figure B.97: Flow graph segment <reply-with-receiver-op>

ETSI

201 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.38.2 Flow graph segment <reply-without-receiver-op>

The flow graph segment <r epl y- wi t hout - r ecei ver - op> in figure B.98 defines the execution of areply
operation without t o-clause.

segment <reply-w t hout-receiver-op>

repl y-wit hout -recei ver-op
(portld, replySpec)

let {
remotePort := CGET- REMOTE- PORT(Entity, portld, NONE);
if (remptePort == NULL) {
DYNAM G- ERROR; // Renote port cannot be found
}
if (remtePort == SYSTEM {

/1 Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/'l the scope of the operational senmantics

else { // sending of reply
remot ePor t . enqueue(CONSTRUCT- | TEM Entity, reply,

repl ySpec));

} /1 end of scope of renotePort
Entity. VALUE- STACK. pop(); /'l clean val ue stack

Entity. NEXT- CONTROL(true);
RETURN,;

v

Figure B.98: Flow graph segment <reply-without-receiver-op>

ETSI

202 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.39 Return statement

The syntacticd structure of thereturn statement is:

return [<expression>]

The optional <expr essi on> describes a possible return value of a function. The execution of areturn statement
means that the control |eaves the actual scope unit, i.e., variables and timers only known in this scope have to be deleted
and the value stack hasto be updated. A r et ur n statement has the effect of ast op operation, if it isthe last statement
in a behaviour description.

NOTE: Dueto thereplacement of shorthand notations Test cases and module control will always end with a
st op operation. Only other test components may terminate with ar et ur n statement.

The flow graph segment <return-stmt> in figure B.99 defines the execution of ar et ur n statement.

segnment <retun-stnt> l
<return-wth-val ue>
R /1 A return statement may or may
<return-w t hout -val ue> /1 not return a val ue
v

Figure B.99: Flow graph segment <return-stmt>

ETSI

203 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.39.1 Flow graph segment <return-with-value>

The flow graph segment <r et ur n- wi t h- val ue> in figure B.100 defines the execution of ar et ur n that returnsa
value specified in form of an expression.

segment <return-w th-val ue>

. /'l The expression shall eval uates
<expr essi on> /1 to the return val ue

return-wth-val ue

let {
return-value := Entity. VALUE- STACK. top();

Entity. DEL- VAR-SCOPE(); // The actual variable scope is deleted
Entity. DEL- TI MER- SCOPE(); // The actual tiner scope is deleted
Entity. VALUE- STACK. cl ear -unti | (MARK) ;
Entity. VALUE- STACK. push(return-val ue);

} // end of scope of return-value

Entity. CONTROL- STACK. pop(); // return address is lying on the
/1 control stack

if (Entity.CONTROL- STACK. top() == NULL) { // return is a stop
// Updat e of test case verdict
if (Entitiy.E-VERDICT == fail or TCVERDICT == fail) {
TC-VERDICT : = fail; } -

el se {
if (Entity. E-VERDICT == inconc or TG VERDI CT == inconc) {
TG VERDI CT : = inconc; }
el se {
if (Entity. E-VERDI CT == pass or TC VERDI CT == pass) {
TG VERDI CT : = pass; }
) }
DONE : = DONE+1; // update of gl obal DONE variable
AllEntities.del ete(Entity); /| Deletes Entity Ref. from
AllEntities
DEL- ENTI TY(Entity); /'l Deletion of Entity
}
RETURN,

Figure B.100: Flow graph segment <return-with-value>

ETSI

204 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.39.2 Flow graph segment <return-without-value>

The flow graph segment <r et ur n- wi t hout - val ue> in figure B.101 defines the execution of ar et ur n statement
that returnsno value.

segnment <return-w thout-val ue>

return-wth-val ue

Entity. DEL- VAR-SCOPE(); // The actual variable scope is deleted
Entity. DEL- TI MER-SCOPE(); // The actual tiner scope is deleted
Entity. VALUE- STACK. cl ear -until (MARK) ;

Entity. CONTROL- STACK. pop(); // return address is lying on the
/1 control stack

if (Entity. CONTROL- STACK. top() == NULL) { // return is a stop
// Updat e of test case verdict
if (Entitiy.E-VERDICT == fail or TCVERDICT == fail) {
TC-VERDICT : = fail; } -

el se {
if (Entity. E-VERDICT == inconc or TG VERDI CT == inconc) {
TG VERDI CT : = inconc; }
el se {
if (Entity. E-VERDI CT == pass or TC VERDI CT == pass) {
TG VERDI CT : = pass; }
) }
DONE : = DONE+1; // update of gl obal DONE variable
AllEntities.del ete(Entity); /| Deletes Entity Ref. from
AllEntities
DEL- ENTI TY(Entity); /1 Deletion of Entity
}
RETURN,

Figure B.101: Flow graph segment <return-without-value>

ETSI

205 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.40 Running-all-components operation

Ther unni ng-al | -conponent s operation refersto the usage of the keywordsal | conponent s inther unni ng
component operation (Clause 42). Ther unni ng-al | -conponent s operation can only be called by thent c. It
allows checking whether all parallel test components of a test case arerunning. The syntactical structure of the

runni ng-al | -conponent s operation is:

al | conponent. running

The execution of ther unni ng-al | -conponent s operation is defined by the flow graph segment
<running-all-comp-op> in figure B.102.

segnent

<runni ng-al | - conp- op> o (Entity 1= MO {

*** DYNAM C- ERROR* * *
/1 Entity is not allowed to call the
operation

runni ng-all -conp-op Y\ | }
if (DONE == 0) {
/1 no ptc has yet term nated

Entity. VALUE- STACK. push(true);

el se {
Entity. VALUE- STACK. push(fal se);

}
Entity. NEXT- CONTROL(true);
RETURN;

v

Figure B.102: Flow graph segment <running-all-comp-op>

ETSI

206

B.3.7.41 Running-any-component operation

Ther unni ng-any-conponent operation refers to the usage of the keywords any conponent inther unni ng
component operation (Clause 42). Ther unni ng-any-conponent s operation can only be called by thent c. It
allows checking if at least one paralldl test component of atest caseis gill running. The syntactical structure of the

r unni ng-any-conponent s operation is:

any conponent.runni ng

The execution of ther unni ng-any-conponent s operation is defined by the flow graph segment

<running-any-comp-op> in figure B.103.

segnent
<runni ng- any- conp- op>

runni ng- any- conp- op

if (Bntity 1= MIC) {

*** DYNAM C- ERROR* * *

/1 Entity is not allowed to call the
operation

i}f (AllEntities.length() > 2) {
/] at least on parallel test
/| conponent is alive
Entity. VALUE- STACK. push(true);

el se {
Entity. VALUE- STACK push(fal se);

}
Entity. NEXT- CONTROL(true);
RETURN;

v

Figure B.103: Flow graph segment <running-any-comp-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)

207 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.42 Running component operation
The syntacticd structure of ther unni ng component operéation is
<conponent _expressi on>. runni ng

Ther unni ng component operation checks whether a component isrunning or has stopped. Using a component
reference identifies the component to be checked. The reference may be stored in avariable or be returned by a
function. For simplicity thisis considered to be an expression that eval uates to a component reference.

The flow graph segment <running-component-op> in figure B.104 defines the execution of ther unni ng component
operation.

segnent
<runni ng- conponent - op>

/| The expression shall eval uate
/ to a conponent reference. The
/ result is pushed onto VALUE- STACK

<expressi on>

if (EXISTING Entity.VALUE-STACK top()) == true) {
Entity. VALUE- STACK. pop();
Entity. VALUE- STACK. push(true);

runni ng- conponent - op

el se {
Entity. VALUE- STACK. pop();
Entity. VALUE- STACK. push(fal se);

}

Entity. NEXT- CONTROL(true);
RETURN;

\4

Figure B.104: Flow graph segment <running-component-op>

ETSI

208 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.43 Running timer operation

The syntactical structure of ther unni ng timer operation is:

<ti merld>. running

The flow graph segment <running-timer-op> in figure B.105 defines the execution of ther unni ng timer operation.

segnent <running-ti ner-op>

/1 The tinmer reference <tinmerld> is copied
/1 into the node attribute ‘timerld

if (Entity.timerld. STATUS == RUNNI NG {
»»»»»»»»»»» Entity. VALUE- STACK. push(true);

runni ng-ti ner-op
(tinerld)

el se {
Entity. VALUE- STACK. push(fal se);

}
Entity. NEXT- CONTROL(true);
RETURN;

v

Figure B.105: Flow graph segment <running-timer-op>

B.3.7.44 Send operation
The syntactical structure of the send operation is:
<portld>. send (<send-spec>) [to <conponent expressi on>]

The optional <conponent _expr essi on> intheto clause refersto therecever entity. It may be provided in form
of avariable value or thereturn value of a function.

The flow graph segment <send-op> in figure B.106 defines the execution of asend operation.

segnent <send- op> l
<send-wi t h-recei ver - op>
R /1 A send operation nay or nay not
<send-wi t hout - r ecei ver - op> /1 have a receiver description.
v

Figure B.106: Flow graph segment <send-op>

ETSI

B.3.7.44.1

209 ETSI ES 201 873-1 V1.1.2 (2001-06)

Flow graph segment <send-with-receiver-op>

The flow graph segment <send- w t h- r ecei ver - op> in figure B.107 defines the execution of asend operation

where thereceiver is specified in form of an expression.

segment <send-wi t h-receiver-op>

v

<expressi on>

/' The expression shall
// to a conponent

eval uat e
reference

send-w t h-recei ver-op
(portld, sendSpec)

let {
receiver :=
remotePort : =

Entity. VALUE- STACK. t op(
GET- RENOTE- PORT(Ent i t

)
y, portld, receiver);

if (renotePort

}

if (renotePort
/'l Port

Il

Il

}

el se {

*** DYNAM C- ERROR* * *;

is mapped onto a port
reception of the nessage by the SUT is outside
the scope of the operational

renot ePort . enqueue(CONSTRUCT- | TEM Entity,

NULL) {

/1 Renote port cannot be found

SYSTEM {

of the test system

semantics

send,

sendSpec));

} /1 end of scope of

RETURN:

Entity. VALUE- STACK. pop();

Entity. NEXT- CONTROL(true);

/'l clean val ue stack
recei ver and renotePort

v

Figure B.107: Flow graph segment <send-with-receiver-op>

ETSI

B.3.7.44.2

210 ETSI ES 201 873-1 V1.1.2 (2001-06)

Flow graph segment <send-without-receiver-op>

The flow graph segment <send- wi t hout - r ecei ver - op> in figure B.108 defines the execution of asend

operation without t o-clause.

segnment <send-wit hout -recei ver - op>

send-w t hout - recei ver - op
(portld, sendSpec)

let {

renmotePort : =

if (renotePort
***DYNAM C- ERROR** * ;

CGET- REMOTE- PORT(Entity,

portld, NONE);

NULL) {

/! Renote port cannot be found

}
if (renotePort SYSTEM {

/1 Port is mapped onto a port of the test system
/'l reception of the nessage by the SUT is outside

}

el se {

sendSpec));

RETURN:

/1 the scope of the operational

renot ePort . enqueue(CONSTRUCT- | TEM Entity,

semantics

send,

}
Entity. VALUE- STACK. pop();
} /1 end of scope of

Entity. NEXT- CONTROL(true);

r enot ePor t

/'l clean val ue stack

\ 4

Figure B.108: Flow graph segment <send-without-receiver-op>

B.3.7.45 Self operation

The syntactical structure of thesel f operationis:

sel f

The flow graph segment <self-op> in figure B.109 defines the execution of the sel f operation.

segment <sel f - op>

Entity. VALUE- STACK. push(Entity);
Ent i ty. NEXT- CONTROL(True);
RETURN;

Figure B.109: Flow graph segment <self-op>

ETSI

211 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.46 Start component operation

The syntactica structure of the st art component operation is.

<conponent _expressi on>. start (<function-nane>(<act-par-desc,;> ..., <act-par-desc,>))

Thest art component operation starts anewly created component. Using a component referenceidentifies the
component to be started. The reference may be stored in avariable or be returned by a function. For smplicity thisis
considered to be an expression that evaluates to a component reference.

The <f unct i on- name> denotes to the name of the function that defines the behaviour of the new component and
<act - par - descr >, ..., <act - par - descr ,> provide the description of the actual parameter values of
<functi on- nanme>. In case of avalue parameter the description of an actual parameter may be provided in form of
an expression that has to be evaluated before the call can be executed. The handling of formal and actual parameter is
similar to their handling in function calls (Clause B.3.7.22).

The flow graph segment <start-component-op> in figure B.110 defines the execution of the st ar t component
operation. The start component operation is executed in four steps. In the first step a call record is created. In the second
step the actual parameter values are calculated. In the third step the reference of the component to be started is retrieved,
and, in the fourth step, control and call record are given to the new component.

ETSI

212 ETSI ES 201 873-1 V1.1.2 (2001-06)

segnent <start-conponent - op>

Entity. VALUE- STACK. push(NEW CALL- RECORD(f unct i on- nane));
construct-call-record Entity. NEXT- CONTROL(true);
(function-name))7 RETURN:

% || /'l For each pair (<f-par-ldi> <act-paraneter-desc;>) the

/1 value of <act-paraneter-desc; is calculated and
~~~~~ /1 assigned to the corresponding field <f-par-Idi>

<val ue- par - cal cul ati on> /1 in the call record. The call record is assuned to be

/1 the top elenent in the val ue stack.

v

* ||
/1 Retrieves the locations for variables and tiners

“““ /1 used as reference paraneters
<ref-var-par-calc> OR P
<ref-timer-par-cal c>>

v

<expressi on>

-~

The expression shall evaluate to a conponent reference.
It refers to the conponent to be started

-~
-~

control -trans-to-conponent
(functi on- nane)

| et
toBeStarted = Entity. VALUE- STACK top();
/1 toBeStarted is a |ocal variable that stores the
/1 identifier of the conponent to be started

Entity. VALUE- STACK. pop();
/1 Renoval of conponent reference. Afterwards the
/1 call record is on top of the value stack

toBeSt art ed. VALUE- STACK. push(Entity. VALUE- STACK. top();
/1 Call record is transferred to toBeStarted.

Entity. VALUE- STACK. pop();
/1l Renoval of the call record fromthe val ue stack
/1 of the starting conponent (= Entity).

t oBeSt art ed. CONTROL- STACK. push( GET- FLOW GRAPH( f unct i on- nane) ) ;
/1 Control stack of toBeStarted is set to
/'l the start node of its behaviour.

toBeSt art ed. STATUS : = ACTI VE;
/1 Control is given to toBeStarted

} /1 end of scope for variable toBeStarted

Entity. NEXT- CONTRO (true);
RETURN;

\{

Figure B.110: Flow graph segment <start-component-op>

ETSI



213 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.47 Start port operation

The syntacticd structure of thest art port operationis

<portld>. start

The flow graph segment <start-port-op> in figure B.111 defines the execution of the st ar t port operation.

segnent <start-port-op>

/1 The port nane <portld> is copied
/1 into the node attribute ‘portld

start-port-op

(portid) /)™ cl ear (GET-PORT(Entity, portld));

CGET- PORT(Entity, portld).STATUS : = STARTED,

Entity. NEXT- CONTROL(true);
RETURN,

\4

Figure B.111: Flow graph segment <start-port-op>

B.3.7.48 Start timer operation
The syntactical structure of thest art timer operation is:
<timerld> start [(<float_expression>)]

The optional <float_expression> parameter of thetimer st art operation denotes the optional duration with which the
timer shall be started. It is an expression that shall evaluateto avalue of typef | oat . If provided, the expression shall
be evaluated beforethe st ar t operation isapplied. Theresult of the evaluation is pushed onto the VALUE-STACK of
Entity.

The flow graph segment <start-timer-op> in figure B.112 defines the execution of the st ar t timer operation.

segnment <start-timer-op> i

start-tiner-op-defaul t

oRrR /1 Atinmer may be started with
start-timer-op-duration /'l a given duration, or with a
/1 default duration

v

Figure B.112: Flow graph segment <start-timer-op>

ETSI



214 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.48.1 Flow graph segment <start-timer-op-default>

The flow graph segment <start-timer-op-default> in figure B.113 defines the execution of the st ar t timer operation
with the default value.

segment <start-timer-op-defaul t>

start-timer-op-default
(timerld)

/1 The timer reference <tinmerld> is copied
/1 into the node attribute'tinerld

if (Entity.timerld. DEF- DURATION == NONE) {
*** DYNAM C- ERROR* * * /1 Tinmer has no default duration
}

el se {
Entity. TI MER- SET(tinerld, STATUS, RUNNING;
Entity. TIMER-SET(tinerld, ACT-DURATION, Entity.tinerld. DEF-
DURATI ON) ;
Entity. TIMER-SET(tinmerld, TIMe-LEFT, Entity.tinerl|d. DEF- DURATI ON);

}
Entity. NEXT- CONTROL(true);
RETURN,

\ 4

Figure B.113: Flow graph segment <start-timer-op-default>

ETSI



215 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.48.2 Flow graph segment <start-timer-op-duration>

The flow graph segment <start-timer-op-duration> in figure B.114 defines the execution of the st ar t timer operation
with a provided duration.

segment <start-timer-op-duration>

v

/1 The expression shall eval uate
// to a float. The result is pushed
/1 onto VALUE- STACK

<expressi on>

Stal‘t-tirTEr-Op-duration ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(timerld)

/1 The timer reference <tinerld> is copied into the node
[/ attribute “timerld

Entity. TI MER-SET(timerld, STATUS, RUNNING ;
Entity. TIMER SET(timerld, ACT-DURATION, Entity. VALUE- STACK. top());
Entity. TIMER SET(timerld, TIME-LEFT, Entity.VALUE-STACK top());

Entity. VALUE- STACK. pop(); /'l clean VALUE- STACK

Entity. NEXT- CONTROL(true);
RETURN;

\ 4

Figure B.114: Flow graph segment <start-timer-op-duration>

ETSI



216 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.49 Statement block
The syntacticd structure of a statement block is:
{ <statement,;> ..; <statenent,> }

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to beinitialized. When leaving a scope unit, all variables, timersand stack values of this scope have to be destroyed.

The flow graph segment <st at enent - bl ock> in figure B.115 defines the execution of a statement block.

segnent <st at enent -

Entity. | NI T- VAR SCOPE() ;
Entity. | NI T- TI MER SCOPE() ;
Entity. VALUE- STACK. push( MARK) ;

ent er-scope-unit

Entity. NEXT- CONTROL(true);
RETURN;

LI ST HAS TO BE PROVI DED

..... /1 List of all possible statenents

Entity. DEL- VAR SCOPE() ;
Entity. DEL- TI MER- SCOPE( ) ;
Entity. VALUE- STACK. cl ear-uni t| ( MARK);

exit-scope-unit .. Enti ty. NEXT- CONTROL(true);

RETURN,

v

Figure B.115: Flow graph segment <statement-block>

ETSI



217 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.50 Stop operation
The syntactica structure of the st op entity operation is:
stop
The effect of the stop operation depends on the entity that executes the stop operation:

a) If st op isperformed by the module contral, the test campaign ends, i.e., all test components and the module
control disappear from the module state.

b) If thest op operation is executed by the nt c, all parallel test components and the mt ¢ stop execution. The
global test case verdict is updated and pushed onto the value stack of the module control. Findly, control is
given back to the module control and the nt ¢ terminates.

c) If the stop operation is executed by a test component, the global test case verdict TC-VERDICT and the global
DONE variable are updated. Then the component disappears completely from the module.

The flow graph segment <stop-entity-op> in figure B.116 defines the execution of the st op entity operation.

ETSI



218 ETSI ES 201 873-1 V1.1.2 (2001-06)

segment <stop-entity-op> ‘

if (Entity == AllEntities.first()) { // Entity is nodule control
AllEntities := NULL; AllPorts := NULL; MIC := NULL;
TC-VERDICT : = none; DONE := 0; Entity := NULL;

el se {
if (Entlty ::@
while (Entity !'= NULL) { /1 Update test case
ver di ct
stop ) if (Entitiy. E-VERDICT == fail or TC-VERDICT == fail)
{ TG VERDICT : = fail; }
el se {

if (Entity.E-VERDI CT == inconc or TC VERD CT

== inconc) {
TG VERDI CT : = inconc; }
el se {

if (Entity. E-VERDI CT == pass or TC
VERDI CT == pass) {
TG VERDI CT : = pass; }
}

}
Entity := All Entities. next(Entity);

}
Entity := Al Entities. next(MIC);
while (Entity !'= NULL) { /1 Deletion of test

conmponent s
AllEntities.delete(Entity); /'l Delete Reference

fromA | Entities
DEL- ENTI TY(Entity);
/1 Deletion of entity
Entity := All Entities. next(MO); /1 Next Entity
to delete -

}
AllEntities. first().VALUE- STACK. push(TC VERDI CT);
/1 TG VERDICT is the result of

the execute operation

AllEntities.first().STACK. := ACTIVE

UPDATE- REMOTE- LOCATI ONS(MIC, Al l Entities.first());

AIIEntities.deIete(@;_ /!l Delete ntc reference from
A lEntities

DEL- ENTI TY(MIC) ; /1 Deletion of
Mrc

else { // Entitiy is a normal test component
if (Entitiy.E-VERDICT == fail or TCVERDICT == fail) {
TCVERDICT := fail; }
el se {

if (Entity. EEVERDICT == inconc or TG VERDICT ==

Figure B.116: Flow graph segment <stop-entity-op>

ETSI



219 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.51 Stop port operation

The syntactica structure of the st op port operation is:

<portld>.stop

The flow graph segment <stop-port-op> in figure B.117 defines the execution of the st op port operation.

segnent <stop-port-op>

/1 The port nane <portld> is copied
stop-port-op /1 into the node attribute ‘portld’

(port | d) ........... |
GET- PORT(Entity, portld). STATUS : = STOPPED,

Entity. NEXT- CONTROL(true);
RETURN;

¥

Figure B.117: Flow graph segment <stop-port-op>

B.3.7.52 Stop timer operation

The syntactica structure of the st op timer operation is:

<timerld>. stop

The flow graph segment <stop-timer-op> in figure B.118 defines the execution of the st op timer operation.

segnent <stop-ti ner-op>

/1 The timer reference <timerld> is copied
/1 into the node attribute ‘tinmerld
Entity. TI MER-SET(tinerld, STATUS, |DLE);

stop-timer-op Entity. TIMER-SET(timerld, ACT-DURATION, 0.0);
(tinmerld) Entity. TIMER-SET(tinerld, TIME-LEFT, 0.0);
Entity. NEXT- CONTROL(true);

RETURN;

v

Figure B.118: Flow graph segment <stop-timer-op>

ETSI



220 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.53 Sut.action operation

The syntactical structure of thesut .act i on operation is:

sut.action (<informal description>)

The flow graph segment <sut.action-op> in figure B.119 defines the execution of thesut .act i on operation.

segnent <sut.action-op>

/1 inscription ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
(3107 I WO— RETURN;

v

Figure B.119: Flow graph segment <sut.action-op>

NOTE: The<informal description> parameter of thesut . act i on operation has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

B.3.7.54 System operation

The syntactica structure of the syst emoperationis:

system

The flow graph segment <system-op> in figure B.120 defines the execution of the sy st emoperation.

segment <system op>

Entity. VALUE- STACK. push(system;
Entity. NEXT- CONTROL(true);
SYStem op ) RETURN;

v

Figure B.120: Flow graph segment <system-op>

ETSI



221 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.55 Timeout timer operation

The syntactica structure of thet i neout timer operation is:

<timerld>. tinmeout

The flow graph segment <timeout-timer-op> in figure B.121 defines the execution of thet i meout timer operation.

segment <timeout-timer-op> /1 The tinmer reference <timerld> is copied

/1 into the node attribute ‘tinmerld

if (Entity.timerld. STATUS == TI MEQUT) {
Entity. TI MER- SET(tinerld, STATUS, |DLE);
Entity. TI MER-SET(tinerld, ACT-DURATION 0.0);
Entity. TIMER-SET(tinerld, TIMe-LEFT, 0.0);
Entity. NEXT- CONTROL(true);

timeout-timer-op
(tinmerld)

el se {
Entity. NEXT- CONTROL(fal se);

}
RETURN,

fal se true

Figure B.121: Flow graph segment <running-timer-op>
NOTE: A timeout operationisembeddedinanal t statement. Depending on whether thet i meout evaluates

totrue orf al se, either execution continues with the satement that followsthet i meout operation
(t r ue branch), or the next alternativeinthe al t statement has to be checked (f al se branch).

ETSI



222 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.56 Unmap operation

The syntactica structure of athe unmap operationiis:

unmap( <conponent _expressi on>. <portldl>, system <port|d2>)

Theidentifiers<por t | d1> and <por t | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The component to which the <portld1> belongsis referenced by means of the component
reference <conponent _expr essi on>. Thereference may be stored in variables or isreturned by a function. For
simplicity it is considered to be an expression that evaluates to a component reference. Thus, the value stack is used for
storing the component reference.

NOTE: Theunmap operation does not care whether the sy st em<portld> statement appears as first or as second
parameter. For smplicity it isassumed that it is always the second parameter.

The execution of the unmap operation is defined by the flow graph segment <map- op> shown in figure B.122.

segment <unmap- op> l

let {
<expr essi on> compl = Entity. VALUE- STACK. top();
/1 Local variable to store the owner
of portldl
Entity. VALUE- STACK. pop();

. DEL- CON(conpl, portldl, SYSTEM portld2)

unmap- op } /1 end of scope of conpl

(portldl, port|d2). AAAAAAAAAAAAAAAAAAAAAAA

Entity. NEXT- CONTROL(true);

\4

Figure B.122: Flow graph segment <unmap-op>

B.3.7.57 Verdict.get operation
The syntactical structure of thever di ct .get operationis:
verdi ct. get

The flow graph segment <verdict.get-op> in figure B.123 defines the execution of thever di ct .get operation.

segment <verdict. get-op>
/1 E-VERDICT is pushed onto VALUE- STACK
Entity. VALUE- STACK. push(Entity. E-

verdi ct. get - 0p Jrnns VERDI CT) :

Entity. NEXT- CONTROL(true);

RETURN,

v

Figure B.123: Flow graph segment <verdict.get-op>

ETSI



223 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.58 Verdict.set operation

The syntactica structure of thever di ct .set operationis:

verdict. set (<verdi cttype_expressi on>)

NOTE: The<verdicttype expression> parameter of thever di ct .set operation isan expression that shall
evaluatetoavalue of typever di ct t ype, i.e, none, pass, i nconc or f ai | . Theexpressionis
evaluated beforethever di ct .set operation isapplied.

The flow graph segment <verdict.set-op> in figure B.124 defines the execution of thever di ct .set operation.

segment <verdict. set-op> i

/1 The expression shall evaluate to a val ue
/1 of type verdicttype.

<expron> /1 The result of the evaluation is pushed
/'l onto the VALUE- STACK of Entity

if ( Entity. E-VERDICT == fail or
Entity. VALUE- STACK. top() == fail) {

verdict.set-op Y} Entity. EEVERDICT : = fail;
}
el se {
if ( Entity. VALUE- STACK. top() == inconc
or
Entity. E-VERDI CT == inconc) {
Entity. E-VERDI CT := inconc;
el se {
ifo( Entity. VALUE- STACK. top() ==
pass or
Entity. E- VERDI CT == pass) {
Entity. E- VERDI CT : = pass;
}
}

}

Entity. VALUE- STACK pop() // clear VALUE-STACK
Entity. NEXT- CONTROL(true);

RETURN;

\4

Figure B.124: Flow graph segment <verdict.set-op>

ETSI



224 ETSI ES 201 873-1 V1.1.2 (2001-06)

B.3.7.59 While statement

The syntactical structure of the whi | e statement is:

whi | e (<bool ean- expr essi on>) <st at enent - bl ock>

The execution of awhi | e statement is defined by the flow graph segment <whi | e- st nt > shown in figure B.125.

segnent <whil e-stnt>

<expressi on>

if (Entity.VALUE- STACK top()== true) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(true);

decision . .| }

Entity. VALUE- STACK. pop();
RETURN,

true

<st at enent - bl ock>

\ 4

Figure B.125: Flow graph segment <while-stmt>

ETSI



225

B.3.8 Lists of operational semantic components

B.3.8.1 Functions and states

ETSI ES 201 873-1 V1.1.2 (2001-06)

Name Description Reference

NEXT Retrieves the successor node of a given node in a flow graph. Clause B.3.1.6

GET-FLOW-GRAPH Retrieves the start node of a flow graph Clause B.3.2.6
MTC Reference to mtc in module state Clause B.3.3.1.1
TC-VERDICT Actual test case verdict in module state Clause B.3.3.1.1
DONE Number of terminated test components (part of module state) Clause B.3.3.1.1
append List operation 'append': appends an item as last element to a list Clause B.3.3.1.1
delete List operation 'delete': deletes an item from a list Clause B.3.3.1.1
first List operation 'first": returns the first element of a list Clause B.3.3.1.1
Queue operation ‘first': returns the first element of a queue Clause B.3.3.3.2
length List operation 'length’: returns the length of a list Clause B.3.3.1.1
STATUS Status (ACTIVE or BLOCKED) of module control or a test component Clause B.3.3.2.1
Status (IDLE, RUNNING or TIMEOUT) of a timer Clause B.3.3.2.4
Status (STARTED or STOPPED) of a port Clause B.3.3.3.2
E-VERDICT Local test verdict of a test component Clause B.3.3.2.1

CONTROL-STACK

Stack of flow graph nodes denoting the actual control state of an entity

Clause B.3.3.2.1

VALUE-STACK

Stack of values for the storage of results of expressions, operands,
operations and functions.

Clause B.3.3.2.1

push Stack operation 'push’: pushes an item onto a stack Clause B.3.3.2.1
pop Stack operation 'pop": pops an item from a stack Clause B.3.3.2.1
top Stack operation 'top": returns the top item from a stack Clause B.3.3.2.1
clear Stack operation ‘clear': clears a stack Clause B.3.3.2.1
Queue operation ‘clear': removes all elements from a queue Clause B.3.3.3.2
clear-until Stack operation ‘clear-until: pops items until a specific item is top element |Clause B.3.3.2.1
in the stack.
NEW-ENTITY Creates a new entity state Clause B.3.3.2.1
VAR-SET Setting the value of a variable Clause B.3.3.2.4
TIMER-SET Setting values of a timer Clause B.3.3.2.4

DEF-DURATION

Default Duration of a timer

Clause B.3.3.2.4

ACT-DURATION

Duration with which an active timer has been started

Clause B.3.3.2.4

TIME-LEFT Time a running timer has left to run before a it times out Clause B.3.3.2.4
INIT-VAR Creates a new variable binding Clause B.3.3.2.4
INIT-TIMER Creates a new timer binding Clause B.3.3.2.4
GET-VAR-LOC Retrieves location of a variable Clause B.3.3.2.4
GET-TIMER-LOC Retrieves location of a timer Clause B.3.3.2.4
INIT-VAR-LOC Creates a new variable binding with an existing location Clause B.3.3.2.4

INIT-TIMER-LOC

Creates a new timer binding with an existing location

Clause B.3.3.2.4

INIT-VAR-SCOPE

Initializes a new variable scope

Clause B.3.3.2.4

INIT-TIMER-SCOPE

Initializes a new timer scope

Clause B.3.3.2.4

DEL-VAR-SCOPE

Deletes a variable scope

Clause B.3.3.2.4

DEL-TIMER-SCOPE

Deletes a timer scope

Clause B.3.3.2.4

NEW-PORT Creates a hew port Clause B.3.3.3.2
GET-PORT Retrieves a port reference Clause B.3.3.3.2
GET-REMOTE-PORT |Retrieves the reference of a remote port Clause B.3.3.3.2
ADD-CON Adds a connection to a port state Clause B.3.3.3.2
DEL-CON Deletes a connection from a port state Clause B.3.3.3.2
enqueue Queue operation 'enqueue’: puts an item as last element into a queue Clause B.3.3.3.2
dequeue Queue operation 'dequeue’: deletes the first element from a queue Clause B.3.3.3.2
DEL-ENTITY Deletes an entity from a module state Clause B.3.3.4
EXISTING Checks whether a test component exists or not Clause B.3.3.4
UPDATE-REMOTE- Updates timers and variables with the same location in different entities to |Clause B.3.3.4
REFERENCES the same value.

CONSTRUCT-ITEM Constructs an item to be sent Clause B.3.4.3
MATCH-ITEM Checks if a received message, call, reply or exception matches with a Clause B.3.4.4

receiving operation

RETRIEVE-INFO Retrieves information from a received message, call, reply or exception Clause B.3.4.4
NEW-CALL-RECORD |Creates a call record for a function call Clause B.3.5.1
INIT-FLOW-GRAPHS Initializes the flow graph handling Clause B.3.6.1
GET-UNIQUE-ID Returns a new unique identifier when it is called Clause B.3.6.1

ETSI




226 ETSI ES 201 873-1 V1.1.2 (2001-06)

Name Description Reference
CONTINUE- The actual component continues its execution Clause B.3.6.1
COMPONENT
RETURN Returns the control to the module evaluation procedure defined in clause |Clause B.3.6.1

B.3.6
**DYNAMIC-ERROR*** |Describes the occurrence of a dynamic error Clause B.3.6.1
B.3.8.2 Special keywords
Keyword Description Reference
MARK Used as mark for VALUE-STACK Clause B.3.3.2
ACTIVE STATUS of an entity state Clause B.3.3.2
BLOCKED STATUS of an entity state Clause B.3.3.2
NULL Symbolic value for pointer and pointer-like types to indicate that nothing is
addressed
IDLE STATUS of a timer state Clause B.3.3.2.4
RUNNING STATUS of a timer state Clause B.3.3.2.4
TIMEOUT STATUS of a timer state Clause B.3.3.2.4
STARTED STATUS of a port Clause B.3.3.2.4
STOPPED STATUS of a port Clause B.3.3.2.4
NONE Used to describe an undefined value

ETSI




227

B.3.8.3 Flow graph segments

ETSI ES 201 873-1 V1.1.2 (2001-06)

Identifier Related TTCN-3 construct Reference

Figure Clause
<alt-stmt> alt statement Figure B.25 Clause B.3.7.1
<alt-with-else> alt statement Figure B.26 Clause B.3.7.1
<alt-without-else> |alt statement Figure B.27 Clause B.3.7.1
<assignment-stmt > |assignment statement Figure B.29 Clause B.3.7.2
<b-call-with- call Figure B.35 Clause B.3.7.3.3
receiver>
<b-call-without- call Figure B.36 Clause B.3.7.3.4
receiver>
<b-call-with-rec- call Figure B.37 Clause B.3.7.3.5
dur>
<b-call-without-rec- |call Figure B.38 Clause B.3.7.3.6
dur>
<blocking-call-op> |call Figure B.31 Clause B.3.7.3
<call-op> call Figure B.30 Clause B.3.7.3
<catch-op> catch Figure B.39 Clause B.3.7.4
<catch-with- used in catch operation Figure B.40 Clause B.3.7.4.1
sender>
<catch-without- used in catch operation FigureB.41 Clause B.3.7.4.2
sender>
<clear-port-op> clear port Figure B.42 Clause B.3.7.5
<constant- Declaration of a constant Figure B.44 Clause B.3.7.7
declaration>
<connect-op> connect Figure B.43 Clause B.3.7.6
<create-op> create Figure B.45 Clause B.3.7.8
<disconnect-op> disconnect Figure B.53 Clause B.3.7.12
<do-while-stmt> do-while statement Figure B.54 Clause B.3.7.13
<done-all-comp-op>{all component.done Figure B.55 Clause B.3.7.14
<done-any-comp- [any component.done Figure B.56 Clause B.3.7.15
op>
<done-component- |done component Figure B.57 Clause B.3.7.16
op>
<execute-stmt> execute Figure B.58 Clause B.3.7.17
<execute-timeout>> |execute FigureB.59 Clause B.3.7.17
<execute-without- |execute Figure B.60 Clause B.3.7.17
timeout>>
<expression> Expression Figure B.61 Clause B.3.7.18
<finalize- Used in the behaviour of component type Figure B.66 Clause B.3.7.19
component-init> definitions
<for-stmt>> for statement Figure B.68 Clause B.3.7.21
<function-call> Call of user defined functions Figure B.69 Clause B.3.7.22
<func-op-call> Used in <expression> Figure B.64 Clause B.3.7.18.3
<getcall-op> getcall Figure B.74 Clause B.3.7.27
<getcall-with- used in getcall operation Figure B.75 Clause B.3.7.27.1
sender>
<getcall-without- used in getcall operation Figure B.76 Clause B.3.7.27.2
sender>
<getreply-op> getreply Figure B.76 Clause B.3.7.28
<getreply-with- used in getreply operation Figure B.78 Clause B.3.7.28.1
sender>
<getreply-without- |used in getreply operation Figure B.79 Clause B.3.7.28.2
sender>
<goto-stmt> goto Figure B.80 Clause B.3.7.29
<if-else-stmt> if-else Figure B.80 Clause B.3.7.30
<if-with-else- if-else Figure B.82 Clause B.3.7.30.1
branch>
<if-without-else- if-else Figure B.83 Clause B.3.7.30.2
branch>
<init-component-  [Used in the behaviour of component type Figure B.67 Clause B.3.7.20
scope> definitions
<label-stmt> label Figure B.84 Clause B.3.7.31
<lit-value> Used in <expression> Figure B.62 Clause B.3.7.18.1

ETSI




228 ETSI ES 201 873-1 V1.1.2 (2001-06)
Identifier Related TTCN-3 construct Reference

Figure Clause
<log-stmt> log FigureB.85 Clause B.3.7.32
<map-op> map operation Figure B.86 Clause B.3.7.33
<mtc-op> mtc Figure B.87 Clause B.3.7.34
<nb-call-with- call Figure B.33 Clause B.3.7.3.1
receiver>
<nb-call-without- call Figure B.34 Clause B.3.7.3.2
receiver>
<non-blocking-call- |call Figure B.32 Clause B.3.7.3
op>
<operator-appl> used in <expression> Figure B.65 Clause B.3.7.18.4
<parameter- creation of entities, function calls Figure B.73 Clause B.3.7.26
handling>
<port-declaration> |Declaration of a port Figure B.46 Clause B.3.7.9
<raise-op> raise Figure B.88 Clause B.3.7.35
<raise-with- raise Figure B.89 Clause B.3.7.35.1
receiver-op>
<raise-without- raise Figure B.90 Clause B.3.7.35.2
receiver-op>
<read-timer-op> read timer Figure B.91 Clause B.3.7.36
<receive- used in receive operation Figure B.95 Clause B.3.7.37.3
assignment>
<receive-op> receive Figure B.92 Clause B.3.7.37
<receive-with- used in receive operation Figure B.93 Clause B.3.7.37.1
sender>
<receive-without-  [used in receive operation Figure B.94 Clause B.3.7.37.2
sender>
<receiving-branch> |alt statement Figure B.28 Clause B.3.7.1.1
<reply-op> reply Figure B.96 Clause B.3.7.38
<reply-with- reply FigureB.97 Clause B.3.7.38.1
receiver-op>
<reply-without- reply Figure B.98 Clause B.3.7.38.2
receiver-op>
<ref-par-var-calc> |[creation of entities, function calls Figure B.71 Clause B.3.7.24
<ref-par-timer-calc> |creation of entities, function calls Figure B.72 Clause B.3.7.25
<return-stmt> return Figure B.99 Clause B.3.7.39
<return-with-value> |return Figure B.100 Clause B.3.7.39.1
<return-without- return Figure B.101 Clause B.3.7.39.2
value>
<running-all comp- [all component.running Figure B.102 Clause B.3.7.40
op>
<running-any comp-{any component.running Figure B.103 Clause B.3.7.41
op>
<running- running component Figure B.104 Clause B.3.7.42
component-op>
<running-timer-op> [running timer Figure B.105 Clause B.3.7.43
<self-op> self Figure B.109 Clause B.3.7.45
<send-op> send Figure B.106 Clause B.3.7.44
<send-with- send Figure B.107 Clause B.3.7.44.1
receiver-op>
<send-without- send Figure B.108 Clause B.3.7.44.2
receiver-op>
<start-component- |start component Figure B.110 Clause B.3.7.46
op>
<start-port-op> start port Figure B.111 Clause B.3.7.47
<start-timer-op> start timer Figure B.112 Clause B.3.7.48
<start-timer-op- start timer Figure B.113 Clause B.3.7.48.1
default>
<start-timer-op- start timer Figure B.114 Clause B.3.7.48.2
duration>
<stop-entity-op> stop execution of module control, mtc ora  |Figure B.116 Clause B.3.7.50

test component

<stop-port-op> stop port Figure B.117 Clause B.3.7.51
<statement-block> |Statement block Figure B.115 Clause B.3.7.49
<stop-timer-op> stop timer Figure B.118 Clause B.3.7.52

ETSI




229 ETSI ES 201 873-1 V1.1.2 (2001-06)
Identifier Related TTCN-3 construct Reference

Figure Clause
<sut.action-op> sut.action-op Figure B.119 Clause B.3.7.53
<system-op> system Figure B.120 Clause B.3.7.54
<timeout-timer-op> [timeout timer Figure B.121 Clause B.3.7.55
<timer-declaration> |Declaration of a timer Figure B.47 Clause B.3.7.10
<timer-decl-default>|Declaration of a timer with a default duration |Figure B.48 Clause B.3.7.10.1
<timer-decl-no-def> [Declaration of a timer without default duration|Figure B.49 Clause B.3.7.10.2
<unmap-op> unmap operation FigureB.122 Clause B.3.7.56
<value-par- creation of entities, function calls Figure B.70 Clause B.3.7.23
calculation>
<variable- Declaration of a variable Figure B.50 Clause B.3.7.11
declaration>
<variable- Declaration of a variable with an initial values |FigureB.51 Clause B.3.7.11.1
declaration-init>
<variable- Declaration of a variable without an initial FigureB.52 Clause B.3.7.11.2
declaration-undef> |value
<var-value> Used in <expression> Figure B.63 Clause B.3.7.18.2
<verdit.get-op> verdict.get Figure B.123 Clause B.3.57
<verdit.set-op> verdict.set Figure B.124 Clause B.3.7.58
<while-stmt> while statement Figure B.125 Clause B.3.7.59

ETSI




230 ETSI ES 201 873-1 V1.1.2 (2001-06)

Annex C (normative):
Matching incoming values

C.1  Template matching mechanisms

This annex specifies the matching mechanisms that may be used in TTCN-3 templates (and only in templates).

C.1.1 Matching specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms or wildcards. Unless otherwise specified, atemplate field matchesthe
corresponding incoming field valueif, and only if, theincoming field val ue has exactly the same value as the value to
which the expression in the template evaluates. For example:

/1 Gven the message type definition
type record MyMessageType
{

i nt eger fieldl,
charstring field2,
bool ean fiel d3 optional,

integer[4] field4
}

/1 A nmessage tenplate using specific values could be
tenpl ate MyMessageType MyTenpl ate: =
{

fieldl := 3+2, /1 specific value of integer type
field2 := "My string", [// specific value of charstring type
field3 := true, /1 specific value of bool ean type
fieldd := {1,2,3} /] specific value of integer array

}
C.1.2 Matching mechanisms instead of values

C.1.2.1 Value list

Valuelists specify lists of acceptable incoming values. It can be used on values of all types. A template field that usesa
value list matches the corresponding incoming field if, and only if, the incoming field value matches any one of the
valuesin the valuelist. Each valuein the valuelist shall be of the type declared for the template field in which this
mechanism isused. For example:

tenpl ate Mynessage MyTenpl ate: =

fieldl :
field2 :

(2,4,6), /1 list of integer val ues
("Stringl", "String2"), /1 list of charstring val ues

}
C.1.2.2 Complemented value list

The keyword conpl enment denotesalist of values that will not be accepted asincoming values (i.e, it isthe
complement of avalue list). It can be used on all values of all types.

Each valuein theligt shall be of the type declared for the template field in which the complement is used. A template
field that uses complement matches the corresponding incoming field if and only if the incoming field does not match
any of the valueslisted in the value list. The value list may be a single value, of course.

ETSI



231 ETSI ES 201 873-1 V1.1.2 (2001-06)

EXAMPLE:
tenpl ate Mynessage MyTenpl ate: =
conplement (1,3,5), // list of unacceptable integer val ues

field3 not(true) /1 will match false

C.1.2.3 Omitting values

The keyword omi t denotes that an optional template field shall be absent. It can be used on values of all types,
provided that the template field is optional. For example:

tenpl ate Mynmessage: MyTenpl ate: =

%ieldS::om’t, /1 omt this field

C.1.2.4 Any value

The matching symbol "?' (AnyValue) is used to indicate that any valid incoming valueis acceptable. It can be used on
values of all types. A template field that uses the any value mechanism matches the corresponding incoming field if,
and only if, theincoming field evaluates to a single el ement of the specified type. For example:

tenpl ate Mynessage: MyTenpl ate: =

fieldl := 2, // will match any integer

field2 := 2, /1 will match any non-enpty charstring val ue
field3 := 2, /1 will match true or false

fieldd :=? /1 will match any sequence of integers

C.1.2.5 Any value or none

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid incoming value, including omission of
that value, isacceptable. It can be used on values of all types, provided that the template field is declared as optional.

A template field that uses this symbol matches the corresponding incoming field if, and only if, either the incoming
field evaluates to any element of the specified type, or if theincoming field is absent. For example:

tenpl ate Mynessage: MyTenpl ate: =

%ield3 =k /1 will match true or false or omtted field

ETSI



232 ETSI ES 201 873-1 V1.1.2 (2001-06)

C.1.2.6 Value range

Ranges indicate a bounded range of acceptable values. It shall be used only on values of i nt eger types (and integer
sub-types). A boundary value shdl be either:

a) infinity or -infinity;
b) an expression that evaluates to a specific integer value.

The lower boundary shall be put on the left side of the range, the upper boundary at the right sde. The lower boundary
shall be less than the upper boundary. A template field that uses a range matches the corresponding incoming field if,
and only if, theincoming field value is equa to one of the valuesin the range. For example:

tenpl ate Mymessage: MyTenpl ate: =

fieldl := (1 .. 6), // range of integer type

}
/1 other entries for fieldl mght be (-infinity to 8) or (12 to infinity)

C.1.3 Matching mechanisms inside values

C.1.3.1 Any element

The matching symbol "?' (AnyElement) is used to indicate that it replaces single elements of a string (except character
strings), ar ecord of ,aset of oranarray. It shall be used only within values of string types, r ecor d of types,
set of typesand arrays. For example:

tenpl ate Mynessage MyTenpl ate: =

%iel d2 := "abcxyz",
field3 := "'107???"' B, /1 where each "?" nay either be 0 or 1
fieldd := {1, ?, 3} // where ? may be any integer val ue

}

NOTE: The"?'infi el d4 can beinterpreted as AnyValue as an integer value, or AnyElement inddear ecor d
of , set of orarray. Since both interpretations lead to the same match no problem arises.

C.13.11 Using single character wildcards

If itisrequired to express the "?' wildcard in character gtringsit shall be done using character patterns (see clause
C.1.5).. For example "abcdxyz", "abcexyz" "abexxyz” etc. will al match pat t er n "abc?xyz". However, "abcxyz",
abcdefxyz", etc. will not.

C.1.3.2 Any number of elements or no element

The matching symbol "*" (AnyElementsOrNone) is used to indicate that it replaces none or any number of consecutive
elements of a string (except character strings), ar ecord of ,aset of or anarray. It shal be used only within
values of string types or arrays. The"*" symbol matches the longest sequence of elements possible, according to the
pattern as specified by the symbols surrounding the "*". For example:

tenpl ate Mynessage MyTenpl ate: =

%iel d2 := "abcxyz",
field3 := "10*11' B, /1 where "*" may be any sequence of bits (possibly enpty)
fieldd := {*, 2, 3} /'l where the first element may be any integer value or omtted

}

var charstring MyStrings[4];
M/PCO. recei ve(MyStrings: {"abyz", *, "abc" });

ETSI



233 ETSI ES 201 873-1 V1.1.2 (2001-06)

If a"*" appears at the highest level insideastring, ar ecord of ,set of or aray, it shall beinterpreted as
AnyElementsOrNone.

NOTE: Thisrule prevents the otherwise possible interpretation of "*" as AnyValueOrNone that replaces an
elementinddeastring, r ecord of ,set of or array.

C.1321 Using multiple character wildcards

If it isrequired to expressed the "*" wildcard in character stringsit shall be done using character patterns (see clause
C.1.5).For example: "abcxyz", "abcdefxyz" "abcabexyz” etc. will all match pat t er n "abc*xyz"

C.1.4 Matching attributes of values

C.1.4.1 Length restrictions

The length restriction attribute is used to restrict the length of string values and the number of dementsinaset of or
record of structure. It shall be used only as an attribute of the following mechanisms: Complement, AnyValue,
AnyValueOrNone, AnyElement and AnyElementsOrNone. It can also be used in conjunction with thei f pr esent
attribute. The syntax for | engt h can be found in clause 6.2.3 and 6.3.3.

The units of length areto be interpreted according to table 4 in the main body of the present document in the case of
string values. For set of and record of typestheunit of length isthe replicated type. The boundaries shall be
denoted by expressions which resolve to specific non-negativei nt eger values. Alternatively, the keyword

i nfinity canbeused asavaluefor the upper boundary in order to indicate that there is no upper limit of length.

The length specifications for the template shall not conflict with the length for restrictions (if any) of the corresponding
type. A template field that uses Length as an attribute of a symbol matches the corresponding incoming field if, and
only if, the incoming field matches both the symbol and its associated attribute. The length attribute matchesif the
length of the incoming field is greater than or equal to the specified lower bound and less than or equal to the upper
bound. In the case of a single length value the length attribute matches only if the length of thereceived field is exactly
the specified value.

In the case of an omitted field, the length attribute is always considered as matching (i.e., with omi t it isredundant).
With AnyValueOrNoneand i f pr esent it places arestriction on theincoming value, if any. For example:

tenpl ate Mynessage MyTenpl ate: =

fieldl :
field2 :

conpl emrent (4,5) length (1 .. 6), // is the same as (1,2,3,6)
"ab*ab" length(13) // max length of the AnyEl ementsOrNone string is 9 characters

}

C.1.4.2 The IfPresent indicator

Thei f pr esent indicates that a match may be madeif an optional field is present (i.e., not omitted). This attribute
may be used with all the matching mechanisms, provided the type is declared as optional.

A template field that usesi f pr esent matches the corresponding incoming field if, and only if, theincoming field
matches according to the associated matching mechanism, or if theincoming field is absent. For example:

tenpl ate Mynessage: MyTenpl ate: =

%iel d2 := "abcd" ifpresent, // matches "abcd" if not omtted

}
NOTE: AnyValueOrNone has exactly the ssmemeaningas? i f present

ETSI



234 ETSI ES 201 873-1 V1.1.2 (2001-06)

C.1.5 Matching Character Pattern

Character patterns can be used in templates to define the format of arequired character string to be received. Character
patterns can be used to match char st ri ng and uni ver sal char stri ng values. In addition to literal characters,
character patterns allow the use of meta characters? and * to mean any character and any number of any character
respectively. For example:

tenpl ate charstring MyTenpl ate: = pattern "ab??xyz*";

This template would match any character sring that consists of the characters ‘ab’, followed by any two characters,
followed by the characters ‘xyz’', followed by any number of any characters.

If itisrequired to interpret any metacharacter literally it should be preceded with the metachacter *\'. For example:

tenpl ate charstring MyTenpl ate: = pattern "ab?\ ?xyz*";

Thistemplate would match any character string which consigts of the characters ‘ab’, followed by any characters,
followed by the characters ‘ ?xyz’, followed by any number of any characters.

In addition to direct string values it is a so possible within the pattern statement to use references to existing templates,
constants or variables. The reference shall resolve to one of the character string types and more than one. For example:

const charstring MyString: = "ab?";

tenpl ate charstring M/Tenpl ate: = pattern MyString;

Thistemplate would match any character string that consists of the characters ‘ab’, followed by any characters. In effect
any character gring following the pat t er n keyword ether explicitly or by reference will be interpreted following the
rules defined in this clause.

The pattern statement al so allows the use of the concatenate operator and in the case of universal charstring the use of
the Quadruple production to specify a single character. For example:

const charstring MyString: = "ab?";

tenpl ate universal charstring MyTenpl ate: = pattern MyString & "de" & (1, 1, 13, 7);

Thistemplate would match any character string which consigts of the characters ‘ab’, followed by any characters,
followed by the characters ‘ de’, followed by the character in ISO/IEC 10646 with group=1, plane=1, row=65 and
cel=7.

ETSI



235 ETSI ES 201 873-1 V1.1.2 (2001-06)

Annex D (normative):
Pre-defined TTCN-3 functions

D.1 Pre-defined TTCN-3 functions

This annex defines the TTCN-3 predefined functions.

D.1.1 Integer to character

i nt 2char (i nteger value) return char

Thisfunction convertsani nt eger valueintherangeof 0 ... 127 (8-bit encoding) into a character value of
ISO/IEC 646 [5]. Theinteger value describes the 8-bit encoding of the character.

The function returns—1 if the value of the argument isanegative or grester than 127.

D.1.2 Character to integer

char 2i nt (char value) return integer

Thisfunction convertsachar vaue of 1SO/IEC 646 [5] into an integer valuein therange of O ... 127. The integer
val ue describes the 8-bit encoding of the character.

D.1.3 Integer to universal character

i nt 2uni char (i nteger value) return universal char

Thisfunction convertsani nt eger valueintherangeof 0 ... 268435455 (32-bit encoding) into a character value of
ISO/IEC 10646 [6]. Theinteger value describes the 32-bit encoding of the character.

The function returns—1 if the value of the argument is a negative or greater than 268435455.

D.1.4 Univeral character to integer

uni char 2i nt (uni veral char value) return integer

Thisfunction convertsauni ver al char valueof 1SO/IEC 10646 [6] into an integer valuein therange of O ...
268435455. The integer value describes the 32-bit encoding of the character.

D.1.5 Bitstring to integer
bit2int(bitstring value) return integer
Thisfunction convertsasinglebi t st ri ng valuetoasinglei nt eger value.

For the purposes of this conversion, abi t st ri ng shall beinterpreted asapositive base 2 i nt eger value. The
rightmost bit isleast significant, the leftmost bit is the most Sgnificant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

ETSI



236 ETSI ES 201 873-1 V1.1.2 (2001-06)

D.1.6 Hexstring to integer
hex2i nt (hexstring value) return integer
Thisfunction convertsasinglehexst ri ng valuetoasinglei nt eger value.

For the purposes of this conversion, ahexst ri ng shall beinterpreted asa positive base 16 i nt eger vaue. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit isthe most significant. The hexadecimal
digits 0 .. Frepresent the decimal values 0 .. 15 respectively.

D.1.7 Octetstring to integer
oct2int (octetstring value) return integer
Thisfunction convertsasingleoct et st ri ng valuetoasinglei nt eger vaue.

For the purposes of this conversion, ahexst ri ng shall beinterpreted asa positive base 16 i nt eger vaue. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit isthe most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits O .. F represent the decimal values 0 .. 15 respectively.

D.1.8 Charstring to integer

str2int(charstring value) return integer

Thisfunction convertsachar st ri ng representing an i nt eger valuetothe equivalenti nt eger . If the string does
not represent a valid integer value the function returns the value zero (0).

EXAMPLES:

str2int("66") will returnthe i nt eger value 66
str2int("-66") willreturnthe i nt eger value - 66
str2int("abc") willreturnthe i nt eger value O

str2int("0") will retunthe i nt eger value O

D.1.9 Integer to bitstring

int2bit(integer value, length) return bitstring

Thisfunction convertsasingle i nt eger valuetoasinglebi t st ri ng value. Theresulting string isl engt h bits
long.

For the purposes of this conversion, abi t st ri ng shall beinterpreted asapositive base 2 i nt eger value. The
rightmost bit isleast significant, the leftmost bit isthe most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively. If the conversion yields a value with fewer bits than specified in thel engt h parameter, then the
bi t st ri ng shal be padded on theleft with zeros. A test case error shall occur if theval ue isnegative or if the
resulting bi t st ri ng contains more bitsthan specified in thel engt h parameter.

ETSI



237 ETSI ES 201 873-1 V1.1.2 (2001-06)

D.1.10 Integer to hexstring

i nt 2hex(i nteger value, length) return hexstring

Thisfunction convertsasinglei nt eger valuetoasinglehexst ri ng value. Theresulting stringisl engt h
hexadecimal digitslong.

For the purposes of this conversion, ahexst ri ng shall beinterpreted asapositive base 16 i nt eger vaue. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit isthe most significant. The hexadecimal
digits O ... F represent the decimal values O ... 15 respectively. If the conversion yields a value with fewer hexadecimal
digits than specified in thel engt h parameter, then thehexst r i ng shall be padded on the left with zeros. A test case
error shall occur if the val ue isnegativeor if theresulting hexst r i ng contains more hexadecimal digits than
specified in thel engt h parameter.

D.1.11 Integer to octetstring

i nt 2oct (i nteger value, length) return octetstring

Thisfunction convertsasinglei nt eger valuetoasingleoct et st ri ng value. Theresulting stringisl engt h
octets long.

For the purposes of this conversion, an oct et st ri ng shall beinterpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit isthe most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digitsO ... F represent the decimal values 0 ... 15 respectively. If the conversion yields a value with fewer
hexadecimal digitsthan specified in thel engt h parameter, then thehexst r i ng shall be padded on the left with
zeros. A test case error shall occur if theval ue isnegativeor if theresulting hexst ri ng contains more hexadecimal
digits than specified in thel engt h parameter.

D.1.12 Integer to charstring

int2str(integer value) return charstring
Thisfunction convertstheinteger value into its string equivalent (the base of the return string is aways decimal).
EXAMPLES:

i nt2str(66) will returnthe charstring value " 66"
int2str(-66) will returnthe charstring value "- 66"

i nt2str(0) will returnthe i nt eger value "0"

D.1.13 Length of string type

| engt hof (any_string_type value) return integer

Thisfunction returnsthe length of avalue that isof typebi t st ri ng, hexstri ng, oct et stri ng, or any character
string. The units of length for each string type are defined in table 4 in the main body of the present document.

EXAMPLE:

| engt hof (' 010'B) // returns 3
lengthof ("F3'H) // returns 2
lengthof ("F2'O) // returns 1

| engt hof ("Length_of _Exanple") // returns 17

D.1.14 Number of elements in a structured type

si zeof (structured_type value) return integer

ETSI



238 ETSI ES 201 873-1 V1.1.2 (2001-06)

Thisfunction returns the actual number of elementsof ar ecor d, r ecord of , set, set of ,t enpl at e or array.

/1 Gven
type record MyPDU
{ bool ean fiel di,
i nteger field2

}
/1 then
si zeof ( MyPDU)

/] returns 2

D.1.15 The IsPresent function

i spresent (any_type val ue) return bool ean

Thisfunction returnsthe valuet r ue if and only if the value of thereferenced field is present in the actual instance of
thereferenced data object. Theargument toi spr esent shall be areferenceto afield within a data object that is
defined asbeing opt i onal .

/1 Gven
type record MyRecord
{ bool ean fieldl optional,
integer field2

}
// and given that M/PDU is a tenplate of MyRecord type
// and received_PDU is also of MyRecord type
/1 then
MyPort . recei ve(M/PDU) -> val ue recei ved_PDU
i spresent (recei ved_PDU. fi el d1)
// returns true if fieldl in the actual instance of MyPDU is present

D.1.16 The IsChosen function

i schosen(any_type val ue) return bool ean

Thisfunction returnsthe valuet r ue if and only if the data object reference specifies the variant of the uni on type
that is actually selected for a given data object.

EXAMPLE:

/1 Gven
type uni on MyUni on
{ PDU t ypel p1,
PDU_t ype2 p2,
PDU_t ype p3
}

// and given that MyPDU is a tenplate of MyUnion type

// and received_PDU is also of MyUnion type

/1 then

MyPort . recei ve(MyPDU) -> val ue recei ved_PDU

i schosen(recei ved_PDU. p2)

[/ returns true if the actual instance of MyPDU carries a PDU of the type PDU_type2

ETSI



239 ETSI ES 201 873-1 V1.1.2 (2001-06)

Annex E (normative):
Using other data types with TTCN-3

E.l

Using ASN.1 with TTCN-3

Thisannex defines the optional use of ASN.1 with TTCN-3.

TTCN-3 provides a clean interface for using ASN.1 version 1997 (as defined in the X.680 series[7], [8], [9], [10]) in
TTCN-3 modules. When imported into a TTCN-3 modul e the language identifier for ASN.1 version 1997 shall be

"ASN.1:1997".

When ASN.1 isused with TTCN-3 the keywords listed in table E.1 shall not be used asidentifiersina TTCN-3
module. ASN.1 keywords shall follow the requirements of X.680 [7].

Table E.1: List of ASN.1 keywords

ABSENT
ABSTRACT-SYNTAX
ALL
APPLICATION
AUTOMATIC
BEGIN

BIT
BMPSTRING
BOOLEAN

BY
CHARACTER
CHOICE
CLASS
COMPONENT
COMPONENTS
CONSTRAINED
DEFAULT
DEFINITIONS

EMBEDDED
END
ENUMERATED
EXCEPT
EXPLICIT
EXPORTS
EXTERNAL
FALSE

FROM
GeneralizedTime
GeneralString
IA5String
IDENTIFIER
IMPLICIT
IMPORTS
INCLUDES
INSTANCE
INTEGER

INTERSECTION
I1S010646string
MAX

MIN
MINUS-INFINITY
NULL
NumericString
OBJECT
ObjectDescriptor
OCTET

OF

OPTIONAL

PDV
PLUS-INFINITY
PRESENT
PrintableString
PRIVATE

REAL

SEQUENCE
SET

SIZE

STRING
SYNTAX
T61String
TAGS
TeletexString
TRUE
TYPE-IDENTIFIER
UNION
UNIQUE
UNIVERSAL
UniversalString
UTCTime
VideotexString
VisibleString
WITH

E.1.1 ASN.1 and TTCN-3 type equivalents

The ASN.1 typeslisted in table E.2 are considered to be equivalent to their TTCN-3 counterparts.

All TTCN-3 operators, functions, matching mechanisms, value notation etc. that can be used with a TTCN-3 type given

Table E.2: List of ASN.1 and TTCN-3 equivalents

ASN.1 type Maps to TTCN-3 equivalent
BOOLEAN bool ean
INTEGER i nt eger
REAL fl oat
OBJECT IDENTIFIER  [objid
BIT STRING bitstring
OCTET STRING octetstring
SEQUENCE record
SEQUENCE OF record of
SET set
SET OF set of
ENUMERATED enuner at ed
CHOICE uni on

in table E.E.2 may also be used with the corresponding ASN.1 type.

ETSI




240 ETSI ES 201 873-1 V1.1.2 (2001-06)

E.1.2 ASN.1 data types and values

ASN.1 types and values may be used in TTCN-3 modules. ASN.1 definitions are made using a separate ASN.1 module.

EXAMPLE:
MyASNLnodul e DEFINITIONS :: =
BEG N
VARS I NTEGER -- Sinmple type definition
BMessage: : = SET -- ASN. 1 type definition
{
namne Nane,
title Vi si bl eString,
date Dat e
}
j ohnVal ues Bnessage :: = -- ASN. 1 val ue definition
{
nane "John Doe",
title "M,
date "April 12'™
}
END

The ASN.1 module shall be written according to the syntax of the I TU-T Recommendation X.680 series[7], [8], [9] and
[10]. Once declared, ASN.1 types and values may be used within TTCN-3 modulesin exactly the same way that
ordinary TTCN-3 types and values from other TTCN-3 modules are used (i.e. the required definitions shall be
imported).

EXAMPLE:

nmodul e MyTTCNModul e

{
import all from MyASNlnodul e | anguage "ASN. 1: 1997";

const Bressage MyTTCNConst: = j ohnVal ues;
}

NOTE: ASN.1 definitions other than types and values (i.e. information object classes or information object sets)
arenot directly accessible from the TTCN-3 notation. Such definitions shall be resolved to atype or value
within the ASN.1 module before they can be referenced from within the TTCN-3 module.

E.1.2.1 Scope of ASN.1 identifiers

Imported ASN.1 identifiers follow the same scope rules asimported TTCN-3 types and val ues (see clause 5.4).

E.1.3 Parameterization in ASN.1

Itis permitted to reference parameterized ASN.1 type and value definitions from with the TTCN-3 module. However,
all ASN.1 parameterized definitions used in a TTCN-3 module shall be provided with actual parameters (open types or
values are not permitted) and the actual parameters provided shall be resolvable at compile-time.

The TTCN-3 core language does not support parameterization of uniquely ASN.1 specific objects. ASN.1 specific
parameterization which involves objects which cannot be defined directly in the TTCN-3 core language shall therefore
be resolved in the ASN.1 part before use within the TTCN-3. The ASN.1 specific objects are:

a) Vauesds,
b) Information Object classes,
¢) Information Objects;

d) Information Object Sets.

ETSI



241 ETSI ES 201 873-1 V1.1.2 (2001-06)

For example the following isnot legal because it defines a TTCN-3 type which takes an ASN.1 object set as an actual
parameter.
MyASNLmodul e DEFINITIONS :: =
BEG N
-- ASN. 1 Modul e definition

-- Information object class definition

MESSAGE ::= CLASS { &mrsgTypeVal ue I NTEGER UNI QUE,
&VsgFi el ds}
-- Information object definition
set upMessage MESSACGE ::= { &msgTypeVal ue 1,
&MsgFi el ds OCTET STRI NG

set upAckMessage MESSAGE :: = { &rsgTypeVal ue 2,
&MVsgFi el ds BOOLEAN}

-- Information object set definition

M/Pr ot ocol MESSACE ::= { setupMessage | setupAckMessage}

-- ASN. 1 type constrained by object set

M/Message{ MESSAGE : MsgSet} ::= SEQUENCE

{

code MESSAGE. &nsgTypeVal ue({ MsgSet}),
Type MESSAGE. &\vsgFi el ds({ MsgSet})

}
END
nmodul e MyTTCNModul e

/1 TTCN-3 nodul e definition
import all from MyASNlnodul e | anguage "ASN. 1: 1997";

/1 Illegal TTCN-3 type with object set as paraneter
type record Q MESSAGE MyMsgSet) ::= { z fieldl,
M/Message( MyMsgSet) fiel d2}
}

To makethisalegal definition the extra ASN.1 type My Messagel hasto be defined as shown below. Thisresolves the
information object set parameterization and can therefore be directly used in the TTCN-3 module.

MyASNLnodul e DEFINITIONS :: =
BEG N
-- ASN. 1 Modul e definition

M/Pr ot ocol MESSACGE ::= { setupMessage | setupAckMessage}
-- Extra ASN. 1 type to renpbve object set paranetrization
M/Messagel ::= MyMessage{ MProtocol}

END

nmodul e MyTTCNModul e

/1 TTCN-3 nodul e definition
import all from MyASNlnodul e | anguage "ASN. 1: 1997";

/1 Legal TTCN-3 type with no object set as paraneter

type record Q:={ Z fieldl,
M/Messagel field2}

ETSI



242 ETSI ES 201 873-1 V1.1.2 (2001-06)

E.1.4 Defining message types with ASN.1

In ASN.1 messages are defined using SEQUENCE (or possibly SET).

EXAMPLE:
MyASNLnodul e DEFINITIONS :: =
BEG N
- ASN.1 Modul e definition
MyMessageType ::= SEQUENCE
fieldl Fi el d1Type,
field2 Fi el d2Type OPTIONAL, -- This field may be onmtted
fiel dN Fi el dNType
}
END

Messages defined usng ASN.1 may also, of course, be sub-structured using SEQUENCE, SET etc.

E.1.5 Defining ASN.1 message templates

If messages are defined in ASN.1 using, for example: SEQUENCE (or possibly SET) then actual messages, for both
send andr ecei ve events, can be specified using the ASN.1 value syntax.

EXAMPLE:

MyASNLnodul e DEFINITIONS :: =
BEG N
- ASN. 1 Modul e definition

- The message definition
MyMessageType: : = SEQUENCE

{ fieldl [1] | ASSTRING /1 Like TTCN-3 character string
field2 [2] | NTEGER OPTI ONAL, /1 like TTCN-3 integer
field3 [4] Field3Type, /1 Like TTCN-3 record
fieldd [5] Field4Type /1 Like TTCN-3 array
}
Fi el d3Type: : = SEQUENCE {field31 BIT STRING field32 INTECER, field33 OCTET STRI NG,

Fi el d4Type: : = SEQUENCE OF BOOLEAN

-- may have the follow ng val ue
nyVal ue MyMessageType: : =

fieldl "A string",
field2 123,
field3 {field31 '11011' B, field32 456789, field33 'FF O,
field4 {true, false}
}
END

ETSI



243 ETSI ES 201 873-1 V1.1.2 (2001-06)

E.1.5.1 ASN.1 receive messages using the TTCN-3 template syntax

Matching mechanisms are not supported in the standard ASN.1 syntax. Thus, if it is wished to use matching
mechanismswith an ASN.1 receive message then the TTCN-3 syntax for receive templates shal be used instead. Note
that this syntax includes component referencesin order to be able to reference the individual componentsin ASN.1
SEQUENCE, SET etc.

EXAMPLE:
i mport type nyMessageType from MyASNlnodul e | anguage "ASN. 1:1997";

/1 a message tenplate using matching mechanisms within TTCN-3 ni ght be
tenpl ate nyMessageType MyVal ue: =
{

fieldl : = TAT?>"trt < >" g,
field2 : = *,
field3.field31 := '110??'B,
field3.field32 := 2,
field3.field33 := 'F?'Q
fieldd.[0] := true,

fieldd.[1] := fal se

}

/1 the follow ng syntax is equally valid
tenpl ate nyMessageType MyVal ue: =
{

fieldl := "A"<?>"tr"<*>"g", /1 string with wildcards
field2 := *, /1 any integer or none at all
field3 := {'110??'B, ?, 'F?' O,

fieldd := {?, false}

E.1.5.2 Ordering of template fields

When TTCN-3 templates are used for ASN.1 types the sgnificance of the order of the fields in the template will depend
on thetype of ASN.1 construct used to define the message type. For example: if SEQUENCE or SEQUENCE OF isused
then the message fields shall be sent or matched in the order specified in thetemplate. If SET or SET OF isused then
the message fields may be sent or matched in any order.

E.1.6 Encoding information

TTCN-3 allows references to encoding rules and variations within encoding rules to be associated with various TTCN-3
language dements. It isalso possible to define invalid encodings. This encoding information is specified using the
Wi t h statement according to the following syntax:

EXAMPLE:

nmodul e MyModul e
{ :
i mport type nyMessageType from MyASNlnodul e | anguage "ASN. 1:1997" with {encode: =
"PER: 1997"}

/1 Al instances of MyMessageType shoul d be encoded using PER 1997

} with {encode "BER 1997"} // Default encoding for the entire nmodule (test suite) is BER 1997

E.1.6.1 ASN.1 encoding attributes

The following strings are the predefined (standardized) encoding attributes for ASN.1:
a) "BER:1997" means encoded according to ITU-T Recommendation X.690 (BER) [11];
b) "CER:1997" means encoded according to ITU-T Recommendation X.690 (CER) [11];
¢) "DER:1997" means encoded according to ITU-T Recommendation X.690 (DER) [11].

d) "PER-BASIC-UNALIGNED:1997" means encoded according to (Unaligned PER)
ITU-T Recommendation X.691 [12];

ETSI



244 ETSI ES 201 873-1 V1.1.2 (2001-06)
€) "PER-BASICALIGNED:1997" meansencoded according to ITU-T Recommendation X.691 (Aligned PER)
(12];

f) "PER-CANONICAL-UNALIGNED:1997" means encoded according to (Canonical Unaligned PER)
ITU-T Recommendation X.691 [12];

g) "PER-CANONICAL-ALIGNED:1997" means encoded according to I TU-T Recommendation X.691 (Canonical
Aligned PER) [12].

ETSI



245

ETSI ES 201 873-1 V1.1.2 (2001-06)

History

Document history
V111 March 2001 Publication
V112 June 2001 Publication

ETSI



	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.1.1 Definitions from ISO/IEC-9646-1
	3.1.2 Definitions from ISO/IEC-9646-3

	3.2 Abbreviations

	4 Introduction
	4.1 The core language and presentation formats

	5 Basic language elements
	5.1 Definitions, instances and declarations
	5.2 Ordering of language elements
	5.2.1 Forward references

	5.3 Parameterization
	5.3.1 Parameter passing by reference and by value
	5.3.1.1 Parameters passed by reference
	5.3.1.2 Parameters passed by value

	5.3.2 Formal and actual parameter lists
	5.3.3 Empty formal parameter list
	5.3.4 Nested parameter lists

	5.4 Scope rules
	5.4.1 Scope and overloading of identifiers
	5.4.2 Scope of formal parameters

	5.5 Identifiers and keywords

	6 Types and values
	6.1 Basic types and values
	6.1.1 Basic string types and values
	6.1.2 Accessing individual string elements

	6.2 User-defined sub-types and values
	6.2.1 Lists of values
	6.2.2 Ranges
	6.2.2.1 Infinite ranges
	6.2.2.2 Mixing lists and ranges

	6.2.3 String length restrictions

	6.3 Structured types and values
	6.3.1 Record type and values
	6.3.1.1 Referencing nested record fields
	6.3.1.2 Optional elements in a record

	6.3.2 Set type and values
	6.3.2.1 Optional elements in a set

	6.3.3 Records and sets of single types
	6.3.4 Enumerated type and values
	6.3.5 Unions

	6.4 Arrays
	6.5 Recursive types
	6.6 Type parameterization
	6.7 Type compatibility
	6.7.1 Type conversion


	7 Modules
	7.1 Naming of modules
	7.2 Parameterization of modules
	7.2.1 Default values for module parameters

	7.3 Module definitions part
	7.3.1 Groups of definitions

	7.4 Module control part
	7.5 Importing from modules
	7.5.1 Rules on using Import
	7.5.2 Importing single definitions
	7.5.3 Importing all definitions of a module
	7.5.4 Importing groups
	7.5.5 Importing definitions of the same kind
	7.5.6 Recursive import of complex definitions
	7.5.7 Handling name clashes on import
	7.5.8 Handling multiple references to the same definition
	7.5.9 Import and module parameters
	7.5.10 Import definitions from non-TTCN modules


	8 Test configurations
	8.1 Port communication model
	8.2 Abstract test system interface
	8.3 Defining communication port types
	8.3.1 Mixed ports

	8.4 Defining component types
	8.4.1 Declaring local variables and timers in a component
	8.4.2 Defining components with arrays of ports

	8.5 Addressing entities inside the SUT
	8.6 Component references
	8.7 Defining the test system interface

	9 Declaring constants
	10 Declaring variables
	11 Declaring timers
	11.1 Timers as parameters

	12 Declaring messages
	12.1 Optional message fields

	13 Declaring procedure signatures
	13.1 Omitting actual parameters
	13.2 Specifying exceptions

	14 Declaring templates
	14.1 Declaring message templates
	14.1.1 Templates for sending messages
	14.1.2 Templates for receiving messages

	14.2 Declaring signature templates
	14.2.1 Templates for calling procedures
	14.2.2 Templates for accepting procedure calls

	14.3 Template matching mechanisms
	14.4 Parameterization of templates
	14.4.1 Parameterization with matching attributes

	14.5 Passing templates as parameters
	14.6 Modified templates
	14.6.1 Parameterization of modified templates
	14.6.2 In-line modified templates

	14.7 Changing template fields
	14.8 Match Operation
	14.9 Value of Operation

	15 Operators
	15.1 Arithmetic operators
	15.2 String operators
	15.3 Relational operators
	15.4 Logical operators
	15.5 Bitwise operators
	15.6 Shift operators
	15.7 Rotate operators

	16 Functions
	16.1 Parameterization of Functions
	16.2 Invoking functions
	16.3 Predefined functions

	17 Test cases
	18 Program statements and operations
	19 Basic program statements
	19.1 Expressions
	19.1.1 Boolean expressions

	19.2 Assignments
	19.3 The Log statement
	19.4 The Label statement
	19.5 The Goto statement
	19.6 The If-else statement
	19.7 The For statement
	19.8 The While statement
	19.9 The Do-while statement
	19.10 The Stop execution statement

	20 Behavioural program statements
	20.1 Sequential behaviour
	20.2 Alternative behaviour
	20.2.1 Execution of alternative behaviour
	20.2.2 Selecting/deselecting an alternative
	20.2.3 Else branch in alternatives
	20.2.4 Declaring named alternatives
	20.2.5 Expanding alternatives with named alternatives
	20.2.6 Parameterization of named alternatives
	20.2.7 The Label statement in behaviour
	20.2.8 The Goto statement in behaviour
	20.2.8.1 Restricting the use of Goto


	20.3 Interleaved behaviour
	20.4 Default behaviour
	20.4.1 The Activate and Deactivate operations

	20.5 The Return statement

	21 Configuration operations
	21.1 The Create operation
	21.2 The Connect and Map operations
	21.2.1 Consistent connections

	21.3 The Disconnect and Unmap operations
	21.4 The MTC, System and Self operations
	21.5 The Start test component operation
	21.6 The Stop test component operation
	21.7 The Running operation
	21.8 The Done operation
	21.9 Using component arrays
	21.10 Use of Any and All with components

	22 Communication operations
	22.1 Sending operations
	22.1.1 General format of the sending operations
	22.1.1.1 Response and exception handling

	22.1.2 The Send operation
	22.2.1 The Call operation
	22.2.1.1 Handling responses to a Call
	22.2.1.2 Handling exceptions to a Call
	22.2.1.3 Handling timeout exceptions to the Call

	22.2.2 The Reply operation
	22.2.3 The Raise operation

	22.3 Receiving operations
	22.3.1 General format of the receiving operations
	22.3.1.1 Making assignments on receiving operations

	22.3.2 The Receive operation
	22.3.2.1 Receive any message
	22.3.2.2 Receive on any port

	22.3.3 The Trigger operation
	22.3.3.1 Trigger on any message
	22.3.3.2 Trigger on any port

	22.3.4 The Getcall operation
	22.3.4.1 Accepting any call
	22.3.4.2 Getcall on any port

	22.3.5 The Getreply operation
	22.3.5.1 Get any reply from any call
	22.3.5.2 Get a reply on any port

	22.3.6 The Catch operation
	22.3.6.1 The Timeout exception
	22.3.6.2 Catch any exception
	22.3.6.3 Catch on any port

	22.3.7 The Check operation
	22.3.7.1 The Check any operation


	22.4 Controlling communication ports
	22.4.1 The Clear port operation
	22.4.2 The Start port operation
	22.4.3 The Stop port operation

	22.5 Use of any and all with ports

	23 Timer operations
	23.1 The Start timer operation
	23.2 The Stop timer operation
	23.3 The Read timer operation
	23.4 The Running timer operation
	23.5 The Timeout event
	23.6 Use of any and all with timers

	24 Test verdict operations
	24.1 Test case verdict
	24.2 Verdict values and overwriting rules
	24.2.1 Error verdict


	25 SUT operations
	26 Module control part
	26.1 Execution of test cases
	26.2 Termination of test cases
	26.3 Controlling execution of test cases
	26.4 Test case selection
	26.5 Use of timers in control

	27 Specifying attributes
	27.1 Display attributes
	27.2 Encoding attributes
	27.2.1 Invalid encodings

	27.3 Extension attributes
	27.4 Scope of attributes
	27.5 Overwriting rules for attributes
	27.6 Changing attributes of imported language elements

	Annex A (normative): BNF and static semantics
	A.1 TTCN-3 BNF
	A.1.1 Conventions for the syntax description
	A.1.2 Statement terminator symbols
	A.1.3 Identifiers
	A.1.4 Comments
	A.1.5 TTCN-3 terminals
	A.1.6  TTCN-3 syntax BNF productions
	A.1.6.1 TTCN Module
	A.1.6.2 Module Definitions Part
	A.1.6.2.1 Typedef Definitions
	A.1.6.2.2 Constant Definitions
	A.1.6.2.3 Template Definitions
	A.1.6.2.4 Function Definitions
	A.1.6.2.5 Signature Definitions
	A.1.6.2.6 Testcase Definitions
	A.1.6.2.7 NamedAlt Definitions
	A.1.6.2.8 Import Definitions
	A.1.6.2.9 Group Definitions
	A.1.6.2.10 External Function Definitions
	A.1.6.2.11 External Constant Definitions

	A.1.6.3 Control Part
	A.1.6.3.1 Variable Instantiation
	A.1.6.3.2 Timer Instantiation
	A.1.6.3.3 Component Operations
	A.1.6.3.4 Port Operations
	A.1.6.3.5 Timer Operations

	A.1.6.4 Type
	A.1.6.4.1 Array Types

	A.1.6.5 Value
	A.1.6.6 Parameterisation
	A.1.6.7 With Statement
	A.1.6.8 Behaviour Statements
	A.1.6.9 Basic Statements
	A.1.6.10 Miscellaneous productions



	Annex B (normative): Operational semantics
	B.1 Structure of this annex
	B.2 Replacement of shorthand notations and macro calls
	B.2.1 Order of replacement steps
	B.2.2 Adding stop and return operations in behaviour descriptions
	B.2.3 Replacement of global constants and module parameters
	B.2.4 Embedding single receiving operations into alt statements
	B.2.5 Macro expansion
	B.2.5.1 Expansion of named alternatives in alternative statements
	B.2.5.2 Explicit call of a named alternative

	B.2.6 Replacement of the interleave construct
	B.2.7 Expansion of defaults
	B.2.8 Replacement of trigger operations
	B.2.9 Replacement of the keywords 'any' and 'all'
	B.2.9.1 Replacement of 'all' in timer and port operations
	B.2.9.2 Replacement of 'any' in timer and receiving operations
	B.2.9.3 The keywords 'any' and 'all' in 'done' and 'running'


	B.3 Flow graph semantics of TTCN-3
	B.3.1 Flow graphs
	B.3.1.1 Flow graph frame
	B.3.1.2 Flow graph nodes
	B.3.1.2.1 Start nodes
	B.3.1.2.2 End nodes
	B.3.1.2.3 Basic nodes
	B.3.1.2.4 Reference nodes
	B.3.1.2.4.1 OR combination of reference nodes
	B.3.1.2.4.2 Multiple occurrences of reference nodes


	B.3.1.3 Flow lines
	B.3.1.4 Flow graph segments
	B.3.1.5 Comments
	B.3.1.6 Handling of flow graph descriptions

	B.3.2 Flow Graph Representation of TTCN-3 behaviour
	B.3.2.1 The flow graph construction procedure
	B.3.2.2 Flow graph representation of module control
	B.3.2.3 Flow graph representation of test cases
	B.3.2.4 Flow graph representation of functions
	B.3.2.5 Flow graph representation of component type definitions
	B.3.2.6 Retrieval of start nodes of flow graphs

	B.3.3 State definitions for TTCN-3 modules
	B.3.3.1 Module state
	B.3.3.1.1 Accessing the module state

	B.3.3.2 Entity states
	B.3.3.2.1 Accessing entity states
	B.3.3.2.2 Data state and variable binding
	B.3.3.2.3 Timer state and timer binding
	B.3.3.2.4 Accessing timer and data states

	B.3.3.3 Port states
	B.3.3.3.1 Handling of connections between ports
	B.3.3.3.2 Handling of ports states

	B.3.3.4 General functions for the handling of module states

	B.3.4 Messages, procedure calls, replies and exceptions
	B.3.4.1 Messages
	B.3.4.2 Procedure calls and replies
	B.3.4.3 Exceptions
	B.3.4.4 Construction of messages, procedure calls, replies and exceptions
	B.3.4.5 Matching of messages, procedure calls, replies and exceptions
	B.3.4.6 Retrieval of information from received items

	B.3.5 Call records for functions and test cases
	B.3.5.1 Handling of call records

	B.3.6 The evaluation procedure for a TTCN-3 module
	B.3.6.1 Evaluation phases
	B.3.6.1.1 Phase I: Initialization
	B.3.6.1.2 Phase II: Update
	B.3.6.1.3 Phase III: Selection
	B.3.6.1.4 Phase IV: Execution

	B.3.6.2 Global functions

	B.3.7 Flow graph segment definitions for TTCN-3 constructs
	B.3.7.1 Alt statement
	B.3.7.1.1 Flow graph segment <receiving-branch>

	B.3.7.2 Assignment statement
	B.3.7.3 Call operation
	B.3.7.3.1 Flow graph segment <nb-call-with-receiver>
	B.3.7.3.2 Flow graph segment <nb-call-without-receiver>
	B.3.7.3.3 Flow graph segment <b-call-with-receiver>
	B.3.7.3.4 Flow graph segment <b-call-without-receiver>
	B.3.7.3.5 Flow graph segment <b-call-with-rec-dur>
	B.3.7.3.6 Flow graph segment <b-call-without-rec-dur>

	B.3.7.4 Catch operation
	B.3.7.4.1 Flow graph segment <catch-with-sender>
	B.3.7.4.2 Flow graph segment <catch-without-sender>

	B.3.7.5 Clear port operation
	B.3.7.6 Connect operation
	B.3.7.7 Declaration of a constant
	B.3.7.8 Create operation
	B.3.7.9 Declaration of a port
	B.3.7.10 Declaration of a timer
	B.3.7.10.1 Flow graph segment <timer-decl-default>
	B.3.7.10.2 Flow graph segment <timer-decl-no-def>

	B.3.7.11 Declaration of a variable
	B.3.7.11.1 Flow graph segment <var-declaration-init>
	B.3.7.11.2 Flow graph segment <var-declaration-undef>

	B.3.7.12 Disconnect operation
	B.3.7.13 Do-while statement
	B.3.7.14 Done-all-components operation
	B.3.7.15 Done-any-component operation
	B.3.7.16 Done component operation
	B.3.7.17 Execute statement
	B.3.7.17.1 Flow graph segment <execute-timeout>
	B.3.7.17.2 Flow graph segment <execute-without-timeout>

	B.3.7.18 Expression
	B.3.7.18.1 Flow graph segment <lit-value>
	B.3.7.18.2 Flow graph segment <var-value>
	B.3.7.18.3 Flow graph segment <func-op-call>
	B.3.7.18.4 Flow graph segment <operator-appl>

	B.3.7.19 Flow graph segment <finalize-component-init>
	B.3.7.20 Flow graph segment <init-component-scope>
	B.3.7.21 For statement
	B.3.7.22 Function call
	B.3.7.23 Flow graph segment <value-par-calculation>
	B.3.7.24 Flow graph segment <ref-par-var-calc>
	B.3.7.25 Flow graph segment <ref-par-timer-calc>
	B.3.7.26 Flow graph segment <parameter-handling>
	B.3.7.27 Getcall operation
	B.3.7.27.1 Flow graph segment <getcall-with-sender>
	B.3.7.27.2 Flow graph segment <getcall-without-sender>

	B.3.7.28 Getreply operation
	B.3.7.28.1 Flow graph segment <getreply-with-sender>
	B.3.7.28.2 Flow graph segment <getreply-without-sender>

	B.3.7.29 Goto statement
	B.3.7.30 If-else statement
	B.3.7.30.1 Flow graph segment <if-with-else-branch>
	B.3.7.30.2 Flow graph segment <if-without-else-branch>

	B.3.7.31 Label statement
	B.3.7.32 Log statement
	B.3.7.33 Map operation
	B.3.7.34 MTC operation
	B.3.7.35 Raise operation
	B.3.7.35.1 Flow graph segment <raise-with-receiver-op>
	B.3.7.35.2 Flow graph segment <raise-without-receiver-op>

	B.3.7.36 Read timer operation
	B.3.7.37 Receive operation
	B.3.7.37.1 Flow graph segment <receive-with-sender>
	B.3.7.37.2 Flow graph segment <receive-without-sender>
	B.3.7.37.3 Flow graph segment <receive-assignment>

	B.3.7.38 Reply operation
	B.3.7.38.1 Flow graph segment <reply-with-receiver-op>
	B.3.7.38.2 Flow graph segment <reply-without-receiver-op>

	B.3.7.39 Return statement
	B.3.7.39.1 Flow graph segment <return-with-value>
	B.3.7.39.2 Flow graph segment <return-without-value>

	B.3.7.40 Running-all-components operation
	B.3.7.41 Running-any-component operation
	B.3.7.42 Running component operation
	B.3.7.43 Running timer operation
	B.3.7.44 Send operation
	B.3.7.44.1 Flow graph segment <send-with-receiver-op>
	B.3.7.44.2 Flow graph segment <send-without-receiver-op>

	B.3.7.45 Self operation
	B.3.7.46 Start component operation
	B.3.7.47 Start port operation
	B.3.7.48 Start timer operation
	B.3.7.48.1 Flow graph segment <start-timer-op-default>
	B.3.7.48.2 Flow graph segment <start-timer-op-duration>

	B.3.7.49 Statement block
	B.3.7.50 Stop operation
	B.3.7.51 Stop port operation
	B.3.7.52 Stop timer operation
	B.3.7.53 Sut.action operation
	B.3.7.54 System operation
	B.3.7.55 Timeout timer operation
	B.3.7.56 Unmap operation
	B.3.7.57 Verdict.get operation
	B.3.7.58 Verdict.set operation
	B.3.7.59 While statement

	B.3.8 Lists of operational semantic components
	B.3.8.1 Functions and states
	B.3.8.2 Special keywords
	B.3.8.3 Flow graph segments



	Annex C (normative): Matching incoming values
	C.1 Template matching mechanisms
	C.1.1 Matching specific values
	C.1.2 Matching mechanisms instead of values
	C.1.2.1 Value list
	C.1.2.2 Complemented value list
	C.1.2.3 Omitting values
	C.1.2.4 Any value
	C.1.2.5 Any value or none
	C.1.2.6 Value range

	C.1.3 Matching mechanisms inside values
	C.1.3.1 Any element
	C.1.3.1.1 Using single character wildcards

	C.1.3.2 Any number of elements or no element
	C.1.3.2.1 Using multiple character wildcards


	C.1.4 Matching attributes of values
	C.1.4.1 Length restrictions
	C.1.4.2 The IfPresent indicator

	C.1.5 Matching Character Pattern


	Annex D (normative): Pre-defined TTCN-3 functions
	D.1 Pre-defined TTCN-3 functions
	D.1.1 Integer to character
	D.1.2 Character to integer
	D.1.3 Integer to universal character
	D.1.4 Univeral character to integer
	D.1.5 Bitstring to integer
	D.1.6 Hexstring to integer
	D.1.7 Octetstring to integer
	D.1.8 Charstring to integer
	D.1.9 Integer to bitstring
	D.1.10 Integer to hexstring
	D.1.11 Integer to octetstring
	D.1.12 Integer to charstring
	D.1.13 Length of string type
	D.1.14 Number of elements in a structured type
	D.1.15 The IsPresent function
	D.1.16 The IsChosen function


	Annex E (normative): Using other data types with TTCN-3
	E.1 Using ASN.1 with TTCN-3
	E.1.1 ASN.1 and TTCN-3 type equivalents
	E.1.2 ASN.1 data types and values
	E.1.2.1 Scope of ASN.1 identifiers

	E.1.3 Parameterization in ASN.1
	E.1.4 Defining message types with ASN.1
	E.1.5 Defining ASN.1 message templates
	E.1.5.1 ASN.1 receive messages using the TTCN-3 template syntax
	E.1.5.2 Ordering of template fields

	E.1.6 Encoding information
	E.1.6.1 ASN.1 encoding attributes



	History

