
ETSI ES 201 873-1 V1.1.2 (2001-06)

ETSI Standard

Methods for Testing and Specification (MTS);
The Tree and Tabular Combined Notation version 3;

Part 1: TTCN-3 Core Language

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)2

Reference
RES/MTS-00063-1r1

Keywords
ASN.1, methodology, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2001.
All rights reserved.

http://www.etsi.org/
http://www.etsi.org/tb/status
editor@etsi.fr

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)3

Contents

Intellectual Property Rights ..12

Foreword..12

1 Scope..13

2 References ..13

3 Definitions and abbreviations..14
3.1 Definitions .. 14
3.1.1 Definitions from ISO/IEC-9646-1 .. 14
3.1.2 Definitions from ISO/IEC-9646-3 .. 15
3.2 Abbreviations.. 15

4 Introduction ..16
4.1 The core language and presentation formats... 16

5 Basic language elements ...17
5.1 Definitions, instances and declarations... 18
5.2 Ordering of language elements .. 18
5.2.1 Forward references... 18
5.3 Parameterization.. 19
5.3.1 Parameter passing by reference and by value .. 20
5.3.1.1 Parameters passed by reference... 20
5.3.1.2 Parameters passed by value... 20
5.3.2 Formal and actual parameter lists ... 20
5.3.3 Empty formal parameter list ... 20
5.3.4 Nested parameter lists .. 21
5.4 Scope rules.. 21
5.4.1 Scope and overloading of identifiers... 22
5.4.2 Scope of formal parameters.. 22
5.5 Identifiers and keywords.. 22

6 Types and values ..23
6.1 Basic types and values... 23
6.1.1 Basic string types and values.. 24
6.1.2 Accessing individual string elements .. 25
6.2 User-defined sub-types and values ... 25
6.2.1 Lists of values.. 25
6.2.2 Ranges... 25
6.2.2.1 Infinite ranges... 25
6.2.2.2 Mixing lists and ranges ... 26
6.2.3 String length restrictions .. 26
6.3 Structured types and values.. 26
6.3.1 Record type and values .. 26
6.3.1.1 Referencing nested record fields ... 27
6.3.1.2 Optional elements in a record.. 27
6.3.2 Set type and values... 27
6.3.2.1 Optional elements in a set ... 28
6.3.3 Records and sets of single types ... 28
6.3.4 Enumerated type and values ... 28
6.3.5 Unions... 28
6.4 Arrays ... 29
6.5 Recursive types ... 29
6.6 Type parameterization ... 29
6.7 Type compatibility .. 30
6.7.1 Type conversion... 30

7 Modules..30
7.1 Naming of modules ... 30

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)4

7.2 Parameterization of modules.. 30
7.2.1 Default values for module parameters... 31
7.3 Module definitions part.. 31
7.3.1 Groups of definitions.. 31
7.4 Module control part ... 32
7.5 Importing from modules .. 32
7.5.1 Rules on using Import .. 33
7.5.2 Importing single definitions.. 33
7.5.3 Importing all definitions of a module.. 33
7.5.4 Importing groups.. 33
7.5.5 Importing definitions of the same kind.. 33
7.5.6 Recursive import of complex definitions .. 33
7.5.7 Handling name clashes on import ... 34
7.5.8 Handling multiple references to the same definition.. 35
7.5.9 Import and module parameters ... 35
7.5.10 Import definitions from non-TTCN modules... 35

8 Test configurations ...35
8.1 Port communication model .. 36
8.2 Abstract test system interface... 36
8.3 Defining communication port types ... 36
8.3.1 Mixed ports ... 37
8.4 Defining component types ... 38
8.4.1 Declaring local variables and timers in a component... 38
8.4.2 Defining components with arrays of ports... 38
8.5 Addressing entities inside the SUT .. 39
8.6 Component references ... 39
8.7 Defining the test system interface .. 40

9 Declaring constants...41

10 Declaring variables ...41

11 Declaring timers ...41
11.1 Timers as parameters... 41

12 Declaring messages ..42
12.1 Optional message fields... 42

13 Declaring procedure signatures ...43
13.1 Omitting actual parameters .. 43
13.2 Specifying exceptions.. 43

14 Declaring templates ..44
14.1 Declaring message templates ... 44
14.1.1 Templates for sending messages... 44
14.1.2 Templates for receiving messages .. 45
14.2 Declaring signature templates .. 45
14.2.1 Templates for calling procedures.. 46
14.2.2 Templates for accepting procedure calls ... 46
14.3 Template matching mechanisms .. 46
14.4 Parameterization of templates .. 48
14.4.1 Parameterization with matching attributes .. 49
14.5 Passing templates as parameters... 49
14.6 Modified templates.. 49
14.6.1 Parameterization of modified templates .. 50
14.6.2 In-line modified templates.. 50
14.7 Changing template fields ... 50
14.8 Match Operation.. 51
14.9 Value of Operation .. 51

15 Operators..51
15.1 Arithmetic operators.. 53
15.2 String operators... 53
15.3 Relational operators... 53

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)5

15.4 Logical operators... 54
15.5 Bitwise operators... 54
15.6 Shift operators... 55
15.7 Rotate operators .. 56

16 Functions..56
16.1 Parameterization of Functions.. 57
16.2 Invoking functions... 57
16.3 Predefined functions.. 58

17 Test cases ...58

18 Program statements and operations ...59

19 Basic program statements ...61
19.1 Expressions... 61
19.1.1 Boolean expressions... 61
19.2 Assignments.. 61
19.3 The Log statement... 61
19.4 The Label statement .. 62
19.5 The Goto statement ... 62
19.6 The If-else statement ... 62
19.7 The For statement.. 62
19.8 The While statement.. 63
19.9 The Do-while statement... 63
19.10 The Stop execution statement .. 63

20 Behavioural program statements ...63
20.1 Sequential behaviour ... 64
20.2 Alternative behaviour .. 64
20.2.1 Execution of alternative behaviour ... 65
20.2.2 Selecting/deselecting an alternative .. 66
20.2.3 Else branch in alternatives.. 66
20.2.4 Declaring named alternatives.. 66
20.2.5 Expanding alternatives with named alternatives .. 67
20.2.6 Parameterization of named alternatives... 67
20.2.7 The Label statement in behaviour ... 68
20.2.8 The Goto statement in behaviour .. 68
20.2.8.1 Restricting the use of Goto.. 68
20.3 Interleaved behaviour .. 69
20.4 Default behaviour.. 71
20.4.1 The Activate and Deactivate operations.. 71
20.5 The Return statement... 72

21 Configuration operations...73
21.1 The Create operation ... 73
21.2 The Connect and Map operations... 74
21.2.1 Consistent connections... 75
21.3 The Disconnect and Unmap operations .. 75
21.4 The MTC, System and Self operations... 75
21.5 The Start test component operation .. 76
21.6 The Stop test component operation .. 76
21.7 The Running operation .. 77
21.8 The Done operation ... 77
21.9 Using component arrays .. 78
21.10 Use of Any and All with components... 78

22 Communication operations ...78
22.1 Sending operations .. 79
22.1.1 General format of the sending operations.. 80
22.1.1.1 Response and exception handling.. 80
22.1.2 The Send operation .. 80
22.2.1 The Call operation.. 80
22.2.1.1 Handling responses to a Call ... 81

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)6

22.2.1.2 Handling exceptions to a Call.. 82
22.2.1.3 Handling timeout exceptions to the Call .. 82
22.2.2 The Reply operation... 83
22.2.3 The Raise operation ... 83
22.3 Receiving operations ... 84
22.3.1 General format of the receiving operations ... 84
22.3.1.1 Making assignments on receiving operations... 84
22.3.2 The Receive operation.. 84
22.3.2.1 Receive any message .. 85
22.3.2.2 Receive on any port .. 86
22.3.3 The Trigger operation .. 86
22.3.3.1 Trigger on any message .. 86
22.3.3.2 Trigger on any port ... 86
22.3.4 The Getcall operation... 87
22.3.4.1 Accepting any call .. 88
22.3.4.2 Getcall on any port ... 88
22.3.5 The Getreply operation... 88
22.3.5.1 Get any reply from any call... 89
22.3.5.2 Get a reply on any port.. 90
22.3.6 The Catch operation ... 90
22.3.6.1 The Timeout exception ... 90
22.3.6.2 Catch any exception.. 91
22.3.6.3 Catch on any port.. 91
22.3.7 The Check operation .. 91
22.3.7.1 The Check any operation .. 92
22.4 Controlling communication ports... 92
22.4.1 The Clear port operation... 92
22.4.2 The Start port operation.. 92
22.4.3 The Stop port operation.. 92
22.5 Use of any and all with ports.. 93

23 Timer operations...93
23.1 The Start timer operation ... 93
23.2 The Stop timer operation ... 93
23.3 The Read timer operation .. 94
23.4 The Running timer operation ... 94
23.5 The Timeout event .. 94
23.6 Use of any and all with timers.. 94

24 Test verdict operations ..94
24.1 Test case verdict.. 95
24.2 Verdict values and overwriting rules.. 95
24.2.1 Error verdict .. 96

25 SUT operations...96

26 Module control part ..96
26.1 Execution of test cases... 96
26.2 Termination of test cases ... 97
26.3 Controlling execution of test cases... 97
26.4 Test case selection... 97
26.5 Use of timers in control ... 98

27 Specifying attributes ...99
27.1 Display attributes .. 99
27.2 Encoding attributes.. 99
27.2.1 Invalid encodings..100
27.3 Extension attributes ..100
27.4 Scope of attributes..100
27.5 Overwriting rules for attributes ...101
27.6 Changing attributes of imported language elements...101

Annex A (normative): BNF and static semantics... 102

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)7

A.1 TTCN-3 BNF ... 102
A.1.1 Conventions for the syntax description..102
A.1.2 Statement terminator symbols...102
A.1.3 Identifiers...102
A.1.4 Comments..102
A.1.5 TTCN-3 terminals ..103
A.1.6 TTCN-3 syntax BNF productions ...104
A.1.6.1 TTCN Module ..104
A.1.6.2 Module Definitions Part ..105
A.1.6.2.1 Typedef Definitions...105
A.1.6.2.2 Constant Definitions ..106
A.1.6.2.3 Template Definitions ...106
A.1.6.2.4 Function Definitions ..107
A.1.6.2.5 Signature Definitions ...108
A.1.6.2.6 Testcase Definitions...108
A.1.6.2.7 NamedAlt Definitions..108
A.1.6.2.8 Import Definitions ...109
A.1.6.2.9 Group Definitions..109
A.1.6.2.10 External Function Definitions ..110
A.1.6.2.11 External Constant Definitions ..110
A.1.6.3 Control Part ..110
A.1.6.3.1 Variable Instantiation...110
A.1.6.3.2 Timer Instantiation ..110
A.1.6.3.3 Component Operations ..110
A.1.6.3.4 Port Operations..111
A.1.6.3.5 Timer Operations...112
A.1.6.4 Type ...112
A.1.6.4.1 Array Types...113
A.1.6.5 Value..113
A.1.6.6 Parameterisation ...114
A.1.6.7 With Statement ...114
A.1.6.8 Behaviour Statements..114
A.1.6.9 Basic Statements...115
A.1.6.10 Miscellaneous productions ..117

Annex B (normative): Operational semantics ... 118

B.1 Structure of this annex .. 118

B.2 Replacement of shorthand notations and macro calls ... 118
B.2.1 Order of replacement steps ...119
B.2.2 Adding stop and return operations in behaviour descriptions ...120
B.2.3 Replacement of global constants and module parameters...120
B.2.4 Embedding single receiving operations into alt statements...120
B.2.5 Macro expansion ..121
B.2.5.1 Expansion of named alternatives in alternative statements..121
B.2.5.2 Explicit call of a named alternative..121
B.2.6 Replacement of the interleave construct ..122
B.2.7 Expansion of defaults ...123
B.2.8 Replacement of trigger operations...124
B.2.9 Replacement of the keywords 'any' and 'all' ...124
B.2.9.1 Replacement of 'all' in timer and port operations..125
B.2.9.2 Replacement of 'any' in timer and receiving operations ..125
B.2.9.3 The keywords 'any' and 'all' in 'done' and 'running' ...126

B.3 Flow graph semantics of TTCN-3 ... 127
B.3.1 Flow graphs ...127
B.3.1.1 Flow graph frame..127
B.3.1.2 Flow graph nodes..127
B.3.1.2.1 Start nodes...127
B.3.1.2.2 End nodes..128
B.3.1.2.3 Basic nodes ...128
B.3.1.2.4 Reference nodes ..128

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)8

B.3.1.2.4.1 OR combination of reference nodes ..128
B.3.1.2.4.2 Multiple occurrences of reference nodes ...129
B.3.1.3 Flow lines ...129
B.3.1.4 Flow graph segments...130
B.3.1.5 Comments ..131
B.3.1.6 Handling of flow graph descriptions..131
B.3.2 Flow Graph Representation of TTCN-3 behaviour ..131
B.3.2.1 The flow graph construction procedure..132
B.3.2.2 Flow graph representation of module control ...132
B.3.2.3 Flow graph representation of test cases..132
B.3.2.4 Flow graph representation of functions..133
B.3.2.5 Flow graph representation of component type definitions...134
B.3.2.6 Retrieval of start nodes of flow graphs...134
B.3.3 State definitions for TTCN-3 modules ..135
B.3.3.1 Module state ...135
B.3.3.1.1 Accessing the module state ..135
B.3.3.2 Entity states ..136
B.3.3.2.1 Accessing entity states ...136
B.3.3.2.2 Data state and variable binding ..137
B.3.3.2.3 Timer state and timer binding...138
B.3.3.2.4 Accessing timer and data states ..139
B.3.3.3 Port states ...140
B.3.3.3.1 Handling of connections between ports ..141
B.3.3.3.2 Handling of ports states ...141
B.3.3.4 General functions for the handling of module states...142
B.3.4 Messages, procedure calls, replies and exceptions ...142
B.3.4.1 Messages ..143
B.3.4.2 Procedure calls and replies ..143
B.3.4.3 Exceptions ..143
B.3.4.4 Construction of messages, procedure calls, replies and exceptions..144
B.3.4.5 Matching of messages, procedure calls, replies and exceptions...144
B.3.4.6 Retrieval of information from received items...144
B.3.5 Call records for functions and test cases..144
B.3.5.1 Handling of call records ..145
B.3.6 The evaluation procedure for a TTCN-3 module ...145
B.3.6.1 Evaluation phases ...145
B.3.6.1.1 Phase I: Initialization ...145
B.3.6.1.2 Phase II: Update ..146
B.3.6.1.3 Phase III: Selection..146
B.3.6.1.4 Phase IV: Execution ..146
B.3.6.2 Global functions..146
B.3.7 Flow graph segment definitions for TTCN-3 constructs...147
B.3.7.1 Alt statement...147
B.3.7.1.1 Flow graph segment <receiving-branch>..150
B.3.7.2 Assignment statement ...151
B.3.7.3 Call operation ...151
B.3.7.3.1 Flow graph segment <nb-call-with-receiver> ...153
B.3.7.3.2 Flow graph segment <nb-call-without-receiver>...154
B.3.7.3.3 Flow graph segment <b-call-with-receiver> ...155
B.3.7.3.4 Flow graph segment <b-call-without-receiver> ..155
B.3.7.3.5 Flow graph segment <b-call-with-rec-dur>...156
B.3.7.3.6 Flow graph segment <b-call-without-rec-dur>..157
B.3.7.4 Catch operation...157
B.3.7.4.1 Flow graph segment <catch-with-sender> ..158
B.3.7.4.2 Flow graph segment <catch-without-sender> ...159
B.3.7.5 Clear port operation ..160
B.3.7.6 Connect operation ...161
B.3.7.7 Declaration of a constant...162
B.3.7.8 Create operation..163
B.3.7.9 Declaration of a port ...164
B.3.7.10 Declaration of a timer..164
B.3.7.10.1 Flow graph segment <timer-decl-default> ..165

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)9

B.3.7.10.2 Flow graph segment <timer-decl-no-def>...165
B.3.7.11 Declaration of a variable ...166
B.3.7.11.1 Flow graph segment <var-declaration-init> ..166
B.3.7.11.2 Flow graph segment <var-declaration-undef>...167
B.3.7.12 Disconnect operation...167
B.3.7.13 Do-while statement ...168
B.3.7.14 Done-all-components operation...169
B.3.7.15 Done-any-component operation...170
B.3.7.16 Done component operation..171
B.3.7.17 Execute statement ...171
B.3.7.17.1 Flow graph segment <execute-timeout>...172
B.3.7.17.2 Flow graph segment <execute-without-timeout> ..173
B.3.7.18 Expression ..174
B.3.7.18.1 Flow graph segment <lit-value>...174
B.3.7.18.2 Flow graph segment <var-value> ...175
B.3.7.18.3 Flow graph segment <func-op-call>...175
B.3.7.18.4 Flow graph segment <operator-appl>...176
B.3.7.19 Flow graph segment <finalize-component-init>...176
B.3.7.20 Flow graph segment <init-component-scope>..177
B.3.7.21 For statement ..178
B.3.7.22 Function call ...179
B.3.7.23 Flow graph segment <value-par-calculation>...180
B.3.7.24 Flow graph segment <ref-par-var-calc>...181
B.3.7.25 Flow graph segment <ref-par-timer-calc>..182
B.3.7.26 Flow graph segment <parameter-handling> ...182
B.3.7.27 Getcall operation...183
B.3.7.27.1 Flow graph segment <getcall-with-sender> ..184
B.3.7.27.2 Flow graph segment <getcall-without-sender> ...185
B.3.7.28 Getreply operation ..186
B.3.7.28.1 Flow graph segment <getreply-with-sender>..187
B.3.7.28.2 Flow graph segment <getreply-without-sender>...188
B.3.7.29 Goto statement..189
B.3.7.30 If-else statement..189
B.3.7.30.1 Flow graph segment <if-with-else-branch> ..190
B.3.7.30.2 Flow graph segment <if-without-else-branch>..191
B.3.7.31 Label statement...191
B.3.7.32 Log statement ...192
B.3.7.33 Map operation...192
B.3.7.34 MTC operation ...193
B.3.7.35 Raise operation ...193
B.3.7.35.1 Flow graph segment <raise-with-receiver-op>..194
B.3.7.35.2 Flow graph segment <raise-without-receiver-op>...195
B.3.7.36 Read timer operation...196
B.3.7.37 Receive operation ...196
B.3.7.37.1 Flow graph segment <receive-with-sender> ...197
B.3.7.37.2 Flow graph segment <receive-without-sender> ..198
B.3.7.37.3 Flow graph segment <receive-assignment> ..199
B.3.7.38 Reply operation...199
B.3.7.38.1 Flow graph segment <reply-with-receiver-op> ...200
B.3.7.38.2 Flow graph segment <reply-without-receiver-op> ..201
B.3.7.39 Return statement ...202
B.3.7.39.1 Flow graph segment <return-with-value>...203
B.3.7.39.2 Flow graph segment <return-without-value> ..204
B.3.7.40 Running-all-components operation ..205
B.3.7.41 Running-any-component operation..206
B.3.7.42 Running component operation...207
B.3.7.43 Running timer operation..208
B.3.7.44 Send operation ..208
B.3.7.44.1 Flow graph segment <send-with-receiver-op>..209
B.3.7.44.2 Flow graph segment <send-without-receiver-op> ...210
B.3.7.45 Self operation..210
B.3.7.46 Start component operation...211

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)10

B.3.7.47 Start port operation ...213
B.3.7.48 Start timer operation..213
B.3.7.48.1 Flow graph segment <start-timer-op-default>...214
B.3.7.48.2 Flow graph segment <start-timer-op-duration>...215
B.3.7.49 Statement block ..216
B.3.7.50 Stop operation...217
B.3.7.51 Stop port operation..219
B.3.7.52 Stop timer operation..219
B.3.7.53 Sut.action operation ..220
B.3.7.54 System operation...220
B.3.7.55 Timeout timer operation..221
B.3.7.56 Unmap operation...222
B.3.7.57 Verdict.get operation...222
B.3.7.58 Verdict.set operation ...223
B.3.7.59 While statement ..224
B.3.8 Lists of operational semantic components ...225
B.3.8.1 Functions and states ..225
B.3.8.2 Special keywords ..226
B.3.8.3 Flow graph segments...227

Annex C (normative): Matching incoming values ... 230

C.1 Template matching mechanisms ... 230
C.1.1 Matching specific values ..230
C.1.2 Matching mechanisms instead of values..230
C.1.2.1 Value list ..230
C.1.2.2 Complemented value list ...230
C.1.2.3 Omitting values...231
C.1.2.4 Any value ...231
C.1.2.5 Any value or none...231
C.1.2.6 Value range...232
C.1.3 Matching mechanisms inside values ...232
C.1.3.1 Any element ...232
C.1.3.1.1 Using single character wildcards..232
C.1.3.2 Any number of elements or no element..232
C.1.3.2.1 Using multiple character wildcards ..233
C.1.4 Matching attributes of values ..233
C.1.4.1 Length restrictions ..233
C.1.4.2 The IfPresent indicator ..233
C.1.5 Matching Character Pattern ..234

Annex D (normative): Pre-defined TTCN-3 functions .. 235

D.1 Pre-defined TTCN-3 functions.. 235
D.1.1 Integer to character...235
D.1.2 Character to integer ..235
D.1.3 Integer to universal character ..235
D.1.4 Univeral character to integer...235
D.1.5 Bitstring to integer..235
D.1.6 Hexstring to integer ..236
D.1.7 Octetstring to integer ..236
D.1.8 Charstring to integer...236
D.1.9 Integer to bitstring ..236
D.1.10 Integer to hexstring...237
D.1.11 Integer to octetstring...237
D.1.12 Integer to charstring..237
D.1.13 Length of string type ..237
D.1.14 Number of elements in a structured type ...238
D.1.15 The IsPresent function ..238
D.1.16 The IsChosen function..238

Annex E (normative): Using other data types with TTCN-3 .. 239

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)11

E.1 Using ASN.1 with TTCN-3 .. 239
E.1.1 ASN.1 and TTCN-3 type equivalents..239
E.1.2 ASN.1 data types and values...240
E.1.2.1 Scope of ASN.1 identifiers..240
E.1.3 Parameterization in ASN.1 ...240
E.1.4 Defining message types with ASN.1 ...242
E.1.5 Defining ASN.1 message templates ..242
E.1.5.1 ASN.1 receive messages using the TTCN-3 template syntax..243
E.1.5.2 Ordering of template fields..243
E.1.6 Encoding information...243
E.1.6.1 ASN.1 encoding attributes...243

History ... 245

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)12

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 1 of a multi-part deliverable covering the Tree and Tabular Combined Notation version 3,
as identified below:

ES 201 873-1: "TTCN-3 Core Language";

ES 201 873-2: "TTCN-3 Tabular Presentation Format (TFT)";

TR 101 873-3: "TTCN-3 Graphical Presentation Format (GFT)".

http://www.etsi.org/ipr

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)13

1 Scope
The present document defines the Core Language of TTCN Version 3 (or TTCN-3). TTCN-3 can be used for the
specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are
protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module
testing, testing of CORBA based platforms, APIs etc. TTCN-3 is not restricted to conformance testing and can be used
for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The
specification of test suites for physical layer protocols is outside the scope of the present document.

TTCN-3 is intended to be used for the specification of test suites which are independent of test methods, layers and
protocols. Various presentation formats are defined for TTCN-3 such as a tabular presentation format [1] and a
graphical presentation format [2]. The specification of these formats is outside the scope of the present document.

The present document defines a normative way of using of ASN.1 as defined in the ITU-T Recommendation X.680
series [7], [8], [9] and [10] with TTCN-3. The harmonization of other languages with TTCN-3 is outside the scope of
the present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilers into
consideration the means of realization of executable test suites (ETS) from abstract test suites (ATS) is outside the
scope of the present document.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

[1] ETSI ES 201 873-2 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and
Tabular Combined Notation version 3; Part 2: TTCN-3 Tabular Presentation Format (TFT)".

[2] ETSI TR 101 873-3 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and
Tabular Combined Notation version 3; Part 3: TTCN-3 Graphical Presentation Format (GFT)".

[3] ISO/IEC 9646-1 (1994): "Information technology - Open systems interconnection - Conformance
testing methodology and framework - Part 1: General Concepts".

[4] ISO/IEC 9646-3 (1998): "Information technology - Open systems interconnection - Conformance
testing methodology and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)
Edition 2".

[5] ISO/IEC 646 (1991): "Information technology - ISO 7-bit coded character set for information
exchange".

[6] ISO/IEC 10646-1 (1993): "Information technology - Universal Multiple Octet-Coded Character
Set (UCS) - Part 1: Architecture and Basic Multilingual Plane".

[7] ITU-T Recommendation X.680 (1997): "Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation".

[8] ITU-T Recommendation X.681 (1997): "Information technology - Abstract Syntax Notation One
(ASN.1): Information object specification".

[9] ITU-T Recommendation X.682 (1997): "Information technology - Abstract Syntax Notation One
(ASN.1): Constraint specification".

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)14

[10] ITU-T Recommendation X.683 (1997): " Information technology - Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 specifications"

[11] ITU-T Recommendation X.690 (1997): "Information technology - ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)".

[12] ITU-T Recommendation X.691 (1997): "Information technology - ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER)".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

compatible type: TTCN-3 is not strongly typed but the language does require type compatibility. Variables, constants,
templates etc. have compatible types if they resolve to the same base type and, in the case of assignments, matching
etc., no sub-typing (e.g., ranges, length restrictions) is violated

communication port: abstract mechanism facilitating communication between test components
A communication port is modelled as a FIFO queue in the receiving direction. Ports can be message-based,
procedure-based or a mixture of the two.

exception: in cases of synchronous communication an exception (if defined) is raised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

test suite: TTCN-3 module that either explicitly or implicitly through import statements completely specifies all
definitions and behaviour descriptions necessary to define a complete set of test cases

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by a real test system

type parameterization: ability to pass a type as an actual parameter into a parameterized object
This actual type parameter then completes the type specification of that object. Note that the parameter is not a value of
a type but the type itself.

3.1.1 Definitions from ISO/IEC-9646-1

For the purposes of the present document, the following terms and definitions, given in ISO/IEC-9646-1 [3] apply:

Implementation Conformance Statement (ICS)

Implementation eXtra Information for Testing (IXIT)

Implementation Under Test (IUT)

System Under Test (SUT)

test case

test case error

test system

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)15

3.1.2 Definitions from ISO/IEC-9646-3

For the purposes of the present document, the following terms and definitions given in ISO/IEC-9646-3 [4] apply:

Main Test Component (MTC)

Parallel Test Component (PTC)

snapshot semantics

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
ASN.1 Abstract Syntax Notation One
ASP Abstract service Primitive
ATS Abstract Test Suite
BNF Backus-Nauer Form
CORBA Common Object Request Broker Architecture
ETS Executable Test Suite
FIFO First In First Out
IDL Interface Description Language
IUT Implementation Under Test
MTC Master Test Component
PDU Protocol Data Unit
PTC Parallel Test Component
(P)ICS (Protocol) Implementation Conformance Statement
(P)IXIT (Protocol) Implementation eXtra Information for Testing
SUT System Under Test
TTCN Tree and Tabular Combined Notation

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)16

4 Introduction
TTCN-3 is a flexible and powerful language applicable to the specification of all types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, API
testing etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including
interoperability, robustness, regression, system and integration testing.

From a syntactical point of view TTCN-3 is very different from earlier versions of the language as defined in
ISO/IEC 9646-3 [4]. However, much of the well-proven basic functionality of TTCN has been retained, and in some
cases enhanced. TTCN-3 includes the following essential characteristics:

• the ability to specify dynamic concurrent testing configurations;

• operations for synchronous and asynchronous communication;

• the ability to specify encoding information and other attributes (including user extensibility);

• the ability to specify data and signature templates with powerful matching mechanisms;

• type and value parameterization;

• the assignment and handling of test verdicts;

• test suite parameterization and test case selection mechanisms;

• combined use of TTCN-3 with ASN.1 (and potential use with other languages such as IDL);

• well-defined syntax, interchange format and static semantics;

• different presentation formats (e.g., tabular and graphical presentation formats);

• a precise execution algorithm (operational semantics).

4.1 The core language and presentation formats
Historically, TTCN has always been associated with conformance testing. In order to open the language to a wider
range of testing applications in both the standards domain and the industrial domain the present document separates the
specification of TTCN-3 into several parts. The first part, defined in the present document, is the core language. The
second part, defined in ES 201 873-2 [1], is the tabular presentation format, similar in appearance and functionality to
earlier versions of TTCN. The third part, defined in TR 101 873-3 [2] is the graphical presentation format.

The core language serves three purposes:

a) as a generalized text-based test language in its own right;

b) as a standardized interchange format of TTCN test suites between TTCN tools;

c) as the semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats shall be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats may be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3 is fully harmonized with ASN.1 which may optionally be used with TTCN-3 modules as an alternative data
type and value syntax. Use of ASN.1 in TTCN-3 modules is defined in annex E of the present document. The approach
used to combine ASN.1 and TTCN-3 could be applied to support the use of other type and value systems with TTCN-3.
However, the details of this are not defined in the present document.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)17

TTCN-3
Core
Language

Presentation
formatn

TTCN-3 User

ASN.1 Types
& Values

Other Types
& Values n

Graphical
format

Other Types
& Values 2

The shaded boxes are not
defined in this document

Tabular
format

Figure 1: User's view of the core language and the various presentation formats

The core language is defined by a complete syntax (see annex A) and operational semantics (see annex B). It contains
minimal static semantics (provided in the body of the present document and in annex A) which do not restrict the use of
the language due to some underlying application domain or methodology. Functionality of previous versions of TTCN,
such as test suite indexes, which can be achieved using proprietary tools is not part of TTCN-3.

5 Basic language elements
The top-level unit of TTCN-3 is a module. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have parameter lists to give a form of test suite parameterization similar to
the PICS and PIXIT parameterization mechanisms of TTCN-2.

A module consists of a definitions part and a control part. The definitions part of a module defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test
cases etc.

The control part of a module calls the test cases and controls their execution. The control part may also declare (local)
variables etc. Program statements (such as if-else and do-while) can be used to specify the selection and
execution order of individual test cases. The concept of global variables is not supported in TTCN-3.

TTCN-3 has a number of pre-defined basic data types as well as structured types such as records, sets, unions,
enumerated types and arrays. As an option, ASN.1 types and values may be used with TTCN-3 by importation.

A special kind of data value called a template provides parameterization and matching mechanisms for specifying test
data to be sent or received over the test ports. The operations on these ports provide both asynchronous and
synchronous communication capabilities. Procedure calls may be used for testing implementations which are not
message based.

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechanisms such as alternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are also supported.

Finally, most TTCN-3 language elements may be assigned attributes such as encoding information and display
attributes. It is also possible to specify (non-standardized) user-defined attributes.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)18

Table 1: Overview of TTCN-3 language elements

Language element Associated
keyword

Specified in
module definitions

Specified in
module control

Specified in
functions/test

cases
TTCN-3 module definition module
Import of definitions from other module import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function/constant definitions external Yes
Constant definitions const Yes Yes Yes
Data/signature template definitions template Yes
Function definitions function Yes
Named alternative definitions named alt Yes
Test case definitions testcase Yes
Variable declarations var Yes Yes
Timer declarations timer Yes Yes

5.1 Definitions, instances and declarations
In the present document the term declaration is used in a general manner to cover making a static definition or creating
some kind of dynamic instantiation where a name is given to a TTCN-3 object. For example, types and constants are
defined and a statement such as calling a function or declaring a variable is an instantiation. In both cases these actions
can be referred to as making a declaration.

5.2 Ordering of language elements
Generally, the order in which declarations can be made and the mixing of declarations with program statements is
arbitrary. However, inside a statement block, such as a branch of an if-else statement, all declarations (if any), shall
be made at the beginning of the statement block only.

EXAMPLE:

// This is a legal mixing of TTCN-3 declarations
:
var MyVarType MyVar2 := 3;
const integer MyConst:= 1;
if (x > 10)
{

var integer MyVar1:= 1;
:
MyVar1:= MyVar1 + 10;
:

}

:

5.2.1 Forward references

Definitions in the module definitions part may be made in any order and while forward references should be avoided
(for readability reasons) this is not mandatory. For example, recursive elements, such as functions that call other
functions and module parameterization, may lead to unavoidable forward references.

Forward references are only allowed for declarations in the module definitions part. Forward references shall never be
made inside the module control part, test case definitions, functions and named alternatives. This means forward
references to local variables, local timers and local constants shall never occur.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)19

5.3 Parameterization
TTCN-3 supports both type parameterization and value parameterization according to the following limitations:

a) language elements which cannot be parameterized are: const, var, timer, control, group and
import;

b) the language element module allows static value parameterization to support test suite parameters i.e., this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
run-time (i.e., static at run-time). This means that, at run-time, module parameter values are globally visible but
not changeable;

c) all user-defined type definitions (including the structured type definitions such as record, set etc.), and the
special configuration type address support static type and static value parameterization i.e., this
parameterization shall be resolved at compile-time;

d) the language elements signature, testcase and function support dynamic value parameterization (i.e.,
this parameterization shall be resolvable at run-time);

e) named alternatives support dynamic value parameterization (i.e., this parameterization shall be resolvable at run-
time). Since named alternatives are not a scope unit, the defined formal parameters are simply substituted by the
given actual parameters when the (macro) expansion of the named alt is performed.

A summary of which language elements can be parameterized and what can be passed to them as parameters is given in
table 2.

Table 2: Overview of parameterizable TTCN-3 language elements

Keyword Type
Parameterization

Value
Parameterization

Types of values allowed to appear in formal/actual
parameter lists

module Static at start of run-
time

Values of: all basic types, all user-defined types and
address type.

type Static at compile-
time

Static at compile-
time

Values of: all basic types, all user-defined types and
address type. Note: record of, set of, enumerated,
port, component and subtype definitions do not allow
parameterization.

template Dynamic at run-time Values of: all basic types, all user-defined types, address
type, component type and template.

function Dynamic at run-time Values of: all basic types, all user-defined types, address
type, component type, port type, template.and timer.

testcase Dynamic at run-time Values of: all basic types and of all user-defined types,
address typeand template.

signature Dynamic at run-time Values of: all basic types, all user-defined types and
address type and component type.

named alt Static macro
expansion

Values of: all basic types, all user-defined types, address
type, component type, port type, template and timer.

NOTE : Examples of syntax and specific use of parameterization with the different language elements are given in
the relevant clauses in the present document.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)20

5.3.1 Parameter passing by reference and by value

By default, all parameters of basic types, basic string types, user-defined structured types, address type and component
type are passed by value. This may optionally be denoted by the keyword in. To pass parameters of the mentioned
types by reference the keywords out or inout shall be used.

Timers and ports are always passed by reference and are identified by the keywords timer and port. The keyword
inout may optionally be usedto denote passing by reference.

5.3.1.1 Parameters passed by reference

Passing parameters by reference has the following limitations:

a) only the formal parameter lists to function, signature and testcasemay contain pass-by-reference
parameters;

NOTE: There are further restrictions on how to use pass-by-reference parameters in signatures (see clause 22).

b) the actual parameters shall only be variables (e.g., not constants or templates);

c) only value parameters (i.e., not type parameters) shall be passed by reference.

EXAMPLE:

function MyFunction(inout boolean MyReferenceParameter){ … };
// MyReferenceParameter is passed by reference. The actual parameter can be read and set
// from within the function

function MyFunction(out boolean MyReferenceParameter){ … };
// MyReferenceParameter is passed by reference. The actual paramter can only be set
// from within the function

5.3.1.2 Parameters passed by value

Actual parameters that are passed by value may be variables as well as constants, templates etc.

function MyFunction(in template MyTemplateType MyValueParameter){ … };
// MyValueParameter is passed by value, the in keyword is optional

5.3.2 Formal and actual parameter lists

The number of elements and the order in which they appear in an actual parameter list shall be the same as the number
of elements and their order in which they appear in the corresponding formal parameter list. Furthermore, the type of
each actual parameter shall be compatible with the type of each corresponding formal parameter.

EXAMPLE:

// A function definition with a formal parameter list
function MyFunction(integer FormalPar1, boolean FormalPar2, bitstring FormalPar3) { … }

// A function call with an actual parameter list
MyFunction(123, true,'1100'B);

5.3.3 Empty formal parameter list

If the formal parameter list of a parameterizable TTCN-3 language element that is function-like (i.e., function,
testcase, signature, named alt or external function) is empty then the empty parentheses shall be
included both in the declaration and in the invocation of that element. In all other cases the empty parentheses shall be
omitted.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)21

EXAMPLE:

// A function definition with an empty parameter list shall be written as
function MyFunction(){ … }

// A record definition with an empty parameter list shall be written as
type record MyRecord { … }

5.3.4 Nested parameter lists

Generally, all parameterized entities specified as an actual parameter shall have their own parameters resolved in the
actual parameter list.

EXAMPLE:

// Given the message definition
type record MyMessageType
{

integer field1,
charstring field2,
boolean field3

}

// A message template might be
template MyMessageType MyTemplate(integer MyValue) :=
{

field1 := MyValue,
field2 := pattern "abc*xyz",
field3 := true

}

// A testcase parameterized with a template might be
testcase TC001(template MyMessageType RxMsg) runs on PTC1 system TS1
{ :

MyPCO.receive(RxMsg);
}

// When the test case is called in the control part and the parameterized template is
// used as an actual parameter, the actual parameters for template must be provided
control
{ :

TC001(MyTemplate(7));
:

}

5.4 Scope rules
TTCN-3 provides five basic units of scope:

a) modules;

NOTE: There are additional scoping rules for groups (see clause 7.3.1).

b) control part of a module;

c) functions;

d) test cases;

e) statement blocks within control, functions and test cases.

Each unit of scope consists of (optional) declarations plus some form of (optional) functional description. All units of
scope, except modules, are hierarchical, with each level of hierarchy defining its own local scope. Declarations in a
higher level of scope are visible to the lower levels (within the same hierarchy of scope). Declarations in a lower level
of scope are not visible to those in a higher scope.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)22

EXAMPLE:

module MyModule
{ :

const integer MyConst := 0; // MyConst is visible to MyBehaviourA and MyBehaviourB
:
function MyBehaviourA()
{ :

const integer A := 1; // The constant A is only visible to MyBehaviourA
:

}

function MyBehaviourB()
{ :

const integer B := 1; // The constant B is only visible to MyBehaviourB
:

}
}

5.4.1 Scope and overloading of identifiers

TTCN-3 does not support overloading of identifiers i.e., all identifiers in the same scope hierarchy shall be unique. This
means that a declaration in a lower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope (and in the same scope hierarchy).

EXAMPLE:

module MyModule
{ :

const integer A := 1;
:
function MyBehaviourA()
{ :

const integer A := 1; // Is NOT allowed
:
if(…)
{ :

const boolean A := true; // Is NOT allowed
:

}
}

}

// The following IS allowed as the constants are not declared in the same scope hierarchy
// (assuming there is no declaration of A in module header)
function MyBehaviourA()
{ :

const integer A := 1;
:

}

function MyBehaviourB()
{ :

const integer A := 1;
:

}

5.4.2 Scope of formal parameters

The scope of the formal parameters in a parameterized language element (e.g., in a function call) shall be restricted to
the definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That is they
follow the normal scope rules (see clause 5.4). The rules of identifier overloading (see clause 5.4.1) shall also apply to
formal parameters.

5.5 Identifiers and keywords
TTCN-3 identifiers are case sensitive and TTCN-3 keywords shall be written in all lowercase letters (see annex A).

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)23

6 Types and values
TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such as integer, boolean and string types, as well as some TTCN-3 specific ones such as
objid and verdicttype. Structured types such as record types, set types and enumerated types can be
constructed from these basic types.

Special types associated with configurations such as address, port and component may be used to define the
architecture of the test system (see clause 21).

The TTCN-3 types are summarized in table 3.

Table 3: Overview of TTCN-3 types

Class of type Keyword Sub-type
integer range, list
char range, list
universal char range, list
float list
boolean list
objid list

Basic types

verdicttype list
bitstring list, length
hexstring list, length
octetstring list, length
charstring list, length

Basic string types

universal charstring list, length
record list
record of list
set list
set of list
enumerated list

User-defined structured types

union list
address
port

Special configuration types

component

6.1 Basic types and values
TTCN-3 supports the following basic types:

a) integer: a type with distinguished values which are the positive and negative whole numbers, including zero.

Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unless the value is
0; the value zero shall be represented by a single zero.

b) char: a type whose distinguished values are characters from ISO/IEC 646 [5].

Values of the type char may be given enclosed in double quotes (") or calculated using a predefined conversion
function with the positive integer value of their encoding as argument.

An order among the values of type char is defined by the integer value of their encoding, i.e., the relational
operators ==, <, >, !=, >= and <= can be used to compare values of type char.

c) universal char: a type whose distinguished values are single characters from ISO/IEC 10646 [6].

Values of the type universal char may be given enclosed in double quotes (") or calculated using a
predefined conversion function with the positive integer value of their encoding as argument.

An order among the values of type char is defined by the integer value of their encoding, i.e., the relational
operators ==, <, >, !=, >= and <= can be used to compare values of type universal char.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)24

d) float: a type to describe floating-point numbers.

Floating point numbers are represented as: <mantissa>*<base><exponent>

Where <mantissa> a positive or negative integer, <base> a positive integer (in most cases 2, 10 or 16) and
<exponent> a positive or negative integer.

The floating-point number representation is restricted to a base with the value of 10. Floating point values can be
expressed by using either:

• the normal notation with a dot in a sequence of numbers like, 1.23 (which represents 123*10-2), 2.783 (i.e.,
2783*10-3) or -123.456789 (which represents -123456789*10-6); or

• by two numbers separated by E where the first number specifies the mantissa and the second specifies the
exponent, for example 12.3E4 (which represents 12.3*104) or -12.3E-4 (which represents -12.3*10-4).

e) boolean: a type consisting of two distinguished values.

Values of boolean type shall be denoted by true and false.

f) objid: a type whose distinguished values are the set of all object identifiers allocated in accordance with the
rules of [7], [8], [9] and [10]. For example:

{itu-t(0) identified-organization(4) etsi(0)}

or alternatively {itu-t identified-organization etsi}

or alternatively { 0 4 0}

g) verdicttype: a type for use with test verdicts consisting of 4 distinguished values.

Values of verdicttype shall be denoted by pass, fail, inconc, none and error.

6.1.1 Basic string types and values

TTCN-3 supports the following basic string types:

NOTE: The general term string or string type in TTCN-3 refers to bitstring, hexstring, octetstring,
charstring and universal charstring.

a) bitstring: a type whose distinguished values are the ordered sequences of zero, one, or more bits.

Values of type bitstring shall be denoted by an arbitrary number (possibly zero) of zeros and ones, preceded
by a single quote (') and followed by the pair of characters 'B. For example:

'01101'B

b) hexstring: a type whose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

Values of type hexstring shall be denoted by an arbitrary number (possibly zero) of the hexadecimal digits:

1 2 3 4 5 6 7 8 9 A B C D E F

preceded by a single quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation. For example:

'AB01D'H

c) octetstring: a type whose distinguished values are the ordered sequences of zero or a positive even number
of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits).

Values of type octetstring shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)25

1 2 3 4 5 6 7 8 9 A B C D E F

preceded by a single quote (') and followed by the pair of characters 'O; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation. For example:

'FF96'O

d) charstring: are types whose distinguished values are zero, one, or more characters from ISO/IEC 646 [5].
The character string type preceded by the keyword universal denotes types whose distinguished values are
zero, one, or more characters from ISO/IEC 10646 [6].

Values of charstring type and universal charstring type shall be denoted by an arbitrary number
(possibly zero) of characters from the relevant character set, preceded and followed by double quote (").

In cases where it is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters. For example,
""abcd"" represents the literal string "abcd".

6.1.2 Accessing individual string elements

Individual elements in a string type may be accessed using an array-like syntax. Only single elements of the string may
be accessed.

Units of length of different string type elements are indicated in table 4.

Indexing shall begin with the value zero (0). For example:

// Given
MyBitString := '11110111'B;
// Then doing
MyBitString[4] := '1'B;
// Results in the bitstring '11111111'B

6.2 User-defined sub-types and values
User-defined types shall be denoted by the keyword type. With user-defined types it is possible to make sub-types
(such as lists, ranges and length restrictions) on integer and the various string types.

6.2.1 Lists of values

TTCN-3 permits the specification of a list of distinguished values of any given type as listed in table 3. The values in
the list shall be of the base type and shall be a true subset of the values defined by the base type. The subtype defined by
this list restricts the allowed values of the subtype to those values in the list. For example:

type bitstring MyListOfBitStrings ('01'B, '10'B, '11'B);

6.2.2 Ranges

TTCN-3 permits the specification of a range of values of type integer, char and universal char (or
derivations of these types). The subtype defined by this range comprises restricts the allowed values of the subtype to
the values in the range including the lower boundary and the upper boundary. For example:

type integer MyIntegerRange (0 .. 255);

6.2.2.1 Infinite ranges

In order to specify an infinite integer range, the keyword infinity may be used instead of a value indicating that
there is no lower or upper boundary. The upper boundary shall be greater than or equal to the lower boundary. For
example:

type integer MyIntegerRange (-infinity .. -1); // All negative integer numbers

NOTE: The 'value' for infinity is implementation dependent. Use of this feature may lead to portability problems.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)26

6.2.2.2 Mixing lists and ranges

For values of type integer, char and universal char (or derivations of these types) it is possible to mix lists
and ranges. For example:

type integer MyIntegerRange (1, 2, 3, 10 .. 20, 99, 100);

6.2.3 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are of different
complexity depending on the string type with which they are used. In all cases, these boundaries shall evaluate to
non-negative integer values (or derived integer values). For example:

type bitstring MyByte length(8); // Exactly length 8
type bitstring MyByte length(8 .. 8); // Exactly length 8
type bitstring MyNibbleOrByte length(4 .. 8); // Minimum length 4, maximum length 8

Table 4 specifies the units of length for different string types.

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword infinity may also be used to indicate that there is no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.3 Structured types and values
The type keyword is also used to specify structured types such as record types, record of types, set types, set
of types, enumerated types and union types.

Values of these types may be given using an explicit assignment notation or a short-hand initializer. For example:

const MyRecordType MyRecordValue:=
{

field1 := '11001'B,
field2 := true,
field3 := "A string"

}

// Or
const MyRecordType MyRecordValue:= {'11001'B, true, "A string"}

It is not allowed to mix the two value notations in the same (immediate) context. For example:

// This is disallowed
const MyRecordType MyRecordValue:= {MyIntegerValue, field2 := true, "A string"}

6.3.1 Record type and values

TTCN-3 supports ordered structured types known as record. The elements of a record type may be any of the base
types or user-defined types such as other records, sets or arrays. The values of a record shall be compatible with the
types of the record fields. The element identifiers are local to the record and shall be unique within the record. A
constant that is of record type shall contain no variables (including module parameters) as field values, either directly or
indirectly.

type record MyRecordType
{

integer field1,
MyOtherStruct field2 optional,
charstring field3

}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)27

type record MyOtherstructType
{

bitstring field1,
boolean field2

}

Records may be defined with no fields (i.e., as empty records). For example:

type record MyEmptyRecord { }

A record value is assigned on an individual element basis. For example:

var integer MyIntegerValue:= 1;

var MyRecordType MyRecordValue:=
{

field1 := MyIntegerValue,
field2 := MyOtherRecordValue,
field3 := "A string"

}

const MyOtherRecordType MyOtherRecordValue:=
{

field1 := '11001'B,
field2 := true

}

Or using an initializer. For example:

MyRecordValue:= {MyIntegerValue, {'11001'B, true}, "A string"};

For optional fields it allowed to omit the value using the omit parameter symbol. For example:

MyRecordValue:= {MyIntegerValue, - , "A string"};

// Note that this is the same as writing, i.e., the value of field2 is undefined
MyRecordValue.field1 := MyIntegerValue;
MyRecordValue.field3 := "A string"

6.3.1.1 Referencing nested record fields

Elements of nested records are referenced by RecordId.ElementId pairs. For example:

MyVar1 := MyRecord1.MyElement1;
// If a record is nested then the reference may look like this
MyVar2 := MyRecord1.MyElement1.MyRecord2.MyElement2;

6.3.1.2 Optional elements in a record

Optional elements in a record shall be specified using the optional keyword. For example:

type record MyMessageType
{

FieldType1 field1,
FieldType2 field2 optional,
:
FieldTypeN fieldN

}

6.3.2 Set type and values

TTCN-3 supports unordered structured types known as set. Set types and values are similar to records except that the
ordering of the set fields is not significant. For example:

type set MySetType
{

integer field1,
charstring field2

}

The initializer notation for setting values shall not be used for values of set types.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)28

6.3.2.1 Optional elements in a set

Optional elements in a set shall be specified using the optional keyword.

6.3.3 Records and sets of single types

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword of. These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered array respectively.

The length keyword is used to restrict lengths of record of and set of. For example:

type record of length(10) integer MyRecordOfType; // is a record of a maximum of 10 integers
type set of boolean MySetOfType; // is an unlimited set of boolean values
type record of length(10) charstring StringArray length(10);
// is a record of a maximum of 10 strings each with a maximum length of 10 characters

The value notation for record of and set of is the same as the value notation for arrays (see clause 6.4).

6.3.4 Enumerated type and values

TTCN-3 supports enumerated types. Enumerated types are used to model types that take only a distinct named set of
values. Operations on enumerated types shall only use the named identifiers and are restricted to assignment,
equivalence and ordering operators.

Each named value may optionally have an associated integer value, which is defined after the name in parenthesis.
These values are only used by the system to allow the use of relational operators. If no explicit integers are given the
ordering is assumed to start with zero. For example:

type enumerated MyEnumType
{

Monday, Tuesday, Wednesday, Thursday, Friday
}

// A valid instantiation of MyEnumType would be
var MyEnumType Today := Monday;
var MyEnumType Tomorrow := Tuesday;
// and the statement Today < Tomorrow is true

6.3.5 Unions

TTCN-3 supports union types. Union types are similar to records except that only one of the specified fields will ever
be present in an actual union value. Union types are useful to model a structure which can take one of a finite number of
known types. For example:

type union MyUnionType
{

integer number,
charstring string

}

// A valid instantiation of MyUnionType would be
var MyUnionType age;
age.number := 34;

The initializer notation for setting values shall not be used for values of union types.

The optional keyword shall not be used with union types.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)29

6.4 Arrays
In common with many programming languages, arrays are not considered to be types in TTCN-3. Instead, they may be
specified at the point of a variable declaration. For example:

var integer MyArray[3]; // Instantiates an integer array of 3 elements with the index 0 to 2

The values of array elements shall be compatible with the corresponding variable declaration. Values may be assigned
individually or all at once. For example:

MyArray[0]:= 10;
MyArray[1]:= 20;
MyArray[2]:= 30;

// or using an initializer
MyArray:= {10, 20, 30};

Array indexes are expressions which shall evaluate to positive integer values, including the value zero. By default,
indexing of TTCN-3 arrays shall start with the digit 0 (zero).

Array dimensions shall be specified using constant expressions which shall evaluate to a positive integer value.
Array dimensions may also be specified using ranges. In such cases the lower and upper values of the range define the
lower and upper index values. For example:

var integer MyArray[1 .. 5]; // Instantiates an integer array of 5 elements
// with the index 1 to 5

MyArray[1] := 10; // Lowest index
MyArray[5] := 50; // Highest index

Arrays of record of types allow the possibility to specify multi-dimensional arrays. For example:

// Given
type record MyRecordType
{

integer field1,
MyOtherStruct field2,
charstring field3

}
// An array of MyRecordType could be
var MyRecordType MyRecordArray[10];
// A reference to a particular element would look like this
MyRecordArray[1].field1 := 1;

6.5 Recursive types
Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensure that all type recursion is
resolvable and that no infinite recursion occurs.

6.6 Type parameterization
Type parameterization allows dummy type identifiers which act as placeholders for any type. This means that a type can
be left open by the TTCN-3 specifier as long as it is resolvable at compile-time.

NOTE: This is a generalization of the PDU meta-type concept of TTCN-2.

The actual type is only known when the type parameter is actually used. For example:

type record MyRecordType(MyMetaType)
{

boolean field1,
MyMetaType field2 // MyMetaType is not of a particular type

}

var MyRecordType(integer) MyRecordValue :=
{

field1 := true,
field2 := 123 // MyMetaType is now of type integer

}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)30

6.7 Type compatibility
TTCN-3 is not strongly typed but the language does require type compatability. Variables, constants, templates etc.
have compatible types if they resolve to the same base type and, in the case of assignments, matching etc., no
sub-typing (e.g., ranges, length restrictions) is violated.

For example:

// Given
type integer MyInteger(1 .. 10);
:
var integer x;
var MyInteger y;

// Then
x := 20; // is a valid assignment
y := 20; // is NOT a valid assignment because 20 is not in the range of y

y := 5; // is a valid assignment

x := y; // is a valid assignment, because the value of y is in the range of x
y := x; // is NOT valid assignment, because the value of x is not in the range of y

x := 5; // is a valid assignment
y := x; // is a valid assignment, because the value of x is now in the range of y

6.7.1 Type conversion

If it is necessary to convert values of one type to values of another type, where the types are not derived from the same
base type, then either one of the predefined conversion functions defined in annex D or a user defined function shall be
used. For example:

// To convert an integer value to a hexstring value use the predefined function int2hex
MyHstring := int2hex(123, 4);

7 Modules
The principal building blocks of TTCN-3 are modules. For example, a module may define a fully executable test suite
or just a library. A module consists of a (optional) definitions part, and a (optional) module control part.

NOTE: The term test suite is synonymous with a complete TTCN-3 module containing test cases and a control
part.

7.1 Naming of modules
Module names are of the form of a TTCN-3 identifier followed by an optional object identifier.

NOTE: The module identifier is the informal text name of the module.

7.2 Parameterization of modules
The module parameter list defines a set of values that are supplied by the test environment at run-time. During test
execution these values shall be treated as constants. For example:

module MyParameterizedModule(integer TS_Par1, boolean TS_Par2, hexstring TS_Par3) { … }

NOTE: This provides functionality similar to TTCN-2 test suite parameters that provide PICS and PIXIT values
to the test suite.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)31

7.2.1 Default values for module parameters

For cases where actual module parameter values are not provided by the test environment at run-time, it is allowed to
specify default values for module parameters. This shall be done by an assignment in the module parmeter list. For
example:

module MyModuleDefaultParameter(integer Par1 := 1234, boolean Par2 := false) { … }

7.3 Module definitions part
The module definitions part specifies the top-level definitions of the module. These definitions may be used elsewhere
in the module, including the control part. Those language elements which may be defined in a TTCN-3 module are
listed in table 1. The module definitions may be imported by other modules.

EXAMPLE:

module MyModule
{ // This module contains definitions only

:
const integer MyConstant := 1;
type record MyMessageType { … }
:
function TestStep(){ … }
:

}

Declarations of dynamic language elements such as var or timer shall only be made in the control part, test cases or
functions.

NOTE: TTCN-3 does not support the declaration of variables in the module definitions part, only in the control
part. This means that global variables cannot be defined in TTCN-3.

7.3.1 Groups of definitions

In the module definitions part definitions can be collected in named groups. A group of declarations can be specified
wherever a single declaration is allowed. Groups may be nested i.e., groups may contain other groups. This allows the
test suite specifier to structure, among other things, collections of test data or functions describing test behaviour.

Grouping is done to aid readability and to add logical structure to the test suite if required. This means that all
identifiers of the declarations in the set of groups (including any nested groups) at any given level of grouping shall be
unique. In other words, groups and nested groups have no scoping except in the context of any attributes given to the
group by an associated with statement. In such cases, a with statement on an outer group is overridden by a with
statement on an inner group.

EXAMPLE:

// A collection of definitions
group MyGroup
{

const integer MyConst:= 1;
:
type record MyMessageType { … }

}
// A group of test steps
group MyTestStepLibrary
{

group MyGroup1
{

function MyTestStep11() { … }
function MyTestStep12() { … }
:
function MyTestStep1n() { … }

}
group MyGroup2
{

function MyTestStep21() { … }
function MyTestStep22() { … }
:

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)32

function MyTestStep2n() { … }
}

}

7.4 Module control part
The module control part describes the execution order (possibly repetitious) of the actual test cases. A test case shall be
defined in the module definitions part and called in the control part.

EXAMPLE:

module MyTestSuite
{ // This module contains definitions ...

:
const integer MyConstant := 1;
type record MyMessageType { … }
template MyMessageType MyMessage := { … }
:
function MyFunction1() { … }
function MyFunction2() { … }
:
testcase MyTestcase1() runs on MyMTCType { … }
testcase MyTestcase2() runs on MyMTCType { … }
:
// ... and a control part so it is executable
control
{

var boolean MyVariable; // Local control variable
:
MyTestCase1(); // sequential execution of test cases
MyTestCase2();
:

}
}

7.5 Importing from modules
It is possible to re-use definitions specified in different modules using the import statement. TTCN-3 has no explicit
export construct thus, by default, all module definitions in the module definitions part may be imported. An import
statement can be used anywhere in the module definitions part. It shall not be used in the control part.

If an imported definition has attributes (defined by means of a with statement) then the attributes shall also be
imported.

NOTE: If the module has global attributes they are associated to definitions without these attributes.

EXAMPLE:

module MyModuleA
{ // This module contains definitions and imported definitions

:
const integer MyConstant := 1;
import all from MyModuleB; // Scope of the imported definitions is global to MyModuleA
type record MyMessageType { … }
:
function MyBehaviourC()
{

const integer MyConstant := 2;
// import cannot be used here
:

}
:
control
{ // import cannot be used here

:
}

}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)33

7.5.1 Rules on using Import

On using import the following rules shall be applied:

a) only top-level definitions in the module may be explicitly imported. Definitions which occur at a lower scope
(e.g., local constants defined in a function) shall not be imported;

b) by default, all definitions dependent on other definitions e.g., record types, are imported together with all the
definitions on which they depend. If it is wished not to import these dependencies the nonrecursive
directive may be used;

c) groups of definitions can also be imported. However, groups are only used for structuring purposes and do not
have scope units. Therefore, it is allowed to import sub-groups i.e., a group which is defined within another
group.

7.5.2 Importing single definitions

Single definitions may be imported. For example:

import type MyType from MyModuleC;

7.5.3 Importing all definitions of a module

The entire contents of a module definitions part (but not the actual module itself) may be imported, for example:

import all from MyModule;

7.5.4 Importing groups

Groups may be imported, for example:

import group MyGroup from MyModule;

Sub-groups i.e., groups which are defined within another group are also imported by this statement.

7.5.5 Importing definitions of the same kind

Blocks of the same kind of definition may be imported, for example:

import all template from MyModule;

7.5.6 Recursive import of complex definitions

By default, recursive definitions i.e., definitions that refer to other definitions, are implicitly imported by the import
statement. Examples of recursive definitions are record types together with their component types or functions that
call other functions, for example:

import type MyType from MyModuleC;

All definitions implicitly imported are visible at the top-level of scope and can be used subsequent to the import
statement.

Note that local definitions within surrounding definitions e.g., local constant declarations within a function will never be
visible.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)34

EXAMPLE:

// Given
module MyModuleA
{ :

function MyBehaviourB() { … }
function MyBehaviourA()
{ :

MyBehaviourB();
:
const integer LocalConst:= 1000;
:

}
}

// Then
module MyModuleB
{ :

import function MyBehaviourA from MyModuleA;
:

}
// Will also import and make visible MyBehaviourB. Constant LocalConst will still
// be embedded in MyBehaviourA and will not be visible (outside of MyBehaviourA).

If definitions imported from one module depend on definitions in a further module then the definitions of the further
module are imported too i.e., import shall implicitly import dependent definitions from the third-party module. This is
due to the rule that an imported definition is handled in the same manner as a definition that is defined in the module
itself.

If it is wished to inhibit recursive imports the nonrecursive directive shall be used. For example:

import type MyType from MyModuleC nonrecursive;

7.5.7 Handling name clashes on import

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import e.g., import from different modules, import of groups or import of recursive
definitions. Name clashes shall be resolved by prefixing the imported definition (which causes the name clash) by the
identifier of the module from which it is imported. The prefix and the identifier shall be separated by a dot (.).

In cases where there are no ambiguities the prefixing need not always be present when the imported definitions are
used.

EXAMPLE:

module MyModuleA
{ :

type bitstring MyTypeA;
import type MyTypeA from SomeModuleC; // Where MyTypeA is of type character string
import type MyTypeB from SomeModuleC; // Where MyTypeB is of type character string
:
control
{ :

var SomeModuleC.MyTypeA MyVar1 := "Test String"; // Prefix must be used
var MyTypeA MyVar2 := '10110011'B; // This is the original MyTypeA
:
var MyTypeB MyVar3 := "Test String"; // Prefix need not be used …
var SomeModuleC.MyTypeB MyVar3 := "Test String"; // … but it can be if wished
:

}
}

NOTE: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitions in the different modules are identical. For example, importing a type which is
already defined locally, even with the same name, would lead to two different types being available in the
module.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)35

7.5.8 Handling multiple references to the same definition

The use of import on single definitions, groups of definitions, definitions of the same kind etc. may lead to situations
where the same definition is referred to more than once. In such cases the definition shall be imported only once.

NOTE: The mechanisms to resolve such ambiguities e.g., overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

7.5.9 Import and module parameters

If an imported definition uses a module parameter then this parameter shall also be included in the module parameter
list of the importing module.

7.5.10 Import definitions from non-TTCN modules

The language keyword is used to denote cases where type definitions are imported from non-TTCN modules. For
example:

Import type MyASN1Type from MyASN1Module language "ASN.1:1997";

By default, the language is TTCN-3. For example:

import type MyType from MyModule;
// is the same as
import type MyType from MyModule language "TTCN-3";

8 Test configurations
TTCN-3 allows the (dynamic) specification of concurrent test configurations (or configuration for short). A
configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system.

SUT

Abstract Test System Interface

Real Test System Interface

MTC PTC1

TTCN Test system

PTC2

Figure 2: Conceptual view of a typical TTCN-3 test configuration

Within every configuration there shall be one (and only one) main test component (MTC). Test components that are not
MTCs are called parallel test components or PTCs. The MTC shall be created automatically at the start of each test case
execution. The behaviour defined in the body of the test case shall execute on this component. During execution of a
test case other components can be created dynamically by the explicit use of the create operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e., there is no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)36

Communication is effected between the components within the test system and between the components and the test
system interface via communication ports.

Test component types and port types, denoted by the keywords component and port, shall be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
create and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of the map operation (see clause 21.2).

8.1 Port communication model
Test components can be connected with other components and with the test system interface. There are no restrictions
on the number of connections a component may have, but a component shall not connect to itself. One-to-many
connections are allowed.

Test components are connected via their ports i.e., connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port.

NOTE: While TTCN-3 ports are infinite in principle in a real test system they may overflow. This should be
treated as a test case error (see clause 24.2.1).

MTC PTC

Figure 3: The TTCN-3 communication port model

8.2 Abstract test system interface
TTCN-3 is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object is known as a
System Under Test or SUT. In the minimal case the IUT and the SUT are equivalent. In the present document the term
SUT is used in a general way to mean either SUT or IUT.

In a real test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, a well defined (but abstract) test system interface is associated with
each test case. A test system interface definition is identical to a component definition i.e., it is a list of all possible
communication ports through which the test case is connected to the SUT.

8.3 Defining communication port types
Ports facilitate communication between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being either message-based
or procedure-based or mixed. This shall be denoted by the keyword message or the keyword procedure within the
associated port type definition.

Ports are directional. The directions are specified by the keywords in (for the in direction), out (for the out direction)
and inout (for both directions). Each port type definition shall have one or more lists indicating the allowed collection
of (message) types and/or procedures together with the allowed communication direction. For example:

// Message-based port which allows types MsgType1 and MsgType2 to be received at, MsgType3 to be
// sent via and any integer value to be send and received over the port
type port MyMessagePortType message
{

in MsgType1, MsgType2;
out MsgType3;
inout integer

}

// Procedure-based port which allows the remote call of the proceduress Proc1, Proc2 and Proc3.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)37

// Note that Proc1, Proc2 and Proc3 are defined as signatures
type port MyProcedurePortType procedure
{

out Proc1, Proc2, Proc3
}

NOTE: The term message is used to mean both messages as defined by templates and actual values resulting from
expressions. Thus, the list restricting what may be used on a message-based port is simply a list of type
names.

Using the keyword all in one of the lists associated to a port type allows all types and/or all procedure signatures
defined in the module to be passed over that communication port. For example:

// Message-based port which allows any value of all built-in types and user-defined types to be
// transferred in both directions over this port
type port MyAllMesssagesPortType message
{

inout all
}

8.3.1 Mixed ports

It is possible to define a port as allowing both kinds of communication. This is denoted by the keyword mixed. This
means that the lists for mixed ports will also be mixed and include both, signatures and types. No separation is made in
the definition.

// Mixed port, defining a message-based and a procedure-based port with the same name. The in,
// out and inout lists are also mixed: MsgType1, MsgType2, MsgType3 and integer refer to the
// message-based part of the mixed port and Proc1, Proc2, Proc3, Proc4 and Proc5 refer to the
// procedure-based port.
type port MyMixedPortType mixed
{

in MsgType1, MsgType2, Proc1, Proc2;
out MsgType3, Proc3, Proc4;
inout integer, Proc5;

}

// Mixed port, all types and all signatures defined in the module can be used at this port to
// communicate with either the SUT or other test components */

type port MyAllMixedPortType mixed
{

inout all
}

A mixed port in TTCN-3 is defined as a shorthand notation for two ports, i.e., a message-based port and a
procedure-based port with the same name. At run-time the distinction between the two ports is made by the
communication operations.

Operations used to control ports (see clause 21) i.e., start, stop and clear shall perform the operation on both
queues (in arbitrary order) if called with an identifier of a mixed port.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)38

8.4 Defining component types
The component type defines which ports are associated with a component. These definitions shall be made in the
module definitions part. The port names in a component definition are local to that component i.e., another component
may have ports with the same names. Ports of the same component shall all have unique names. However, this shall not
be taken to mean that there is any connection between the components over these ports.

EXAMPLE:

MyMTC
// of MyMTCType

PCO1

PCO3

PCO1

PCO2
MyPTC

// of MyPTCType

PCO4

Figure 4: Typical components

type component MyMTCType
{

port MyMessagePortType PCO1
}

type component MyPTCType
{

port MyMessagePortType PCO1, PCO4;
port MyProcedurePortType PCO2;
port MyAllMesssagesPortType PCO3

}

8.4.1 Declaring local variables and timers in a component

It is possible to declare variables and timers local to a particular component. For example:

type component MyMTCType
{

var integer MyLocalInteger;
timer MyLocalTimer;
port MyMessagePortType PCO1

}

These declarations are visible to all functions that run on the component. This shall be explicitly stated using the runs
on keyword (see clause 16).

Component variables and timers are associated with the component instance and follow the scope rules defined in
clause 5.1. Each new instance of a component will thus have its own set of variables and timers as specified in the
component definition (including any initial values, if stated).

8.4.2 Defining components with arrays of ports

It is possible to define arrays of ports in component type definitions (also see clause 21.9). For example:

type component My3pcoCompType
{

port MyMessageInterfaceType PCO[3]
// Defines a component type which has an array of 3 ports.

}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)39

8.5 Addressing entities inside the SUT
An SUT may consist of several entities which have to be addressed individually. The address data type is a type for use
with port operations to address SUT entities. The actual data representation of address is resolved either by an
explicit type definition within the test suite or externally by the test system (i.e. the address type is left as an open
type within the TTCN-3 specification). This allows abstract test cases to be specified independently of any real address
mechanism specific to the SUT.

Explicit SUT addresses shall only be generated inside a TTCN-3 module if the type is defined inside the module. If the
type is not defined inside the module explicit SUT addresses shall only be passed in as parameters or be received in
message fields or as parameters of remote procedure calls.

In addition, the special value null is available to indicate an undefined address, e.g., for the initialization of variables
of the address type.

EXAMPLE:

// Associates the type integer to the open type address
type integer address;
:
// new address variable initialized with null
var address MySUTentity := null;
:
// receiving an address value and assigning it to variable MySUTentity
PCO.receive(address:*) -> value MySUTentity;
:
// usage of the received address for sending template MyResult
PCO.send(MyResult) to MySUTentity;
:
// usage of the received address for receiving a confirmation template
PCO.receive(MyConfirmation) from MySUTentity;

8.6 Component references
Component references are unique references to the test components created during the execution of a test case. This
unique component reference is generated by the test system at the time when a component is created, i.e., a component
reference is the result of a create operation (see clause 21.1). In addition component references are returned by the
predefined functions system (returns the component reference to identify the ports of the test system interface), mtc
(returns the component reference of the MTC) and self (returns the component reference of the component in which
self is called).

Component references are used in the configuration operations connect, map and start (see clause 21) to set-up
test configurations and in the from, to and sender parts of communication operations for addressing purposes (see
clause 22).

In addition, the special value null is available to indicate an undefined component reference, e.g., for the initialization
of variables to handle component references.

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of a test system with respect to the handling and identification of test components.

NOTE: A component reference includes component type information. This means, for example, that a variable
for handling component references must use the corresponding component type name in its declaration.

EXAMPLE:

// A component type definition
type component MyCompType {

port PortTypeOne PCO1;
port PortTypeTwo PCO2

}

// Declaring two variable for the handling of references to components of type MyCompType
// and creating a component of this type
var MyCompType MyCompInst := MyCompType.create;

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)40

// Usage of component references in configuration operations
// allways referring to the component created above
connect(self:MyPCO1, MyCompInst:PCO1);
map(MyCompInst:PCO2, system:ExtPCO1);
MyCompInst.start(MyBehavior(self)); // self is passed as a parameter to MyBehavior

// Usage of component references in from- and to- clauses
MyPCO1.receive from MyCompInst;
:
MyPCO2.receive(integer:*) -> sender MyCompInst;
:
MyPCO1.receive(MyTemplate) from MyCompInst;
:
MPCO2.send(integer:5) to MyCompInst;

// The following example explains the case of a one-to-many connection at a Port PCO1
// where values of type M1 can be received from several components of the different types
// CompType1, CompType2 and CompType3 and where the sender has to be retrieved.
// In this case the following scheme may be used:
:

var M1 MyMessage, MyResult;
var MyCompType1 MyInst1 := null;
var MyCompType2 MyInst2 := null;
var MyCompType3 MyInst3 := null;
:

alt {
[] PCO1.receive(M1:*) from MyCompType1 -> value MyMessage sender MyInst1 {}
[] PCO1.receive(M1:*) from MyCompType2 -> value MyMessage sender MyInst2 {}
[] PCO1.receive(M1:*) from MyCompType3 -> value MyMessage sender MyInst3 {}

}
:
MyResult := MyMessageHandling(MyMessage); // some result is retrieved from a function
:

if (MyInst1 != null) {PCO1.send(MyResult) to MyInst1};
if (MyInst2 != null) {PCO1.send(MyResult) to MyInst2};
if (MyInst3 != null) {PCO1.send(MyResult) to MyInst3};
:

8.7 Defining the test system interface
A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points).

type component MyISDNTestSystemInterface
{

port MyBchannelInterfaceType B1;
port MyBchannelInterfaceType B2;
port MyDchannelInterfaceType D1

}

Generally, a component type reference defining the test system interface is associated with every test case. The ports of
the test system interface are automatically instantiated together with the MTC when the test case execution starts
i.e., when the test case is called from the control part of the module.

The operation returning the address of the test system interface is system. This can be used to address the ports of the
test system. For example:

map(MyNewComponent:Port2, system:PCO1);

In the case where the MTC is the only component that is instantiated during test execution, a test system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)41

9 Declaring constants
Constants can be declared and used in module headers, module control, test cases and functions. Constant definitions
are denoted by the keyword const. The value of the constant shall be assigned at the point of declaration. For
example:

const integer MyConst1 := 1;
const boolean MyConst2 := true, MyConst3 := false;

The assignment of the value to the constant may be done within the module or it may be done externally. The latter case
is an external constant declaration denoted by the keyword external. External constants shall resolve to a value at
compile-time. For example:

external const integer MyExternalConst; // external constant declaration

An external constant may have an arbitrary type but the type has to be known in the module i.e., a base type, defined in
the module, or imported from some other module. The mapping of the type to the external representation of an external
constant is again outside the scope of the present document. The mechanism of how the value of an external constant is
passed into a module is outside the scope of the present document.

10 Declaring variables
Variables are denoted by the keyword var. Variables can be declared and used in module control, test cases and
functions. They shall not be declared or used in a module header (i.e., global variables are not supported in TTCN-3). A
variable declaration may have an optional initial value assigned to it. For example:

var integer MyVar1 := 1;
var boolean MyVar2 := true, MyVar3 := false;

Use of uninitialized variables at runtime shall cause a test case error.

11 Declaring timers
Timers can be declared and used in module control, test cases and functions. Timers shall not be declared or used in the
module definitions part. A timer declaration may have an optional default duration value assigned to it. The timer shall
be started with this value if no other value is specified. This value shall be of float type where the base unit is
seconds. For example:

timer MyTimer1 := 5E-3; // declaration of the timer MyTimer1 with the default value of 5ms

timer MyTimer2; // declaration of MyTimer2 without a default timer value i.e., a value has
// to be assigned when the timer is started

The timer operations start, stop, read and timeout may be used to control timers (see clause 23). For example:

// Uses of MyTimer2 might be
MyTimer2.start(10); // 10 seconds
MyTimer2.start(180); // 3 minutes

11.1 Timers as parameters
Timers can only be passed by reference to functions and named alternatives. Timers passed into a function or named alt
are known inside the behaviour definition of the function or named alternative.

A timer passed in as reference parameter can be used like any other timer, i.e., it needs not to be declared. A started
timer can also be passed into a function or named alternative. The timer continues its execution, i.e., it is not stopped
implicitly. Thereby, possible timeout events can be handled inside the function or named alternative to which the timer
is passed.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)42

EXAMPLE:

// Function definition with a timer in the formal parameter list
function MyBehaviour (timer MyTimer)
{ :

MyTimer.start;
:

}

12 Declaring messages
One of the key elements of TTCN-3 is the ability to send and receive complex messages over the communication ports
defined by the test configuration. These messages may be those explicitly concerned with testing the SUT or with the
internal co-ordination and control messages specific to the relevant test configuration.

NOTE: In TTCN-2 these messages are the Abstract Service Primitives (ASPs), the Protocol Data Units (PDUs)
and co-ordination messages. The core language of TTCN-3 is generic in the sense that it does not make
any syntactic or semantic distinctions of this kind.

Complex messages may be defined as record types (see clause 6.3.1). For example:

type record MyMessageType
{

FieldType1 field1,
FieldType2 field2,
:
FieldTypeN fieldN

}

Messages can, of course, be sub-structured, for example:

// Information element type 1 (IEType1). Similar declarations for IEType2 to IETypeN
type record IEType1
{

IEFieldType1 iefield1,
IEFieldType2 iefield2,
:
IEFieldTypeN iefieldN

}

// A message containing information elements
type record MyMessageType
{

IEType1 field1,
IEType2 field2,
:
IETypeN field3

}

12.1 Optional message fields
By default, all fields in a message shall be mandatory. Optional message fields shall be specified using the optional
keyword. For example:

type record MyMessageType
{

FieldType1 field1,
FieldType2 field2 optional,
:
FieldTypeN fieldN

}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)43

13 Declaring procedure signatures
Procedure signatures (or signatures for short) are needed for synchronous communication. A procedure may either be
invoked in the SUT (i.e., the test system performs the call) or invoked in the test system (i.e., the SUT performs the
call).

For both procedures called from the SUT and procedures called from the test system the complete procedure
signature shall be defined in the TTCN-3 module.

Within the signature definition the parameter list may include parameter identifiers, parameter types and their
direction i.e., in, out, or inout). Note that the direction of the parameters is as seen by the called party rather than
the calling party. For example:

signature MyRemoteProc (in integer Par1, out float Par2, inout integer Par3) return integer;
// This defines the remote procedure MyRemoteProc. MyRemoteProc returns an integer value and
// has three parameters: one in parameter of type integer, one out parameter of type float
// and one inout parameter of type integer

A procedure call will result in the called party performing either a reply (the normal case) or raising an exception.
The actions resulting from an accepted procedure call are defined by the receiving party (see clause 22).

13.1 Omitting actual parameters
It is allowed to omit actual parameters from a signature actual parameter list. This is indicated by representing the
omitted actual parameter at its correct position by using the keyword omit. For example:

ParameterList(Par1, omit, Par3) // Par2 is omitted

NOTE: This is often necessary when using procedure signatures in synchronous communication.

13.2 Specifying exceptions
Exceptions are represented in TTCN-3 as values of a specific type, even templates and matching mechanisms can be
used.

NOTE: The conversion of exceptions generated by the SUT into the corresponding type is tool and system
specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included in the signature definition. This list defines all the
possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usually only be distinguished by being represented by specific values of these types).

EXAMPLE:

signature MyRemoteProc (in integer Par1, out float Par2, inout integer Par3) return integer
exception(ExceptionType1, ExceptionType2);

// A call of MyRemoteProc may raise exceptions of type ExceptionType1 or exceptions
// of ExceptionType2

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)44

14 Declaring templates
Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification.

Templates provide the following possibilities:

a) they are a way to organize and to re-use test data, including a simple form of inheritance;

b) they can be parameterized;

c) they allow matching mechanisms;

d) they can be used with either message-based or procedure-based communications.

Within a template values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The type-
based templates are used for message-based communications and the signature templates are used in procedure-based
communications.

14.1 Declaring message templates
Instances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match a received message.

Templates may be specified for any TTCN-3 type defined in table 3 except for the special types (port,
component, address).

// When used in a receiving operation this template will match any integer value
template integer Mytemplate := *;
// This template will match only the integer values 1, 2 or 3
template integer Mytemplate := (1, 2, 3);

However, it is anticipated that the most common use will be with records, as shown by the examples in the following
clauses.

14.1.1 Templates for sending messages

A template used in a send operation defines a complete set of field values comprising the message to be transmitted
over a test port. At the time of the send operation, the template shall be fully defined i.e., all fields shall resolve to
actual values and no matching mechanisms shall be used in the template fields, neither directly nor indirectly.

EXAMPLE:

// Given the message definition
type record MyMessageType
{

integer field1,
charstring field2,
boolean field3

}

// a message template could be
template MyMessageType MyTemplate:=
{

field1 := 1,
field2 := "My string",
field3 := true

}

// and a corresponding send operation could be
MyPCO.send(MyTemplate);

NOTE: Templates may also be used for exceptions if the corresponding type has been defined.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)45

14.1.2 Templates for receiving messages

A template used in a receive operation defines a data template against which an incoming message is to be matched.
Matching mechanisms, as defined in annex C, may be used in receive templates. No binding of the incoming values to
the template shall occur.

EXAMPLE:

// Given the message definition
type record MyMessageType
{

integer field1,
charstring field2,
boolean field3

}

// a message template might be
template MyMessageType MyTemplate:=
{

field1 := 1,
field2 := pattern "abc*xyz",
field3 := true

}

// and a corresponding receive operation could be
MyPCO.receive(MyTemplate);

14.2 Declaring signature templates
Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

EXAMPLE:

// signature definition for a remote procedure
signature RemoteProc(in integer Par1, out integer Par2, inout integer Par3) return integer;

// example templates associted to defined procedure signature
template RemoteProc Template1:=
{

Par1 := 1,
Par2 := 2,
Par3 := 3

}

template RemoteProc Template2:=
{

Par1 := 1,
Par2 := *,
Par3 := 3

}

template RemoteProc Template3:=
{

Par1 := 1,
Par2 := *,
Par3 := *

}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)46

14.2.1 Templates for calling procedures

A template used in a call or reply operation defines a complete set of field values for all in and inout
parameters. At the time of the call operation all in and inout parameters in the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parameters is simply ignored, therefore it is allowed to specify matching mechanisms for these fields, or to
omit them (see annex C).

EXAMPLE:

// Valid call since all in and inout parameters have a distinct value
MyPCO.call(RemoteProc:Template1);

// Valid call since all in and inout parameters have a distinct value
MyPCO.call(RemoteProc:Template2);

// Invalid call since Par3 parameters has a matching attribute not a value
MyPCO.call(RemoteProc:Template3);

// Templates never return values. In the case of Par2 and Par3 the values returned by the
// call must be retrived using an assignment clause at the end of the call statement

14.2.2 Templates for accepting procedure calls

A template used in a getcall operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex C, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any in parameters shall be ignored in the matching process.

EXAMPLE:

// Valid getcall, it will match if Par2 == 2 and Par3 == 3
MyPCO.getcall(RemoteProc:Template1);

// Valid getcall, it will match if Par3 == 3 and Any value of Par2
MyPCO.getcall(RemoteProc:Template2);

// Valid getcall, it will match on Any value of Par3 and Par2
MyPCO.getcall(RemoteProc:Template3);

14.3 Template matching mechanisms
Generally, matching mechanisms will be used to replace values of single template fields or to replace even the entire
contents of a template. Some of the mechanisms may be used in combination.

Matching mechanisms and wildcards may also be used in-line in received events only (i.e. receive, getcall,
getreply and catch operations). They may appear in explicit values, for example:

MyPCO.receive(charstring:"abcxyz");
MyPCO.receive (integer:complement(1, 2, 3));

The type identifier is optional, for example:

MyPCO.receive("abcxyz");

However, the type of the in-line template shall be in the port list over which the template is received. In the case where
there is an ambiguity (e.g., through sub-typing) then the type name shall be included in the receive statement.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)47

Matching mechanisms are arranged in four groups:

a) specific values (i.e., an expression that evaluates to a specific value);

b) special symbols that can be used instead of values:

• (…): a list of values;

• complement (…): complement of a list of values;

• omit: value is omitted;

• ?: wildcard for any value;

• *: wildcard for any value or no value at all (i.e., an omitted value);

• (lower to upper): a range of integer values between and including the lower- and upper bounds.

c) special symbols that can be used inside values:

• ?: wildcard for any single element in a string, array, record of or set of;

• *: wildcard for any number of consecutive elements in a string, array, record of or set of, or no
element at all (i.e., an omitted element).

d) special symbols which describe attributes of values:

• length: restrictions for strings and arrays;

• ifpresent: for matching of optional field values (if not omitted).

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
in table 5. The left-hand column of this table lists all the TTCN-3 and ASN.1 equivalent types as defined in the
ITU-T Recommendation X.680 series [7], [8], [9] and [10] to which these matching mechanisms apply. A full
description of each matching mechanism can be found in annex C.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)48

Table 5: TTCN-3 Matching Mechanisms

Used with values of Value Instead of values Attributes
S
p
e
c
i
f
i
c
V
a
l
u
e

V
a
l
u
e
L
i
s
t

C
o
m
p
l
e
m
e
n
t
e
d
L
I
s
t

O
m
i
t
V
a
l
u
e

A
n
y
V
a
l
u
e

(?)

A
n
y
V
a
l
u
e
O
r
N
o
n
e

(*)

R
a
n
g
e

A
n
y
E
l
e
m
e
n
t

(?)

A
n
y
E
l
e
m
e
n
t
s
O
r
N
o
n
e

(*)

L
e
n
g
t
h
R
e
s
t
r
i
c
t
i
o
n

I
f
P
r
e
s
e
n
t

boolean Yes Yes Yes Yes Yes Yes Yes
integer Yes Yes Yes Yes Yes Yes Yes Yes
char Yes Yes Yes Yes Yes Yes Yes Yes
universal char Yes Yes Yes Yes Yes Yes Yes Yes
float Yes Yes Yes Yes Yes Yes Yes
bitstring Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
octetstring Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
hexstring Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
character strings Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
record Yes Yes Yes Yes Yes Yes Yes
record of Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
array Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
set Yes Yes Yes Yes Yes Yes Yes
set of Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
enumerated Yes Yes Yes Yes Yes Yes Yes
union Yes Yes Yes Yes Yes Yes Yes

14.4 Parameterization of templates
Templates for both sending and receiving operations can be parameterized. The formal parameters of a template can
include templates, functions and the special matching symbols. The rules for formal and actual parameter lists shall be
followed as defined in clause 5.3.

EXAMPLE:

// The template
template MyMessageType MyTemplate (integer MyFormalParam):=
{

field1 := MyFormalParam,
field2 := pattern "abc*xyz",
field3 := true

}

// could be used as follows
pco1.send(MyTemplate(123));

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)49

14.4.1 Parameterization with matching attributes

To enable matching attributes to be passed as parameters the extra keyword template shall be added before the type
field. This makes the parameter a template and in effect extends the allowed parameters for the associated type to
include the appropriate set of matching attributes (see annex C) as well as the normal set of values. Template parameter
fields shall not be called by reference.

EXAMPLE:

// The template
template MyMessageType MyTemplate (template integer MyFormalParam):=
{ field1 := MyFormalParam,

field2 := pattern "abc*xyz",
field3 := true

}

// could be used as follows
pco1.receive(MyTemplate(?));
// Or, if field1 has be defined as being optional
pco1.receive(MyTemplate(omit));

14.5 Passing templates as parameters
Only function, testcase, named alt and template definitions can have templates as formal parameters.

EXAMPLE:

function MyBehaviour(template MyMsgType MyFormalParameter)
runs on MyComponentType
{ :

pco1.receive(MyFormalParameter);
:

}

14.6 Modified templates
Normally a template will specify a set of base, or default, values or matching symbols for each and every field defined
in the appropriate definition. In cases where small changes are needed to specify a new template it is possible to specify
a modified template. A modified template specifies modifications to particular fields of the original template, either
directly or indirectly.

The modifies keyword denotes the parent template from which the new, or modified template shall be derived. This
parent template may be either the original template or a modified template.

The modifications occur in a linked fashion eventually tracing back to the original template. If a template field and its
corresponding value or matching symbol is specified in the modified template, then the specified value or matching
symbol replaces the one specified in the parent template. If a template field and its corresponding value or matching
symbol is not specified in the modified template, then the value or matching symbol in the parent template shall be
used.

A modified template shall not refer to itself, either directly or indirectly i.e., recursive derivation is not allowed.

EXAMPLE:

// Given
template MyRecordType MyTemplate1 :=
{

field1 := 123,
field2 := "A string",
field3 := true

}

// then writing
template MyRecordType MyTemplate2 modifies MyTemplate1 :=
{

field2 := "A modified string",
field3 := omit // field3 must be specified as optional in the corresponding record type

}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)50

// is the same as writing
template MyRecordType MyTemplate2 :=
{

field1 := 123,
field2 := "A modified string",
field3 := omit

}

14.6.1 Parameterization of modified templates

If a base template is has a formal parameter list, the following rules apply to all modified templates derived from that
base template, whether or not they are derived in one or several modification steps:

a) the derived template shall not omit parameters, however a derived template can have additional (appended)
parameters if wished;

b) the formal parameter list shall follow the template name for every modified template;

c) parameterized templates in template fields shall not be modified or explicitly omitted in a modified template.

EXAMPLE:

// Given
template MyRecordType MyTemplate1(integer Mypar):=
{

field1 := MyPar,
field2 := "A string",
field3 := true

}

// then a modification could be
template MyRecordType MyTemplate2(integer MyPar) modifies MyTemplate1 :=

{ // field1 is parameterized in Template1
field2 := "A modified string",
field3 := omit // field3 must be specified as optional in the corresponding record type

}

14.6.2 In-line modified templates

As well as creating explicitly named modified constraints TTCN-3 allows the definition of in-line modified constraints.

EXAMPLE:

// Given
template MyMessageType Setup :=
{ field1 := 75,

field2 := "abc",
field3 := true

}

// Could be used to define an in-line modified template of Setup
pco1.send (modifies Setup := {field1 76});

14.7 Changing template fields
All changes to template fields shall only be done via parameterization or by in-line derived templates at the time of
performing a communication operation (e.g., send, receive, call, getcall etc.). The effects of these changes on
the value of the template field do not persist in the template subsequent to the corresponding communication event.

The notation of the kind MyTemplateId.Fieldid shall not be used to set or retrieve values in templates in communication
events. The "->" symbol shall be used for this purpose (see clause 22).

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)51

14.8 Match Operation
The match operation allows the value of a variable to be compared with a template. The operation returns a boolean
value. If the type of the template and variable are not compatible the operation returns false. If the types are compatible
the return value of the operation indicates whether the value of the variable conforms to the specified template.

template integer LessThan10 := (1..10);

testcase TC001()
runs on MyMTCType
{

var integer RxValue;
…
PCO1.receive(integer:?) -> value RxValue;

if(match(RxValue, LessThan10)) { … }
…

}

14.9 Value of Operation
The valueof operation allows the value specified within a template to be assigned to the fields of a variable. The
variable and template shall be type compatible (see clause6.7) and each field of the template shall resolve to a single
value.

type record ExampleType
{
integer field1,
boolean field2
}

template ExampleType SetupTemplate :=
{

field1 := 1,
field2 := true

}

…
var ExampleType RxValue := valueof(SetupTemplate);

…

15 Operators
TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;

b) string operators;

c) relational operators;

d) logical operators;

e) bitwise operators;

f) shift operators;

g) rotate operators.

These operators are listed in table 6.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)52

Table 6: List of TTCN-3 operators

Category Operator Symbol or Keyword
addition +
subtraction -
multiplication *
division /
modulo mod

Arithmetic operators

remainder rem
String operators concatenation &

equal ==
less than <
greater than >
not equal !=
greater than or equal >=

Relational operators

less than or equal <=
logical not not
logical and and
logical or or

Logical operators

logical xor xor
bitwise not not4b
bitwise and and4b
bitwise or or4b

Bitwise operators

bitwise xor xor4b
shift left <<Shift operators
shift right >>
rotate left <@Rotate operators
rotate right @>

The precedence of these operators is shown in table 7. Within any row in this table, the listed operators have equal
precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

Table 7: Precedence of Operators

Priority Operator type Operator
highest

Lowest

Unary

Binary

(…)

+, -, not, not4b

*, /, mod, rem
+, -
<<, >>, <@, @>
<, >, <=, >=
==, !=
and4b
xor4b
or4b
and
xor
or
&

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)53

15.1 Arithmetic operators
The arithmetic operators represent the operations of addition, subtraction, multiplication, division and modulo.
Operands of these operators shall be of type integer (including derivations of integer) or float (including
derivations of float), except for mod which shall be used with integer (including derivations of integer) types
only.

With integer types the result type of arithmetic operations is integer. With float types the result type of arithmetic
operations is float.

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa.

The result of performing the division operation (/) on two:

a) integer values gives the whole integer value resulting from dividing the first integer by the second
(i.e., fractions are discarded);

b) float values gives the float value resulting from dividing the first float by the second (i.e., fractions are
not discarded).

The operators rem and mod compute on operands of type integer and have a result of type integer. The
operations x rem y and x mod y compute the rest that remains from an integer division of x by y. Therefore, they
are only defined for non-zero operands y. For positive x and y, both x rem y and x mod y have the same result but
for negative arguments they differ.

Formally, mod and rem are defined as follows:

x rem y = x - y * (x/y)
x mod y = x rem |y| if x >= 0

= 0 if x < 0 and x rem |y| = 0
= y + x rem |y| if x < 0 and x rem |y| < 0

The following table illustrates the difference between the mod and rem operator:

Table 8: Effect of mod and rem operator

x -3 -2 -1 0 1 2 3
x mod 3 0 1 2 0 1 2 0
x rem 3 0 -2 -1 0 1 2 0

15.2 String operators
The predefined relational operators perform concatenation of string types. The operands may be any string type values
that are compatible. The operation is a simple concatenation from left to right. No form of arithmetic addition is
implied. The result type is the compatible string type, for example:

'1111'B & '0000'B & '1111'B gives '111100001111'B

15.3 Relational operators
The predefined relational operators represent the relations of equality, less than, greater than, not equal to, greater than
or equal to and less than or equal to. Operands of equality (==) and non-equality (!=) may be of an arbitrary type. All
other relational operators shall have operands only of type integer (including derivatives of integer) or float
(including derivations of float). In all cases the two operands shall be of compatible type. The result type of these
operations is boolean.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)54

15.4 Logical operators
The predefined boolean operators perform the operations of negation, logical and, logical or and logical xor.
Their operands shall be of type boolean. The result type of the logical operators is boolean.

The logical not is the unary operator that returns the value true if its operand was of value false and returns the
value false if the operand was of value true.

The logical and returns the value true if both its operands are true; otherwise it returns the value false.

The logical or returns the value true if at least one of its operands is true; it returns the value false only if both
operands are false.

The logical xor returns the value true if one of its operands is true; it returns the value false if both operands are
false or if both operands are true.

15.5 Bitwise operators
The predefined bitwise operators perform the operations of bitwise not, bitwise and, bitwise or and bitwise xor.
These operators are known as not4b, and4b, or4b and xor4b respectively.

NOTE: To be read as "not for bit", "and for bit" etc.

Their operands shall be of type bitstring, hexstring, octetstring. The result type of the bitwise
operators shall be the same as that of the operands.

The bitwise not4b unary operator inverts the individual bit values of its operand. For each bit in the operand a 1 bit is
set to 0 and a 0 bit is set to 1. That is:

not4b '1'B gives '0'B
not4b '0'B gives '1'B

EXAMPLE 1:

not4b '1010'B gives '0101'B
not4b '1A5'H gives 'E5A'H
not4b '01A5'O gives 'FE5A'O

The bitwise and4b operator accepts two operands. For each corresponding bit position, the resulting value is a 1 if both
bits are set to 1, otherwise the value for the resulting bit is 0. That is:

'1'B and4b '1'B gives '1'B
'1'B and4b '0'B gives '0'B
'0'B and4b '1'B gives '0'B
'0'B and4b '0'B gives '0'B

EXAMPLE 2:

'1001'B and4b '0101'B gives '0001'B
'B'H and4b '5'H gives '1'H
'FB'O and4b '15'O gives '11'O

The bitwise or4b operator accepts two operands. For each corresponding bit position, the resulting value is 0 if both
bits are set to 0, otherwise the value for the resulting bit is 1. That is:

'1'B or4b '1'B gives '1'B
'1'B or4b '0'B gives '1'B
'0'B or4b '1'B gives '1'B
'0'B or4b '0'B gives '0'B

EXAMPLE 3:

'1001'B or4b '0101'B gives '1101'B
'9'H or4b '5'H gives 'D'H
'A9'O or4b 'F5'O gives 'FD'O

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)55

The bitwise xor4b operator accepts two operands. For each corresponding bit position, the resulting value is 0 if both
bits are set to 0 or if both bits are set to 1, otherwise the value for the resulting bit is 0. That is:

'1'B xor4b '1'B gives '0'B
'0'B xor4b '0'B gives '0'B
'0'B xor4b '1'B gives '1'B
'1'B xor4b '0'B gives '1'B

EXAMPLE 4:

'1001'B xor4b '0101'B gives '1100'B
'9'H xor4b '5'H gives 'C'H
'39'O xor4b '15'O gives '2C'O

15.6 Shift operators
The predefined shift operators perform the shift left (<<) and shift right (>>) operators. Their left-hand operand shall
be of type bitstring, hexstring, octetstring or integer. Their right hand operand shall be of type
integer. The result type of these operators shall be the same as that of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left hand
operand is:

a) bitstring or integer then the shift unit applied is 1 bit;

b) hexstring then the shift unit applied is 1 hexadecimal digit;

c) octetstring then the shift unit applied is 1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift units to the left
as specified by the right hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right hand side of the left operand.

NOTE 1: If the left hand operand is of type integer, then for each bit shifted to the left, this is equivalent to
multiplying the left hand operand by two.

NOTE 2: An error verdict shall be assigned if a system dependent overflow occurs when applying the shift left
operation to the left hand operand.

EXAMPLE 1:

'111001'B << 2 gives '100100'B
'12345'H << 2 gives '34500'H
'1122334455'O << (1+1) gives '3344550000'O
32 << 2 gives 128
-32 << 2 gives -128

The shift right (>>) operator accepts two operands. It shifts the left-hand operand by the number of shift units to the
right as specified by the right hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand)
is inserted from the left hand side of the left operand.

NOTE 3: If the left hand operand is of type integer, then for each bit shifted to the right, this is equivalent to
doing integer division of the left hand operand by two (2).

NOTE 4: When the left operand is of type integer and its value is negative, when performing a right shift, the
sign bit shall be propagated.

EXAMPLE 2:

'111001'B >> 2 gives '001110'B
'12345'H >> 2 gives '00123'H
'1122334455'O >> (1+1) gives '0000112233'O
32 >> 2 gives 8
-32 >> 2 gives -8

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)56

15.7 Rotate operators
The predefined rotate operators perform the rotate left (<@) and rotate right (@>) operators. Their left-hand operand
shall be of type bitstring, hexstring, octetstring, charstring or universal charstring.
Their right hand operand shall be of type integer. The result type of these operators shall be the same as that of the
left operand.

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left hand
operand is:

a) bitstring then the rotate unit applied is 1 bit;

b) hexstring then the rotate unit applied is 1 hexadecimal digit;

c) octetstring then the rotate unit applied is 1 octet;

d) charstring or universal charstring then the rotate unit applied is one character.

The rotate left (<@) operator accepts two operands. It rotates the left-hand operand by the number of shift units to the
left as specified by the right hand operand. Excess shift units (bits, hexadecimal digits, octets, or characters) are
re-inserted into the left-hand operand from its right-hand side.

EXAMPLE 1:

'101001'B <@ 2 gives '100110'B
'12345'H <@ 2 gives '34512'H
'1122334455'O <@ (1+2) gives '4455112233'O
"abcdefg" <@ 3 gives "defgabc"

The rotate right (@>) operator accepts two operands. It rotates the left-hand operand by the number of shift units to the
right as specified by the right hand operand. Excess shift units (bits, hexadecimal digits, octets, or characters) are
re-inserted into the left-hand operand from its left-hand side.

EXAMPLE 2:

'100001'B @> 2 gives '0110001'B
'12345'H @> 2 gives '45123'H
'1122334455'O @> (1+2) gives '3344551122'O
"abcdefg" @> 3 gives "efgabcd"

16 Functions
Functions are used in TTCN-3 to express test behaviour or to structure computation in a module, for example, to
calculate a single value, to initialize a set of variables or to check some condition. Functions may return a value. This is
denoted by the return keyword followed by a type identifier. If no return is specified then the function is void. An
explicit keyword for void does not exist in TTCN-3. The keyword return, when used in the body of the function,
causes the function to terminate and to return a value compatible with the return type. For example:

// Definition of MyFunction which has no parameters
function MyFunction() return integer
{

return 7; // return the integer value 7 when the function terminates
}

NOTE: The TTCN-3 functions replace Test Suite Operations and Test Suite Procedural Definitions in TTCN-2.
Informal functions may be declared as external functions with explanatory comments or by using an
empty formal function with comments.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)57

A function may be defined within a module or be declared as being defined externally (i.e., external). For an
external function only the function interface has to be provided in the TTCN-3 module. The realization of the external
function is outside the scope of the present document. External functions are not allowed to contain port operations.

external function MyFunction4() return integer; // External function without parameters
// which returns an integer value

external function InitTestDevices(); // An external function which only has an
// effect outside the TTCN-3 module

In a module, the behaviour of a function can be defined by using the program statements and operations defined in
clause 18. If a function includes port operations the associated component type shall be referenced using the runs on
keywords in the function header to define the number, type and identifiers of the available ports. The one exception to
this rule is if all ports used within the function are passed in as parameters.

If a function includes port operations either all ports used within the function shall be passed in as parameters or an
associated component type shall be referenced using runs on in the function header to define the number, type and
identifiers of the available ports. For example:

function MyFunction() runs on MyComponent return integer
{

:
}

Instances of different component types may use the same function if they fulfil the following consistency rule:

"Let C1 and C2 be two component types and FUNC be a function which refers to C1 in its runs on clause. An
instance of component type C2 may use FUNC if the type definition C2 includes the entire type definition of C1. This
means, C2 includes the same names to address ports of the same type as C1."

16.1 Parameterization of Functions
Functions may be parameterized. The rules for formal parameter lists shall be followed as defined in clause 5.3. For
example:

function MyFunction2(inout integer MyPar1)
{

// MyFunction2 doesn't return a value
MyPar1 := 10 * MyPar1; // but changes the value of MyPar1 which

// is passed in by refefernce
}

function MyFunction3() runs on MyPTCType
{

// MyFunction3 doesn't return a value, but
var integer MyVar := 5; // does make use of the port operation
PCO1.send(MyVar); // send and therefore requires a runs on

// clause to resolve the port identifiers
} // by refernceing a component type

16.2 Invoking functions
A function is invoked by referring to its name and by the actual list of parameter. Functions that do not return values
can be invoked directly. Functions that return values may be invoked inside expressions. The rules for actual parameter
lists shall be followed as defined in clause 5.3.

MyVar := MyFunction4(); // The value returned by MyFunction4 is assigned to MyVar.
// The types of the returned value and MyVar have to be the same

MyFunction2(MyVar2); // MyFunction2 doesn't return a value and is called with the
// actual parameter MyVar2, which may be passed in by reference

MyVar3 := MyFunction6(4)+ MyFunction7(MyVar3); // Functions used in expressions

Special restrictions apply to functions bound to test components using the start operation. These restrictions are
described in clause 21.5.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)58

16.3 Predefined functions
TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use.

Table 9: List of TTCN-3 predefined functions

Category Function Keyword
Convert integer value to char value int2char

Convert char value to int value char2int

Convert integer value to universal char value int2unichar

Convert universal char value to int value unichar2int

Convert bitstring value to integer value bit2int

Convert hexstring value to integer value hex2int

Convert octetstring value to Integer value oct2int

Convert charstring value to integer value str2int

Convert integer value to bitstring value int2bit

Convert integer value to hexstring value int2hex

Convert integer value to octetstring value int2oct

Conversion functions

Convert integer value to charstring value int2str

Return the length of a value of any string type lengthofLength/size functions
Return the number of elements in a record, record of,
template, set, set of or array

sizeof

Determine if an optional field in a record, record of, template,
set or set of is present

ispresentPresence/choice functions

Determine which choice has been made in a union type ischosen

When a predefined function is invoked:

1) the number of the actual parameters shall be the same as the number of the formal parameters; and

2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and

3) all variables appearing in the parameter list shall be bound.

The full description of predefined functions is given in annex D.

17 Test cases
Test cases are a special kind of function. Their execution in the module control part is related to the execute
statement (see clause 26.1). The result of an executed test case is always a value of type verdicttype. Every test
case shall contain one and only one MTC the type of which is referenced in the header of the test case definition. The
behaviour defined in the test case body is the behaviour of the MTC.

When a test case is invoked the ports of the test system interface are instantiated, the MTC is created and the behaviour
specified in the test case definition is started on the MTC. All these actions shall be performed implicitly i.e., without
the explicit create and start operations.

To provide the information to allow these implicit operations to occur a test case definition has two parts:

a) interface part (mandatory): denoted by the keyword runs on which references the required component type for
the MTC and makes the associated port names visible within the MTC behaviour; and

b) test system part (optional): denoted by the keyword system which references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC is instantiated. In this case, the MTC type defines the test system interface ports
implicitly.

EXAMPLE:

testcase MyTestCaseOne()
runs on MyMtcType1 // defines the type of the MTC
system MyTestSystemType // makes the port names of the TSI visible to the MTC
{

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)59

: // The behaviour defined here executes on the mtc when the test case invoked
}

// or, a test case where only the MTC is instantiated
testcase MyTestCaseTwo() runs on MyMtcType2
{

: // The behaviour defined here executes on the mtc when the test case invoked
}

18 Program statements and operations
The fundamental program elements of the control part of TTCN-3 modules and functions are basic program statements
such as expressions, assignments, loop constructs etc., behavioural statements such as sequential behaviour, alternative
behaviour, interleaving, defaults etc., and operations such as send, receive, create, etc.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements).

Statement blocks are a mechanism to group statements. Statement blocks may be used in different scope units
i.e., module control, functions and test behaviours. The kind of statements that may be used in a block will depend on
the scope unit in which the block is used. For example, a statement block appearing in a function shall only use those
program statements which may be used in functions.

General scoping rules are described in clause 5.4.

A statement block is syntactically equivalent to a single statement, thus, wherever a statement is allowed in a function a
block may appear. This implies that blocks may be nested. Declarations, if any, shall be made at the beginning of the
block. These declarations are only visible inside the block and to nested sub-blocks.

The statements in the block shall be executed in the order of their appearance. The specification of an empty statement
block i.e., {}, is allowed. An empty statement block implies that no actions are taken.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)60

Table 10: Overview of TTCN-3 statements and operations

Statement Associated keyword or
symbol

Can be used in
module control

Can be used in
functions, test cases

and named alts
Basic program statements
Expressions (…) Yes Yes
Assignments := Yes Yes
Logging log Yes Yes
Label and Goto label / goto Yes Yes
If-else if (…) {…} else {…} Yes Yes
For loop for (…) {…} Yes Yes
While loop while (…) {…} Yes Yes
Do while loop do {…} while (…) Yes Yes
Stop execution stop Yes Yes
Behavioural program statements
Alternative behaviour alt {…} Yes (see note 1) Yes
Named alternative named alt {…} Yes (see note 1) Yes
Interleaved behaviour interleave {…} Yes (see note 1) Yes
Activate a default activate Yes (see note 1) Yes
Deactivate a default deactivate Yes (see note 1) Yes
Returning control return Yes
Configuration operations
Create parallel test component create Yes
Connect component to component connect Yes
Disconnect two components disconnect Yes
Map port to test interface map Yes
Unmap port from test system interface unmap Yes
Get MTC address mtc Yes
Get test system interface address system Yes
Get own address self Yes
Start execution of test component start Yes
Stop execution of test component stop Yes
Check termination of a PTC running Yes
Wait for termination of a PTC done Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote entity reply Yes
Raise exception (to an accepted call) raise Yes
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote entity getcall Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Check (current) message/call received check Yes
Clear port clear Yes
Clear and give access to port start Yes
Stop access (receiving & sending) at port stop Yes
Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict verdict.set Yes
Get local verdict verdict.get Yes
SUT operations
Remote action to be done by the SUT sut.action Yes
Execution of test cases
Execute test case execute Yes Yes (see note 2)
NOTE 1: Can be used in control with timer operations only.
NOTE 2: Can only be used in functions and named alternatives that are used in module control.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)61

19 Basic program statements
Basic program statements are expressions, assignments, operations, loop constructs etc. All basic program statements
can be used in the control part of a module and in TTCN-3 functions.

Table 11: Overview of TTCN-3 basic program statements

Basic program statements
Statement Associated keyword or symbol

Expressions (…)
Assignments :=
Logging log
Label and Goto label / goto
If-else if (…) { … } else { … }
For loop for (…) { … }
While loop while (…) { … }
Do while loop do { … } while (…)
Stop execution stop

19.1 Expressions
TTCN-3 allows the specification of expressions using the operators defined in clause 15. Expressions are built from
other (simple) expressions. Expressions may contain functions. The result of an expression shall be the value of a
specific type and the operators used shall be compatible with the type of the operands. For example:

(x + y - increment(z))*3;

19.1.1 Boolean expressions

A boolean expression shall only contain boolean values and/or boolean operators and/or relational operators
and shall evaluate to a boolean value of either true or false. For example:

((A and B) or (not C) or (j<10));

19.2 Assignments
Values may be assigned to variables. This is indicated by the symbol ":=". During execution of an assignment the right-
hand side of the assignment shall evaluate to an element of the same type of the left-hand side. The effect of an
assignment is to bind the variable (which may also be the element of a record or set etc.) to the value of the
expression. The expression shall contain no unbound variables. All assignments occur in the order in which they appear,
that is left to right processing. For example:

MyVariable := (x + y - increment(z))*3;

19.3 The Log statement
The log statement provides the means to write a character string to some logging device associated with test control or
the test component in which the statement is used. For example:

log("Line 248 in PTC_A");
// The string "Line 248 in PTC_A" is written to some log device of the test system

NOTE: It is outside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)62

19.4 The Label statement
The label statement allows the specification of labels in test cases, functions, named alternatives and the control part
of a module. A label statement can be used freely like other TTCN-3 behavioural program statements according to
the syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but, for example, not as first
statement of an alternative in an alt or interleave statement (see clause 20.2.7).

19.5 The Goto statement
The goto statement can be used in functions, test cases, named alternatives and the control part of a TTCN module.
The goto statement performs a jump to a label or to the beginning of an alt statement in order to force repeated
behaviour (see clause 20.2.8).

19.6 The If-else statement
The if-else statement, also known as the conditional statement, is used to denote branching in the control flow due
to boolean expressions. Schematically the conditional looks as follows:

if (expression1)

statementblock1
else

statementblock2

Where statementblockx refers to a block of statements.

EXAMPLE:

if (date == "1.1.2000") return { fail };

if (MyVar < 10) {
MyVar := MyVar * 10;
log ("MyVar < 10");

}
else {

MyVar := MyVar/5;
}

A more complex scheme could be:

if (expression1)

statementblock1
else if (expression2)

statementblock2
:
else if (expressionn)

statementblockn
else

statementblockn+1

In such cases readability heavily depends on the formatting but formatting shall have no syntactic or semantic meaning.

19.7 The For statement
The for statement defines a counter loop. The value of the index variable is increased, decreased or manipulated in
such a manner that after a certain number of execution loops a termination criteria is reached.

The for statement contains two assignments and a boolean expression. The first assignment is necessary to initialize
the index (or counter) variable of the loop. The boolean expression terminates the loop and the second assignment is
used to manipulate the index variable. For example:

for (j:=1; j<=10; j:= j+1) { … }

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)63

The termination criterion of the loop shall be expressed by the boolean expression. It is checked at the beginning of
each new loop iteration. If it evaluates to true, the execution continues with the statement which immediately follows
the for loop.

The index variable of a for loop can be declared before being used in the for statement or can be declared and
initialised in the for statement header. If the index variable is declared and initialised in the for statement header, the
scope of the index variable is limited to the loop body, i.e., it is only visible inside the loop body. For example:

var integer j; // Declaration of integer variable j
for (j:=1; j<=10; j:= j+1) { … } // Usage of variable j as index variable of the for loop

for (var float i:=1.0; i<7.9; i:= i*1.35) { … } // Index variable i is declared and
initialized

// in the for loop header. Variable i only is
// visible in the loop body.

19.8 The While statement
A while loop is executed as long as the loop condition holds. The loop condition shall be checked at the beginning of
each new loop iteration. If the loop condition does not hold, then the loop is exited and execution shall continue with the
statement, which immediately follows the while loop. For example:

while (j<10){ … }

19.9 The Do-while statement
The do-while loop is identical to a while loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using a do-while loop the behaviour is executed at least once before the loop
condition is evaluated for the first time. For example:

do { … } while (j<10);

19.10 The Stop execution statement
The stop statement terminates execution in different ways depending on the context in which it is used. When used in
the control part of a module it terminates execution of the entire module. When used in a function that is executing
behaviour it terminates the relevant test component.

20 Behavioural program statements
Behavioural program statements may be used in test cases, functions and module control, except for the return
statement which shall only be used in test cases and functions. Behavioural program statements specify the dynamic
behaviour of the test components over the communication ports. Test behaviour can be expressed, sequentially, as a set
of alternatives or combinations of both. An interleaving operator allows the specification of interleaved sequences or
alternatives.

Table 12: Overview of TTCN-3 behavioural program statements

Behavioural program statements
Statement Associated keyword or symbol

Alternative behaviour alt { … }
Named alternative named alt { … }
Interleaved behaviour interleave { … }
Activate a default activate
Deactivate a default deactivate
Returning control return

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)64

20.1 Sequential behaviour
The simplest form of behaviour is a set of statements that are executed sequentially, as illustrated below:

S1

S1; S2; S3;S2

S3

Figure 5: Illustration of sequential behaviour

The individual statements in the sequence shall be separated by the delimiter ";". For example:

MyPort.send(Mymessage); MyTimer.start; log("Done!");

20.2 Alternative behaviour
A more complex form of behaviour is where sequences of statements are expressed as sets of possible alternatives to
form a tree of execution paths, as illustrated below:

S1

S3

S6

S2

S4

S7

S5

S8

S9 S10

S1;
alt {[] S3; S6;

[] S2;
alt { [] S4; S7;

[] S5; S8;
alt { [] S9;

[] S10;
}

}
}

Figure 6: Illustration of alternative behaviour

The alt statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e., it is related to the use of the TTCN-3 operations
receive, trigger, getcall, getreply, catch, check, timeout and done. The alt statement denotes a
set of possible events that are to be matched against a particular snapshot (see clause 20.2.1).

NOTE: The alt statement corresponds to the alternatives at the same level of indentation in TTCN-2. However,
there are three significant differences:

a) boolean expressions to disable alternatives can only be made in an alternative statement;
b) it is not possible to examine the port queue by using the boolean expression and then to disable

an alternative;
c) It is not possible to call a function as an alternative in the alt statement, except in the case where

an else guard (i.e., [else]) is the last choice in the alternative (see clause 20.2.3).

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)65

EXAMPLE:

// Use of nested alternative statements
:
alt
{
[] L1.receive(DL_REL_CO:*) // UA or DM received; layer 2 released

{ verdict.set(pass);
TAC.stop;
TNOAC.start;
alt {
[] L1.receive(DL_EST_IN) // SABME received

{ TNOAC.stop;
verdict.set(pass);

}
[] TNOAC.timeout

{ L1.send(DEL_EST_RQ:*);
TAC.start;
alt {
[] L1.receive(DL_EST_CO:*) // UA received; data link established

{ TAC.stop;
verdict.set(pass)

}
[] TAC.timeout // no response

{verdict.set(inconc)}
[] L1.receive // like OTHERWISE in TTCN-2

{verdict.set(inconc)}
}

}
[] L1.receive // like OTHERWISE in TTCN-2

{verdict.set(inconc)}
}

}
[] TAC.timeout // no response

{verdict.set(inconc)}
[] L1.receive // like OTHERWISE in TTCN-2

{verdict.set(inconc)}
}
:

// Use of alternative with Boolean expressions (or guard)
:
alt {
[] L1.receive(MyMessage1)

{verdict.set(fail)}
[x>1] L2.receive(MyMessage2) // Boolean guard/expression

{verdict.set(pass)}
[x<=1] L2.receive(MyMessage3) // Boolean guard/expression

{verdict.set(inconc)}
}
:

// Use of done in alternatives
:
alt {

[] MyPTC.done {
verdict.set(pass)

}

[] any port.receive {
goto alt

}
}
:

20.2.1 Execution of alternative behaviour

The alternative statements in an alt statement are processed in their order of appearance. TTCN-3 operational
semantics (see annex B) assume that the status of any of the events cannot change during the process of trying to match
one alternative in a set of alternatives. This implies that snapshot semantics are used for received events and timeouts
i.e., each time around a set of alternatives a snapshot is taken of which events have been received and which timeouts
have fired. Only those identified in the snapshot can match on the next cycle through the alternatives.

NOTE 1: These semantics are exactly the same as for TTCN-2.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)66

NOTE 2: Synchronous events (e.g., call) block the loop until a call is completed.

20.2.2 Selecting/deselecting an alternative

If necessary, it is possible to enable/disable an alternative by means of a boolean expression placed between the '[]'
brackets of the alternative. For example:

[MyVar==3] PCO.receive(MyMessage) {}

The open and close square brackets '[' ']' shall be present at the start of each alternative, even if they are empty. This not
only aids readability but also is necessary to syntactically distinguish one alternative from another.

20.2.3 Else branch in alternatives

If necessary, it is possible to define one branch in the alternative statement which is always taken if no other previously
defined alternative can be taken. If an else branch is defined all subsequently defined alternatives are redundant i.e.,
they can never be reached. For example:

:
alt {
[] L1.receive(MyMessage1)

{ verdict.set(fail);
MyComponent.stop

}
[x>1] L2.receive(MyMessage2) // Boolean guard/expression

{ verdict.set(pass);
:

}
[x<=1] L2.receive(MyMessage3) // Boolean guard/expression

{ verdict.set(inconc);
:

}
[else] { MyErrorHandling(); // else branch

verdict.set(fail);
MyComponent.stop;

}
}
:

It should be noted that defaults are always appended to the end of all alternatives. If an else branch is defined, an
activated default will never be entered.

NOTE: It is also possible to use else in named alternatives.

20.2.4 Declaring named alternatives

Alternatives which are used in a number of places can be defined in a named alternative denoted by the keyword pair
named alt. Named alternatives shall be defined globally in the module definitions. When invoked a named alt is
identical to the behaviour alt construct except that it has an identifier and allows parameterization.

A named alt when referenced has the same effect as a macro substitution. A named alt can be referenced at any
place in a behaviour definition where it is valid to include a normal alt construct.

EXAMPLE:

// Definition of the named alternatives macro
named alt HandlePCO2()
{

[] PCO2.receive(DL_EST_IN)
{PCO2.send(DL_EST_CO)}

[] PCO2.receive(DL_EST_CO) {}
// do nothing

}

// Using a named alt in-line
testcase TC001() runs on MyPTCtype
{
:
HandlePCO2(); // Call named alt

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)67

:
}

// Which expands to
testcase TC001() runs on MyPTCtype
{

:
alt {

[] PCO2.receive(DL_EST_IN)
{PCO2.send(DL_EST_CO)}

[] PCO2.receive(DL_EST_CO) {}
// do nothing

}
:

}

20.2.5 Expanding alternatives with named alternatives

In addition to direct in-line referencing it is also possible to explicitly expand the alternatives specified in the named
alt construct using the expand statement. The expand statement can be placed at any position within an alt
statement and will insert the associated guards from the named alt at that position.

EXAMPLE:

// Using a named alt by expanding
testcase TC002()runs on MyPTCtype
{
:

alt {
[] PCO1.receive(DL_EST_IN)

{PCO1.send(DL_EST_CO)}
[] PCO1.receive(DL_EST_CO) {}

// do nothing
[expand] HandlePCO2() // Expand named alt alternatives to specified alt statement

}
}

// Which expands to
testcase TC002()runs on MyPTCtype
{

:
alt {

[] PCO1.receive(DL_EST_IN)
{PCO1.send(DL_EST_CO)}

[] PCO1.receive(DL_EST_CO) {}
// do nothing

[] PCO2.receive(DL_EST_IN)
{PCO2.send(DL_EST_CO)}

[] PCO2.receive(DL_EST_CO) {}
// do nothing

}
}

20.2.6 Parameterization of named alternatives

Named alternatives can be parameterized with types, values, functions and templates. Since named alternatives are not a
scope unit, the defined formal parameters are simply substituted by the given actual parameters when the macro
expansion is performed.

EXAMPLE:

named alt HandleAnyPCO(MyPortT PCO)
{

[] PCO.receive(DL_EST_IN)
{PCO.send(DL_EST_CO)}

[] PCO.receive(DL_EST_CO) {}
// do nothing

}

testcase TC001() runs on MyPTCtype
{

HandleAnyPCO(PCO2);

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)68

:
alt {

[expand] HandleAnyPCO(PCO1);
[expand] HandleAnyPCO(PCO2);

}
}

20.2.7 The Label statement in behaviour

The label statement allows the specification of labels in test cases, functions, named alternatives and the control part
of a module. It can be used before or after any TTCN-3 statement but shall not be the first statement of an alternative in
an alt or interleave statement.

EXAMPLE:

label MyLabel;
// Defines the label MyLabel

// The labels L1, L2 and L3 are defined in the following TTCN-3 code fragment
:
label L1; // Definition of label L1
alt{
[] PCO1.receive(MySig1)

{ label L2; // Definition of label L2
PCO1.send(MySig2);
PCO1.receive(MySig3)

}
[] PCO2.receive(MySig4)

{ PCO2.send(MySig5);
PCO2.send(MySig6);
label L3; // Definition of label L3
PCO2.receive(MySig7);
goto L1; // Jump to label L1

}
}
:

20.2.8 The Goto statement in behaviour

The goto statement can be used in functions, test cases, named alternatives and the control part of a TTCN module.
The goto statement performs a jump to a label or to the beginning of an alt statement in order to force repeated
behaviour.

The re-evaluation of an alt statement can be achieved by either:

a) using goto <LabelId> where the relevant label statement should be placed immediately before the alt
keyword of the actual alternative that is to be jumped to; or

b) by using goto alt within the alt statement which should be re-evaluated. In this case the keyword alt can
be seen as an implicit label for the alt statement within which the goto is used.

20.2.8.1 Restricting the use of Goto

The goto statement provides the possibility to jump freely, i.e., forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g., a while loop) and to jump over several levels out of
nested compound statements (e.g., nested alternatives). However, the use of the goto statement shall be restricted by
the following rules:

a) It is not allowed to jump out of or into functions, test cases, named alternatives and the control part of a TTCN
module.

b) It is not allowed to jump into a sequence of statements defined in a compound statement (i.e., alt statement,
while loop, for loop, if-else statement, do- while loop and the interleave statement).

c) As an exception to rule a) for named alternatives, it is allowed to use goto alt inside a named alternative in
order to force the re-evaluation of an alt statement within which the named alternative may be expanded.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)69

NOTE: This rule provides the possibility to jump out of a named alternative in a restricted manner to provide the
functionality to describe defaults.

d) It is not allowed to use the goto statement within an interleave statement.

EXAMPLE:

// The following TTCN-3 code fragment includes
:
label L1;
MyVar := 2 * MyVar;
if (MyVar < 2000) { goto L1; } // ... a jump backward to L1 and
MyVar2 := Myfunction(MyVar);
if (MyVar2 > MyVar) { goto L2; } // ... a jump forward to L2,
PCO1.send(MyVar);
PCO1.receive -> value MyVar2;
label L2;
PCO2.send(integer: 21);
alt {

[] PCO1.receive
{ goto alt; } // ... a jump which forces the re-evaluation of

// the previous alt statement
[] PCO2.receive(integer: 67)

{ label L3;
PCO2.send(MyVar);
alt {

[] PCO1.receive
{ goto alt; } // ... again a jump which forces the re-evaluation of the

// the previous alt statement (not the same as for the
// goto before),

[] PCO2.receive(integer: 90)
{ PCO2.send(integer: 33);

PCO2.receive(integer: 13);
goto L4; // ... a jump forward out of two nested alt statemens,

}
[] PCO2.receive(MyError)

{ goto L3; } // ... a jump backward out of the current alt statement,
[] any port.receive

{ goto L2; } // ... a jump backward out of two nested alt statements,
}

}
[] any port.receive

{ goto L2; } // ... and a long jump backward out of an alt statement
}
label L4;
:

20.3 Interleaved behaviour
Control transfer statements for, while, do-while, goto, activate, deactivate, stop, return and (direct
and indirect) calls of user-defined functions, which include communication operations, shall not be used in
interleave statements. In addition, it is not allowed to guard branches of an interleave statement with Boolean
expressions (i.e., the '[]' shall always be empty). It is also not allowed to expand interleave statements with named
alternatives or to specify else branches in interleaved behaviour.

Interleaved behaviour can always be replaced by an equivalent set of nested alternatives. The procedures for this
replacement are described in annex B.

The rule for the evaluation of an interleaving statement is the following:

a) whenever a reception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement is reached or the interleaved sequence ends;

NOTE: Reception statements are TTCN-3 statements which may occur in sets of alternatives i.e., receive,
check, trigger, getcall, getreply, catch and timeout. Non-reception statements denote all
other non-control-transfer statements which can be used within the interleaving statement.

b) the evaluation then continues by taking the next snapshot.

The operational semantics of interleaving are fully defined in annex B.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)70

EXAMPLE:

// The following TTCN-3 code fragment
:
interleave {
[] PCO1.receive(MySig1)

{ PCO1.send(MySig2);
PCO1.receive(MySig3);

}
[] PCO2.receive(MySig4)

{ PCO2.send(MySig5);
PCO2.send(MySig6);
PCO2.receive(MySig7);

}
}
:

// can be interpreted as a shorthand for
:
alt {
[] PCO1.receive(MySig1)

{ PCO1.send(MySig2);
alt {
[] PCO1.receive(MySig3)

{ PCO2.receive(MySig4);
PCO2.send(MySig5);
PCO2.send(MySig6);
PCO2.receive(MySig7)

}
[] PCO2.receive(MySig4)

{ PCO2.send(MySig5);
PCO2.send(MySig6);
alt {
[] PCO1.receive(MySig3) {

PCO2.receive(MySig7); }
[] PCO2.receive(MySig7) {

PCO1.receive(MySig3); }
}

}
}

}
[] PCO2.receive(MySig4)

{ PCO2.send(MySig5);
PCO2.send(MySig6);
alt {
[] PCO1.receive(MySig1)

{ PCO1.send(MySig2);
alt {
[] PCO1.receive(MySig3)

{ PCO2.receive(MySig7);
}

[] PCO2.receive(MySig7)
{ PCO1.receive(MySig3);
}

}
}

[] PCO2.receive(MySig7)
{ PCO1.receive(MySig1);

PCO1.send(MySig2);
PCO1.receive(MySig3);

}
}

}
}

:

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)71

20.4 Default behaviour
Default behaviour can be seen as an extension to an alt statement or a single receive operation which is defined in a
special manner. A default behaviour shall be defined by specifying a named alt and activated before it can be invoked
and executed.

Activation of a default means that the alternatives defined in the relevant named alt are appended to the top-level of all
subsequent alternatives.

The default behaviour is also appended to any single (i.e., not in an alt statement) receiving operations, timeouts or
done statements. This is because these operations are conceptually the same as one single alternative. For example:

:
MyPort.receive(MyMsg);
:

// Is the same as
:
alt {

[] MyPort.receive(MyMsg) {}
}
:

20.4.1 The Activate and Deactivate operations

A default behaviour is activated by using the activate operation and deactivated by using the deactivate
operation. An empty deactivate operation deactivates all active default behaviours.

In the case of multiple activation of multiple named alternatives the alt elements shall be expanded in the order of
activation.

In the case where the argument to an activate operation is a list of named alternatives the alt elements shall be
expanded in the order indicated by the list.

EXAMPLE:

named alt Default1() // named alt definition
{

[] MyPort.check
{MyBehaviour1()}

}

:

// inside behaviour definition
activate(Default1());

CL2.receive(MySetup);

alt{
[] CL2.receive(MySig1)

{CL2.send(MySig2)}

[] CL2.receive(MySig2)
{CL2.send(mySig1)}

}

// This statement deactivates the default behaviour Default1
deactivate(Default1);
// This statement deactivates all previously activated default behaviour
deactivate;

// Conceptually, after definition and activation the default alt is expanded to the end of
// any following alt or receive statements

activate (Default1());
:
CL2.receive(MySetup);

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)72

alt{
[] CL2.receive(MySig1)

{CL2.send(MySig2)}
[] CL2.receive(MySig2)

{CL2.send(mySig1)}
}

// is equivalent to
:
alt{

[] CL2.receive(MySetup); // The single receive now becomes an alt in its own right

[] MyPort.check
{MyBehaviour1()}

}

alt{
[] CL2.receive(MySig1)

{CL2.send(MySig2)}
[] CL2.receive(MySig2)

{CL2.send(mySig1)}

[] MyPort.check
{MyBehaviour1()}

}

20.5 The Return statement
The return statement terminates execution of a function and returns control to the point from which the function was
called. A return statement may be optionally associated with a return value. Using return in a test case or control
is equivalent to stop.

EXAMPLE:

function MyFunction() return boolean
{

:
if (date == "1.1.2000") { return false; }

// execution stops on the 1.1.2000 and returns false as a failure indication
:
return true; // true is returned

}

function MyBehaviour() return verdicttype
{

:
if (MyFunction()) { verdict.set(pass); } // use of MyFunction in an if statement
else { verdict.set(inconc); }
:
return verdict.get; // explicit return of the verdict

}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)73

21 Configuration operations
Configuration operations are used to set up and control test components. These operations shall only be used in TTCN-3
test cases and functions (i.e., not in the module control part).

Table 13: Overview of TTCN-3 configuration operations

Configuration operations
Statement Operation Name

Create parallel test component create
Connect one component to another component connect
Disconnect two components disconnect
Map component port to test interface port map
Unmap port from test system interface unmap
Get MTC address mtc
Get test system interface address system
Get own address self
Start execution of test component start
Stop execution of test component stop
Check termination of a PTC running
Wait for termination of a PTC done

21.1 The Create operation
The MTC is the only test component which is automatically created when a test case starts. All other test components
are created explicitly during test execution by create operations. A component is created with its full set of ports of
which the input queues are empty. Furthermore, if a port is defined to be of the type in or inout it shall be in a
listening state ready to receive traffic over the connection.

Since all components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it is invoked.

// This example declares a variable of type address, which is used to store the reference of a
// newly created component of type MyComponentType which is the result of the create function.

:
var MyComponenttype MyNewComponent;
:
MyNewComponent := MyComponentType.create;
:

The create operation shall return the unique component reference of the newly created instance. The unique
reference to the component will typically be stored in a variable (see clause 8.6) and can be used for connecting
instances and for communication purposes such as sending and receiving.

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other component). The visibility of component references shall
follow the same scope rules as that of variables and in order to reference components outside their scope of creation the
component reference shall be passed as a parameter or as a field in a message.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)74

21.2 The Connect and Map operations
The ports of a test component can be connected to other components or to the ports of the test system interface. In the
case of connections between two test components the connect operation shall be used. When connecting a test
component to a test system interface the map operation shall be used. The connect operation directly connects one
port to another with the in side connected to the out side and vice versa. The map operation on the other hand can be
seen purely as a name translation defining how communications streams should be referenced.

Connected Ports

OUT IN

IN

MTC PTC

INOUT

SUT

Abstract Test System Interface

Real Test System Interface

Mapped Ports

INOUT

Test system

Figure 7: Illustration of the connect and map operations

With both the connect operation and the map operation, the ports to be connected are identified by the component
references of the components to be connected and the names of the ports to be connected.

There are two operations for identifying the MTC i.e., mtc, and for identifying ports of the test system interface i.e.,
system (see clause 8.6). Both these operations can be used for identifying and connecting ports.

Both the connect and map operations can be called from any behaviour definition (function). However before either
operation is called the components to be connected shall have been created and their component references shall be
known together with the names of the relevant ports.

Both the map and connect operations allow the connection of a port to more than one other port. It is not allowed to
connect to a mapped port or to map to a connected port.

EXAMPLE:

// It is assumed that the ports Port1, Port2, Port3 and PCO1 are properly defined and declared
// in the corresponding port type and component type definitions
:
var MyComponentType MyNewComponent;
:
MyNewComponent := MyComponentType.create;
:
:
connect(MyNewComponent:Port1, mtc:Port3);
map(MyNewComponent:Port2, system:PCO1);
:
:
// In this example a new component of type MyComponentType is created and its reference stored
// in variable MyNewComponent. Afterwards in the connect operation, Port1 of this new component
// is connected with Port3 of the MTC. By means of the map operation, Port2 of the new component
// is then connected to port PCO1 of the test system interface

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)75

21.2.1 Consistent connections

For both the connect and map operations only consistent connections are allowed.

Assuming the following:

a) ports PORT1 and PORT2 are the ports to be connected;

b) inlist-PORT1 defines the messages or procedures of the in-direction of PORT1;

c) outlist-PORT1defines the messages or procedures of the out-direction of PORT1;

d) inlist-PORT2 defines the messages or procedures of the in-direction of PORT2; and

e) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.

The connect operation is allowed if and only if:

- outlist-PORT1 ⊆ inlist-PORT2 and outlist-PORT2 ⊆ inlist-PORT1.

The map operation (assuming PORT2 is the test system interface port) is allowed if and only if:

- outlist-PORT1 ⊆ outlist-PORT2 and inlist-PORT2 ⊆ inlist-PORT1.

In all other cases, the operations shall not be allowed.

Since TTCN-3 allows dynamic configurations and addresses, not all of these consistency checks can be made statically
at compile-time. All checks, which could not be made at compile-time, shall be made at run-time and shall lead to a test
case error when failing.

21.3 The Disconnect and Unmap operations
The disconnect and unmap operations are the opposite operations of connect and map. They perform the
disconnection (of previously connected) ports of test components and the unmapping of (previously mapped) ports of
test components and ports in the test system interface.

Both, the disconnect and unmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A disconnect or unmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

EXAMPLE:

:
:
connect(MyNewComponent:Port1, mtc:Port3);
map(MyNewComponent:Port2, system:PCO1);
:
:
disconnect(MyNewComponent:Port1, mtc:Port3); // disconnect previously made connection
unmap(MyNewComponent:Port2, system:PCO1); // unmap previously made mapping

21.4 The MTC, System and Self operations
The component reference (see clause 8.6) has two operations, mtc and system which return the reference of the
master test component and the test system interface respectively. In addition, the operation self can be used to return
the reference of the component in which it is called. For example:

var MyComponentType MyAddress;
MyAddress := self; // Store the current component reference

The only operations allowed on component references are assignment and equivalence.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)76

21.5 The Start test component operation
Once a component has been created and connected behaviour has to be bound to the component and the execution of its
behaviour has to be started. This is done by using the start operation (component creation does not start execution of
the component behaviour). The reason for the distinction between create and start is to allow connection
operations to be done before actually running the test component.

The start operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an already defined function. For example:

// It is assumed that the ports Port1, Port2, Port3 and PCO1 are properly defined and declared
// in the corresponding port type and component type definitions
:
var MyComponentType MyNewComponent;
:
MyNewComponent := MyComponentType.create;
:
connect(MyNewComponent:Port1, mtc:Port3);
connect(MyNewComponent:Port2, system:PCO1);
:
:
MyNewComponent.start(MyComponentBehaviour());
:

// In this example, a new component is first created, then connected to its environment and lastly
// it is started by means of the start operation. For identifying the component to be executed its
// reference is used

The following restrictions apply to a function invoked in a start test component operation:

• If this function has parameters they shall only be in parameters, i.e., value parameters.

• This function shall either have a runs on definition referencing the same component type as the newly created
component or shall pass in all information needed from the component type definition as parameters.

• Ports and timers can only be passed into this function if they refer to ports and timers in the component type
definition of the newly created component, i.e., ports and timers are local to component instances and shall not
be passed to other components.

NOTE: The ability to pass ports in as parameters allows the specification of generic functions that are not tied to
one specific component type.

21.6 The Stop test component operation
The stop test component statement explicitly stops the execution of the test component in which the stop is called. The
operation has no arguments. For example:

if (date == "1.1.2000") { stop; } // execution stops on the 1.1.2000

If the test component that is stopped is the MTC all remaining PTCs that are still running shall also be stopped and the
test case terminates.

NOTE: The concrete mechanism for stopping all remaining running PTCs is outside the scope of the present
document.

All resources shall be released when a test component terminates, either explicitly using the stop operation or through
reaching a return statement in the function that originally started the test component or implicitly when the
component reaches the end of its behaviour tree. Any variables storing a stopped component reference shall refer to
nothing.

The rules for the termination of test cases and the calculation of the final test verdict are described in clause 24.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)77

21.7 The Running operation
The running operation allows behaviour executing on a test component to ascertain whether behaviour running on a
different test component has completed. The running operation is considered to be a boolean expression and, thus,
returns a boolean value to indicate whether the specified test component (or all test components) has terminated. In
contrast to the done operation, the running operation can be used freely in boolean expressions. For example:

if (PTC1.running) // usage of running in an if statement
{

// Do something!
}

while (all component.running != true) { // usage of running in a loop condition
MySpecialFunction()

}

21.8 The Done operation
The done operation allows behaviour executing on a test component to ascertain whether the behaviour running on a
different test component has completed.

The done operation shall be used in the same manner as a receiving operation or a timeout operation. This means it
shall not be used in a boolean expression, but it can be used to determine an alternative in an alt statement or as
stand-alone statement in a behaviour description. In the latter case a done operation is considered to be a shorthand for
an alt statement with only one alternative, i.e., it has blocking semantics, and therefore provides the ability of passive
waiting for the termination of test components.

NOTE: The TTCN-3 done operation and the DONE operation TTCN-2 have identical semantics.

EXAMPLE:

// Use of done in alternatives
:
alt {

[] MyPTC.done {
verdict.set(pass)

}

[] any port.receive {
goto alt

}
}
:

// the following done as stand-alone statement:
:
all component.done;
:

// has the following meaning:
:
alt {

[] all component.done {}
}
:

// and thus, blocks the execution until all parallel test components have terminated

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)78

21.9 Using component arrays
The create, connect, start and stop operations do not work directly on arrays of components. Instead a
specific element of the array shall be provided as the parameter. For components the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of the create operation.

// This example shows how to model the effect of creating, connecting and running arrays of
// components using a loop and by storing the created component reference in an array of
// component references.

testcase MyTestCase() runs on MyMtcType system MyTestSystemInterface
{

:
var integer i;
var MyPTCType1 MyPtcType[11];
:
for (i:= 1; i<=10; i:=i+1)
{

MyPtcAddresses[i] := MyPtcType1.create;
connect(self:PtcCoordination, MyPtcAddresses[i]:MtcCordination);
MyPtcAddresses[i].start(MyPtcBehaviour());

}
:

}

21.10 Use of Any and All with components
The keywords any and allmay be used with configuration operations as indicated in table 14.

Table 14: Any and All with components

Operation Allowed Example
any all

create
start
running Yes but from

MTC only
Yes but from MTC
only

any component.running
all component.running

done Yes but from
MTC only

Yes but from MTC
only

any component.done
all component.done

stop

22 Communication operations
TTCN-3 supports message-based (asynchronous) and procedure-based (synchronous) communication (see clause 8.1).
Asynchronous communication is non-blocking on the send operation, as illustrated in figure 8 where processing in the
MTC continues immediately after the send operation occurs. The SUT is blocked on the receive operation until it
receives a sent message.

MTC SUT

send receive

Figure 8: Illustration of the asynchronous send and receive

Synchronous communication is blocking on the call operation, as illustrated in figure 9 where the call operation
blocks processing in the MTC until either a reply or exception is received from the SUT. Similar to the receive,
the getcall blocks the SUT until the call is received.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)79

call 1 getcall

reply or
raise exception

MTC SUT

2getreply
catch exception

Figure 9: Illustration of a complete synchronous call

Operations such as send and call are collectively known as communication operations. These operations shall only
be used in TTCN-3 test cases and functions (i.e., not directly in the module control part). The communication
operations are divided into three groups:

a) a component sends a message, calls a procedure, or replies to an accepted call or raises an exception. These
actions are collectively referred to as sending operations;

b) a component receives a message, accepts a procedure call, receives a reply for a previously called procedure or
catches an exception. These actions are collectively referred to as receiving operations;

c) control of access to a port by doing a clear, start or stop. These actions are collectively referred to as
controlling operations.

These operations can be used on the communication ports of a test component as summarized in table 15. In cases of
mixed ports all the operations are applicable.

Table 15: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at

message-based ports
Can be used at

procedure-based ports
Sending operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote entity reply Yes
Raise exception (to an accepted call) raise Yes
Receiving operations
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote entity getcall Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Check msg/call/exception/reply received check Yes Yes
Controlling operations
Clear port clear Yes Yes
Clear and give access to port start Yes Yes
Stop access (receiving & sending) to port stop Yes Yes

22.1 Sending operations
The sending operations are:

a) send: send a message asynchronously;

b) call: call a procedure;

c) reply: reply to an accepted procedure call from the SUT; and

d) raise: raise an exception in cases where a procedure call is received.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)80

22.1.1 General format of the sending operations

Sending operations consist of a send part and, in the case of the procedure-based call operation, a response and
exception handling part.

The send part:

• specifies the port at which the specified operation shall take place;

• defines the value of the information to be transmitted;

• gives an (optional) address expression which uniquely identifies the communication partner in the case of a one-
to-many connection.

The port name, operation name and value shall be present in all sending operations. The identification of the
communication partner (denoted by the to keyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity shall be explicitly identified.

22.1.1.1 Response and exception handling

Response and exception handling is only needed in cases of synchronous communication. The response and exception
handling part of the call operation is optional and is required for cases where the called procedure returns a value or
has out or inout parameters whose values are needed within the calling component and for cases where the called
procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of getreply and catch operations to
provide the required functionality.

22.1.2 The Send operation

The send operation is used to place a value on an outgoing message port queue. The value may be specified by
referencing a template, a variable, or a constant or can be defined in-line from an expression (which of course can be an
explicit value). When defining the value in-line the optional type field shall be used if there is ambiguity of the type of
the value being sent.

The send operation shall only be used on message-based (or mixed) ports and the type of the value to be sent shall be
in the list of outgoing types of the port type definition. For example:

MyPort.send(MyTemplate(5,MyVar));
// Sends the template MyTemplate with the actual parameters 5 and MyVar via MyPort.

MyPort.send(integer:5);
// Sends the integer value 5

In cases of one-to-many connections the communication partner shall be specified uniquely. This shall be denoted using
the to keyword. For example:

MyPort.send("My string") to MyPartner;
// Sends the string "My string" to a component with a component reference stored in the
// variable MyPartner.

MyPCO.send(MyVariable + YourVariable - 2) to MyPartner;
// Sends the result of the arithmetic expression to MyPartner.

22.2.1 The Call operation

The call operation is used to specify that a test component calls a procedure in the SUT or in another test component.
The call is a blocking operation in that it shall wait until it receives a response (i.e., a reply) or an exception from
the called entity. In other words the call operation works in a synchronous manner.

NOTE: This is comparable with the testing of server functionality i.e., the SUT is the server and the component
plays the role of a client.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)81

The call operation shall only be used on procedure-based (or mixed) ports. The type definition of the port at which
the call operation takes place shall include the procedure name in its out or inout list i.e., it must be allowed to call
this procedure at this port.

The value of the call operation is a signature that may either be defined in the form of a signature template or be
defined in-line. For example:

signature MyProc (out integer MyPar1, inout boolean MyPar2);
:
MyPort.call(MyProc:{MyVar1,MyVar2});
// Calls the remote procedure MyProc at MyCL with the in and inout parameters 5 and MyVar.
// Neither a return value nor an exception is expected from this call. If one (or both) of the
// two parameters is defined to be an inout parameter, its value will not be considered i.e.,
// it is not assigned to a variable.

// The following example explains the possibilities to assign values to in and inout parameters
// on the call argument. The following signature is assumed for the procedure to be called.
// Note: MyProc2 has no return value and no exceptions
signature MyProc2 (in integer A, out integer B, inout integer C);
:
MyPort.call(MyProc2:{1, - , 3});
// Only values of in and inout parameters are specified The returned values of out and inout
// parameters are not used after the call and, thus, not assigned to variables.

All in and inout parameters of the signature shall have a specific value i.e., the use of matching mechanisms such as
AnyValue is not allowed.

The signature arguments of the call operation are not used to retrieve variable names for out and inout parameters.
The actual assignment of the procedure return value and out and inout parameter values to variables shall explicitly
be made in the response (getreply) and exception handling (catch) part of the call operation. This is denoted by
the keywords value and param respectively. This allows the use of signature templates in call operations in the
same manner as templates can be used for types.

In general, a call operation is assumed to have blocking-semantics. However, TTCN-3 also supports non-blocking
calls. A call, which has no return values, is assumed to be a non-blocking call. Exceptions (if specified) raised by a call
without return values shall be caught within a following alt statement. In addition, it is also possible to force
non-blocking semantics by the nowait keyword (see clause 22.2.12).

In cases of one-to-many connections the communication partner shall be specified uniquely. This shall be denoted using
the keyword to. For example:

MyPort.call(MyProc:{MyVar1, MyVar2}) to MyPartner;
// In this example the called party is explicitly identified by the component reference stored
// in the variable MyPartner.

22.2.1.1 Handling responses to a Call

The handling of the response to a call is done by means of the getreply operation (see clause 22.3.5). This operation
defines the alternative behaviour depending on the response that has been generated as a result of the call operation.
For example:

MyPort.call(MyProc:{MyVar1, MyVar2}) to MyPartner // Where { … } is an inline template
{

[] MyCl.getreply(MyProc:{MyVar1, MyVar2}) {}
}

If needed, the return value of the called procedure shall be picked up explicitly in the getreply operation. This is
expressed using '->' and the (optional) keyword value. For example:

MyPort.call(MyProc:{MyVar1, MyVar2}) to MyPartner
{

[] MyCl.getreply(MyProc:{MyVar1, MyVar2}) -> value MyResult {}
}
// A value shall be returned by MyProc which will be stored in the variable MyResult.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)82

The signature arguments of the call operation are not used to retrieve variable names for out and inout parameters.
The actual assignment of the procedure return value and out and inout parameter values to variables shall explicitly
be made in the response (getreply) and exception handling (catch) part of the call operation. This is denoted by
the keywords value and param respectively. This allows the use of signature templates in call operations in the
same manner as templates can be used for types. For example:

MyPort.call(MyProc:{5,MyVar}) to MyPartner
{

[]MyCl.getreply(MyProc:{MyVar1, MyVar2}) -> value MyResult param (MyPar1Var,MyPar2Var) {}
}
// In this example both parameters of MyProc are specified as inout parameters and their values
// after the termination of MyProc are assigned to MyPar1Var and MyPar2Var.

22.2.1.2 Handling exceptions to a Call

The handling of exceptions to a call is done by means of the catch operation (see clause 22.3.6). This operation
defines the alternative behaviour depending on the exception (if any) that has been generated as a result of the call
operation. For example:

signature MyProc3 (out integer MyPar1, inout boolean MyPar2) return MyResultType
exception (ExceptionTypeOne, ExceptionTypeTwo, ExceptionTypeThree);

:
// The following call operation shows the getreply and exception handling mechanism of the
// call operation

MyPort.call(MyProc3:{5,MyVar}, 30E-3) to MyPartner
{

[] MyCl.getreply(MyProc3:{MyVar1, MyVar2}) -> value MyResult param (MyPar1Var,MyPar2Var) {}
[] MyPort.catch(MyProc3, MyExceptionOne)

{ // catch an exception
verdict.set(fail); // set the verdict and
stop // stop as result of the exception

}
[] MyPort.catch(MyProc3, MyExceptionTwo) // catch a second exception

{verdict.set(inconc)} // set the verdict and continue after
// the call as result of the
// second exception

[MyCondition] MyPort.catch(MyProc3, MyExceptionThree) {} // catch a third exception which
// may occur if MyCondition
// evalutates to true

[] MyPort.catch(timeout) {} // timeout exception i.e., the called party
// does not react in time, nothing is done

}

22.2.1.3 Handling timeout exceptions to the Call

The call operation may optionally include a timeout. This is defined as an explicit value or constant of float type
and defines the length of time after the call operation has started that a timeout exception shall be generated by the
test system. If no timeout value part is present in the call operation no timeout exception shall be generated. For
example:

MyPort.call(MyProc:{5,MyVar}, 20E-3)
{

[] MyPort.catch(timeout)
{

verdict.set(fail);
stop

}
}
// This example shows a call with a timeout value of 20ms. This means if the called party does
// not respond with a reply or exception within this time the test system will automatically
// generate a timeout exception. The handling of the timeout is done by means of a catch
// operation. If the procedure completes without a timeout exception, execution will continue
// with the statement following the call operation.

Using the keyword nowait in the timeout value part of a call operation allows calling a procedure without waiting
either for a termination, a response, an exception raised by the called procedure or a timeout exception. For example:

MyPort.call(MyProc:{5, MyVar}, nowait);
// In this example the test component will continue execution without
// waiting for the termination of MyProc.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)83

In such cases a possible response or exception has to be removed from the queue by using a getreply or a catch
operation in a subsequent alt statement.

22.2.2 The Reply operation

The reply operation is used to reply to a previously accepted call according to the procedure signature. A reply
operation shall only be used at a procedure-based (or mixed) port. The type definition of the port shall include the name
of the procedure to which the reply operation belongs.

The value part of the reply operation consists of a signature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line. All out and inout parameters of the signature shall have a specific value i.e., the use of matching
mechanisms such as AnyValue is not allowed. For example:

MyPort.reply(MyProc2:{ - ,5});
// Replies to an accepted call of MyProc2. The MyProc2 has no return value but two parameters.
// The first parameter is an in parameter i.e., its value will not be replied and therefore
// needs not to be specified. The second parameter is either an out or an inout parameter. Its
// value is 5.

In cases of one-to-many connections the communication partner shall be specified explicitly and shall be unique. This
shall be denoted using the to keyword. For example:

MyPort.reply(MyProc3:{ - ,5}) to MyPartner;
// This example is identical to previous one, but the reply is directed to a component with a
// component reference stored in variable MyPartner

If a value is to be returned to the calling party this shall be explicitly stated using the value keyword.

MyPort.reply(MyProc:{5,MyVar} value 20);
// Replies to an accepted call of MyProc. The return value of MyProc is 20 and it has two
// parameters which are out or inout parameters. Their values are provided by 5 and MyVar.

22.2.3 The Raise operation

The raise operation is used to raise an exception. An exception shall only be raised at a procedure-based (or mixed)
port. An exception is a reaction to an accepted procedure call the result of which leads to an exceptional event. The type
of the exception shall be specified in the signature of the called procedure. The type definition of the port shall include
in its list of accepted procedure calls the name of the procedure to which the exception belongs.

NOTE: The relation between an accepted call and a raise operation cannot always be checked statically. For
testing it is allowed to specify a raise operation without an associated getcall operation.

The value part of the raise operation consists of the signature reference followed by the exception value. For
example:

MyPort.raise(MySignature, MyVariable + YourVariable - 2);
// Raises an exception with a value which is the result of the arithmetic expression
// at MyPort

Exceptions are specified as a type. Therefore the exception value may either be derived from a template or be the value
resulting from an expression (which of course can be an explicit value). The optional type field in the value
specification to the raise operation shall be used in cases where it is necessary to avoid any ambiguity of the type of
the value being sent. For example:

MyPort.raise(MyProc, MyExceptionType:{5, MyVar});
// Raises an exception from the remote procedure defined by Myproc with the value defined
// by template MyExceptionTemplate with the actual parameters 5 and MyVar at port MyPort

In cases of one-to-many connections the communication partner shall be specified uniquely. This shall be denoted using
the keyword to. For example:

MyPort.raise(MySignature, "My string") to MyPartner;
// Raises a string exception with the value"My string" at MyPort to to a component with an
// component reference stored in variable MyPartner

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)84

22.3 Receiving operations
The receiving operations are:

a) receive: receive an asynchronously sent message;

b) trigger: trigger on the reception of a specific message;

c) getcall: accept a procedure call;

d) getreply: handling the reply to a previously called procedure;

e) catch: catch an exception which has be raised as a reaction to a call operation; and

f) check: check the top element of the in-queue of a particular port.

22.3.1 General format of the receiving operations

Receiving operation consists of a receive part and an assignment part.

The receive part:

a) specifies the port at which the operation shall take place;

b) defines a matching part which specifies the acceptable input which will match the statement;

c) gives an (optional) address expression which uniquely identifies the communication partner (in case of
one-to-many connections).

The port name, operation name and value part of all receiving operations shall be present. The identification of the
communication partner (denoted by the from keyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity needs to be explicitly identified.

22.3.1.1 Making assignments on receiving operations

The assignment part in a receiving operation is optional. For message-based ports it is used when it is required to store
received messages. In the case of procedure-based ports it is used for storing the in and inout parameters of an
accepted call or for storing exceptions.

In addition, the assignment part may also be used to assign the sender address of a message, exception, reply or
call to a variable. This is useful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, reply or exception must be sent back to the original sending
component.

22.3.2 The Receive operation

The receive operation is used to receive a value from an incoming message port queue. The value may be specified
by referencing a template, a variable, or a constant or can be defined in-line from an expression (which of course can be
an explicit value). When defining the value in-line the optional type field shall be used to avoid any ambiguity of the
type of the value being received. The receive operation shall only be used on message-based (or mixed) ports and the
type of the value to be received shall be included in the list of incoming types of the port type definition.

The receive operation removes the top message from the associated incoming port queue if, and only if, that top
message satisfies all the matching criteria associated with the receive operation. No binding of the incoming values
to the terms of the expression or to the template shall occur.

If the match is not successful, the top message shall not be removed from the port queue i.e., if the receive operation
is not successful the execution of the test case shall continue with the next alternative.

The matching criteria are related to the type and value of the message to be received. The type and value of the message
to be received may either be derived from a template or be the value resulting from an expression (which of course can
be an explicit value).

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)85

MyPort.receive(MyTemplate(5, MyVar));
// Specifies the reception of a value which fulfils the conditions defined by the template
// MyTemplate with actual parameters 5 and MyVar.

MyPort.receive(A<B);
// Specifies the reception of a Boolean value true or false depending on the outcome of A<B

An optional type field in the matching criteria to the receive operation shall be used to avoid any ambiguity of the
type of the value being received. For example:

MyPort.receive(integer:MyVar);
// Specifiess the reception of an integer value which has the same value as the variable MyVar
// at MyPort. The (optional) type identifier integer is not strictly necessary because the
// type is already given by the definition of MyVar. However, in complex and long test cases
// such a type identifier may be used to improve readability.

MyPort.receive(MyVar);
// Is an alternative to the previous example.

If the match is successful, the value removed from the port queue can be stored in a variable and the address of the
component that sent the message, can be retrieved and stored in a variable. This is denoted by the symbol '->' and the
keyword value. For example:

MyPort.receive(MyType:*) from MyPartner -> value MyVar;
// Specifies the reception of an arbitrary value of MyType (from a component with an address
// stored in variable MyPartner) which afterwards is assigned to the variable MyVar. MyVar has
// to be of the type MyType.

In the case of one-to-many connections the receive operation may be restricted to a certain communication partner.
This restriction shall be denoted using the from keyword.

MyPort.receive(charstring:"Hello")from MyPartner;
// Specifies the reception of the charstring "Hello" from a component with a component reference
// or address stored in the variable MyPartner.

It is also possible to retrieve the component reference or address of the sender of a message. This is denoted by the
keyword sender. For example:

MyPort.receive(MyTemplate:{5, MyVarOne}) -> value MyVarTwo sender MyPartner;
// Specifies the reception of a value which fulfils the conditions defined by the template
// MyTemplate with actual parameters 5 and MyVarOne. After reception the value is assigned to
// the variable MyVarTwo. The reference of the sender component is retrieved by call operation
// and assigned to variable MyPartner.

MyPort.receive(A<B) -> sender MyPartner;
// Specifies the reception of a Boolean value of true or false depending on the outcome of A<B.
// The component reference of the sender component is retrieved by call operation and assigned
// to variable MyPartner.

22.3.2.1 Receive any message

A receive operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.

NOTE: This is equivalent to the TTCN-2 OTHERWISE statement.

A message received by ReceiveAnyMessage shall not be assigned to a variable.

EXAMPLE:

MyPort.receive;
// Removes the top value from MyPort.MyPort.

MyPort.receive from MyPartner;
// Removes the top value from CL1 if it is a message from the component with the
addressreference

MyPort.receive -> sender MySenderVar;
// Removes the top value from CL1, but remembers the sending instance by storing its reference
// in MySenderVar

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)86

22.3.2.2 Receive on any port

To receive a message on any port use the any keyword. For example:

any port.receive(MyMessage);

22.3.3 The Trigger operation

The trigger operation filters messages with certain matching criteria from a stream of received messages on a given
incoming port. The trigger operation shall only be used on message-based (or mixed) ports and the type of the value
to be received shall be included in the list of incoming types of the port type definition. All messages that do not fulfil
the matching criteria shall be removed from the queue without any further action i.e., the trigger operation waits for the
next message on that queue. If a message meets the matching criteria, the trigger operation behaves in the same
manner as a receive operation. For example:

MyPort.trigger(MyType:*);
// Specifies that the operation will trigger on the reception of the first message observed of
// the type MyType with an arbitrary value at port MyPort.

The trigger operation requires the port name, matching criteria for type and value, an optional from restriction
(i.e., selection of communication partner) and an optional assignment of the matching message and sender component to
variables.

EXAMPLE:

MyPort.trigger(MyType:*) from MyPartner;
// Specifies that the operation will trigger on the reception of the first message observed of
// the type MyType with an arbitrary value at port MyCL coming from a component with a reference
// identical to the one stored in the variable MyPartner.

MyPort.trigger(MyType:*) from MyPartner -> value MyRecMessage;
// This example is almost identical to the previous example. The addition is that the message
// which triggers i.e., all matching criteria are met, is stored in the variable MyRecMessage.

MyPort.trigger(MyType:*) -> sender MyPartner;
// Specifies that the operation will trigger on the reception of the first message observed of
// the type MyType with an arbitrary value at MyPort. The reference of the sender component
// of this message will be stored in the variable MyPartner.

MyPort.trigger(integer:*) -> value MyVar sender MyPartner;
// Specifies that the operation will trigger on the reception of an arbitrary integer value
// which afterwards is stored in the variable MyVar and the reference of the sender component of
// this message will be stored in the variable MyPartner.

22.3.3.1 Trigger on any message

A trigger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical
to the meaning of receive any message. A message received by TriggerOnAnyMessage shall not be assigned to a
variable.

EXAMPLE:

MyPort.trigger;

MyPort.trigger from MyPartner;

MyPort.trigger -> sender MySenderVar;

22.3.3.2 Trigger on any port

To trigger on a message at any port use the any keyword. For example:

any port.trigger

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)87

22.3.4 The Getcall operation

The getcall operation is used to specify that a test component accepts a call from the SUT, or another test
component. The getcall operation shall only be used on procedure-based (or mixed) ports and the signature of the
procedure call to be accepted shall be included in the list of allowed incoming procedures of the port type definition.

MyPort.getcall(MyProc(5, MyVar));
// Will accept a call of MyProc at MyCL with the in or inout parameters 5 and value of MyVar.

The getcall operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated to the getcall operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteria for the signature may either be specified in-line or be
derived from a signature template.

A getcall operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted using the from keyword.

MyPort.getcall(MyProc:{5, MyVar}) from MyPartner;
// Will accept a call of MyProc at MyCL (with the in or inout parameters 5 and value of MyVar)
// from a peer entity with the address or component reference stored in variable MyPartner.

The assignment part of the getcall operation comprises the optional assignment of in and inout parameter values
to variables and the retrieval and assignment of the address of the calling component to a variable.

The keyword param is used to retrieve the parameter values of a call. For example:

MyPort.getcall(MyProc:{5, MyVar}) from MyPartner -> param (MyPar1Var, MyPar2Var);
// Both parmeters of MyProc are inout parameters and that their values are assigned
// to MyPar1Var and MyPar2Var. The identification of parameters defined in the procedure
// signature and the names in the list of variable names following the param keyword in the
// accept operation above is done by the order in the list

The keyword sender is used when it is required to retrieve the address of the sender (e.g., for addressing a reply or
exception to the calling party in a one-to-many configuration).

MyPort.getcall(MyProc:{5, MyVar}) -> sender MySenderVar;
// Will accept a call of MyProc at MyCL with the in or inout parameters 5 and MyVar. The calling
// party is retrieved by the accept operation and stored in MySenderVar. This allows to handle
// call of the same procedure from several components at the same port in the same manner.
// MySenderVar can be used to reply or raise an exception to the calling component.

The signature argument of the getcall operation shall not be used to pass in variable names for in and inout
parameters. The assignment of in and inout parameter values to variables shall be made in the assignment part of the
getcall operation. This allows the use of signature templates in getcall operations in the same manner as
templates are used for types.

The following getcall operations show the possibilities to use matching attributes and omit optional parts, which
may be of no importance for the test specification.

EXAMPLE:

MyPort.getcall(MyProc:{5, MyVar}) -> param(MyPar1Var, MyPar2Var) sender MySenderVar;

MyPort.getcall(MyProc:{5, *}) -> param(MyPar1Var, MyPar2Var);

MyPort.getcall(MyProc:{*, MyVar}) -> param(- , MyPar2Var);
// Value of the first inout parameter is not important or not used

// The following examples shall explain the possibilities to assign in and inout parameter
// values to variables. The following signature is assumed for the procedure to be called

signature MyProc2(in integer A, integer B, integer C, out integer D, integer E, inout integer F);
// MyProc2 has no return value and no exceptions

MyPort.getcall(MyProc2:{*, *, 3, - , - , *}) ->
param(MyVarIn1, MyVarIn2, MyVarIn3, - , - ,MyVarInout1);

// The in parameters A, B and C are assigned to the variables MyVarIn1, MyVarIn2 and MyVarIn3
// the inout paramameter F is assigned to variable MyVarInout1. The out parameters D and E need
// not to be considered in the assignment part of the accept operation.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)88

MyPort.getcall(MyProc2:{*, *, *, - , - , *}) -> param(MyVarIn1:=A, MyVarIn2:=B, MyVarIn3:=C,
MyVarInout1:=F);
// Alternative notation for the value assignment of in and inout parameter to variables. Note,
// the names in the assignment list refer to the names used in the signature of MyProc2

MyPort.getcall(MyProc2:{1, 2, 3, - , - ,*}) -> param(MyVarInout1:=F);
// Only the inout parameter value is needed for the further test case execution

22.3.4.1 Accepting any call

A getcall operation with no argument list for the signature matching criteria will remove the call on the top of the
incoming port queue (if any) if all other matching criteria are fulfilled. Parameters of calls accepted by AcceptAnyCall
shall not be assigned to a variable.

EXAMPLE:

MyPort.getcall;
// Removes the top call from MyPort.

MyPort.getcall from MyPartner;
// Removes the top call from CL1 if the calling party is an entity with an address or component
// reference stored in the variable MyPartner.

MyPort.getcall -> sender MySenderVar;
// Removes the top call from CL1, but remembers the calling party by storing its address or
// component reference in MySenderVar

22.3.4.2 Getcall on any port

To getcall on any port is denoted by the any keyword. For example:

any port.getcall(MyProc)

22.3.5 The Getreply operation

The getreply operation is used to handle replies from a previously called procedure. A getreply operation shall
only be used at a procedure-based (or mixed) port. For example:

MyPort.getreply(MyProc:{5, MyVar} value 20);
// Accepts a reply of procedure MyProc where the returned value is 20 and the values of the two
// out or inout parameters is 5 and the value of MyVar.

MyPort.getreply(MyProc2:{ - , 5});
// Accepts a reply from MyProc2. MyProc2 has no return value but two parameters. The first
// parameter is an in parameter i.e., its value will not be replied and therefore will not be
// considered for matching. The second parameter is either an out or an inout parameter. Its
// value has to be 5.

It may either be used in the getreply and exception part of a call, for example:

MyPort.call (MyProc) to MyPeer
{

[] MyPort.getreply(MyProc:*) {}
[] MyPort.catch {}

}

or within an alt statement, for example:

MyPort.call (MyProc, nowait) to MyPeer;
:
alt
{

[] MyPort.getreply(MyProc:*) {}
:

}

If used in an alt statement the getcall should cover cases where the response of a previously called procedure
arrives too late i.e., a timeout exception has been raised.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)89

As with other receiving operations matching mechanisms are allowed in the getreply operation in order to
distinguish between replies from a previously called procedure which either differ in the returned value and/or the value
of out and inout parameters.

MyPort.getreply(MyProc1:{*, MyVar});
// In this example there is no restriction on the returned value and the value of the
// first parameter.

MyPort.getreply(MyProc1:{*, *});
// The getreply operation will match with any reply from MyProc1 with any returned value. The
// stars are inline template definitions for MyProc1 and the return type of MyProc1.

In cases of one-to-many connections the getreply operation allows to distinguish between different communication
partners by using a from clause.

MyPort.getreply(MyProc2:{ - ,5}) from MyPartner;
// The reply is only accepeted if it is from a component with the reference specified in the
// variable MyPartner

The optional assignment part of the getreply operation allows to assign values of out and inout parameters and
returned values to variables.

EXAMPLE:

MyPort.getreply(MyProc1:{*, *} value *) -> value MyReturnValue param(MyPar1,MyPar2);
// After acceptance, the returned value is assigned to variable MyReturnValue and the value
// of the two out or inout parameters is assigned to the variables MyPar1 and MyPar2.

MyPort.getreply(MyProc1:{*, *} value *) -> value MyReturnValue param(- , MyPar2) sender MySender;
// The value of the first parameter is not considered for the further test execution and
// the address or component reference of the entity from which the response has been received
// is stored in the variable MySender.

// The following examples describe some possibilities to assign out and inout parameter values
// to variables. The following signature is assumed for the procedure which has been called
signature MyProc2(in integer A, integer B, integer C, out integer D, integer E, inout integer F);
// Note: MyProc2 has no return value and no exceptions

MyPort.getreply(MyProc2:*) -> param(- , - , - , MyVarOut1, MyVarOut2, - , MyVarInout1);
// The in parameters D and E are assigned to the variables MyVarOut1 and MyVarOut2 the inout
// paramameter F is assigned to variable MyVarInout1.

MyPort.getreply(MyProc2:*) -> param(MyVarOut1:=D, MyVarOut2:=E, MyVarInout1:=F);
// Alternative notation for the value assignment of in and inout parameter to variables. Note,
// the names in the assignment list refer to the names used in the signature of MyProc2

MyPort.getreply(MyProc2:{ - , - , - , 3, *, *}) -> param(MyVarInout1:=F);
// Only the inout parameter value is needed for the further test case execution

22.3.5.1 Get any reply from any call

A getreply operation with no argument list for the signature matching criteria shall remove a reply message on the
top of the incoming port queue (if any) if all other matching criteria are fulfilled. Parameters or return values of
responses accepted by GetAnyReply shall not be assigned to a variable.

EXAMPLE:

MyPort.getreply;
// Removes the top response from MyPort.

MyPort.getreply from MyPartner;
// Removes the top response from CL1 if the responding party is an entity with the address
// or component reference stored in variable MyPartner.

MyPort.getreply -> sender MySenderVar;
// Removes the top response from CL1, but remembers the responding party by storing it
// in the variable MySenderVar

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)90

22.3.5.2 Get a reply on any port

To get a reply on any port use the any keyword. For example:

any port.getreply(Myproc)

22.3.6 The Catch operation

The catch operation is used to catch exceptions raised by a peer entity as a reaction to a procedure call. The catch
operation shall only be used at procedure-based (or mixed) ports. The type of the caught exception shall be specified in
the signature for the procedure which raised the exception.

MySyncPort.catch(MySignature, integer: MyVar);
// Specifiess the catch of an exception raised by a procedure with a signature Mysignature at
// port MySyncPort. The exception is an integer value which has the same value as the variable
// MyVar. The (optional) type identifier integer is not strictly necessary because the type is
// already given by the definition of MyVar. However, in complex and long test cases such a type
// identifier may be used to improve readability.

MySyncPort.catch(MySignature, MyVar);
// Is an alternative to the previous example.

MySyncPort.catch(MySignature, A<B);
// Catches a Boolean exception of true or false depending on the outcome of A<B raised by a
// procedure with a signature MySignature at port MySyncPort.

The catch operation may be part of the accepting part of a call or be used to determine an alternative in an alt
statement. If the catch operation is used in the accepting part of a call operation, the information about port name
and signature reference to indicate the procedure which rose the exception is redundant, because this information
follows from the call operation. However, for readability reasons (e.g., in case of complex call statements) this
information shall be repeated.

Exceptions are specified as types and thus can be treated like messages e.g., templates can be used to distinguish
between different values of the same exception type.

MySyncPort.catch(MySignature, MyTemplate:{5, MyVar});
// Catches an exception raised by a procedure with a signature Mysignature at port MySyncPort
// which fulfils the conditions defined by the template MyTemplate with actual parameters 5
// and MyVar.

The catch operation requires the port name, matching criteria for type and value, an optional from restriction (i.e.,
selection of communication partner) and an optional assignment of the matching exception and sender component to
variables. For example:

MySyncPort.catch(MySignature, charstring:"Hello")from MyPartner;
// Catches the IA5 string "Hello" raised by a procedure with a signature Mysignature at port
// MySyncPort from an entity with an address or component reference stored in MyPartner.

MySyncPort.catch(MySignature, MyType:*) from MyPartner -> value MyVar;
// Catches an exception with an arbitrary value of MyType (raised by a procedure with a
// signature Mysignature at port MySyncPort from a component with a reference stored in
// the variable MyPartner) which afterwards is assigned to the variable MyVar. MyVar has to be
// of the type MyType.

MySyncPort.catch(MySignature, MyTemplate (5, MyVarOne)) -> value MyVarTwo sender MyPartner;
// Catches an exception raised by a procedure with a signature Mysignature with a value which
// fulfils the conditions defined by the template MyTemplate with actual parameters 5 and
// MyVarOne. Afterwards the exception is assigned to MyVarTwo. The address or reference of the
// sender entity is retrieved by the catch operation and assigned to MyPartner.

22.3.6.1 The Timeout exception

There is one special timeout exception which is caught by the catch operation. The timeout exception is an
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time.
For example:

MyPort.catch(timeout); // Catches a timeout exception.

Catching timeout exceptions shall be restricted to the exception handling part of a call. No further matching criteria
(including a from part) and no assignment part is allowed for a catch operation that handles a timeout exception.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)91

22.3.6.2 Catch any exception

A catch operation with no argument list allows any valid exception to be caught. The most general case is without
using the from keyword and without an assignment part. This statement will also catch the timeout exception. For
example:

MyPort.catch;

MyPort.catch from MyPartner;

MyPort.catch -> sender MySenderVar;

22.3.6.3 Catch on any port

To catch an exception on any port use the any keyword. For example:

any port.catch(timeout)

22.3.7 The Check operation

The check operation is a generic operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation has to
handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptions to be
caught and replies from previous calls at procedure-based ports.

The receiving operations receive, getcall, getreply and catch together with their matching and assignment
parts, are used by the check operation to define the condition which has to be checked and to extract the value or
values of its parameters if required.

MyAsyncPort.check(receive(integer: 5));
// Will check for an integer value of 5 as top message in the asynchronous port MyAsyncPort.

MyPort.check(getcall(MyProc:{5, MyVar}) from MyPartner);
// Will check for a a call of MyProc at MyCL (with the in or inout parameters 5 and MyVar) from
// a peer entity with the address or component reference stored in the variable MyPartner.

MyPort.check(getreply(MyProc:{5, MyVar} value 20));
// Checks for a reply from procedure MyProc at MyPort where the returned value is 20 and
// the values of the two out or inout parameters is 5 and the value of MyVar.

MySyncPort.check(catch(MySignature, MyTemplate (5, MyVar)));
// Checks for an exception raised by a procedure with a signature Mysignature at port MySyncPort
// which fulfils the conditions defined by the template MyTemplate with actual parameters 5
// and MyVar.

It is the top element of an incoming port queue that shall be checked (it is not possible to look into the queue). If the
queue is empty the check operation fails. If the queue is not empty, a copy of the top element is made and the
receiving operation specified in the check operation is performed on the copy. The check operation fails if the
receiving function fails i.e., the matching criteria are not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the normal manner, i.e., the next alternative to the check operation is
evaluated. The check operation is successful if the receiving function is successful.

Using the check operation in a wrong manner, e.g., check for an exception at a message-based port shall cause a test
case error.

NOTE: In most cases the correct usage of the check operation can be checked statically, i.e., before compilation.

EXAMPLE:

MyPort.check(getreply(MyProc1:{*, MyVar} value *) -> value MyReturnValue param(MyPar1));
// In this example the returned value is assigned to variable MyReturnValue and the value of
// the first out or inout parameter is assigned to variable MyPar1.

MyPort.check(getcall(MyProc:{5, MyVar}) from MyPartner -> param (MyPar1Var, MyPar2Var));
// In this example both parameters of MyProc are considered to be inout parameters and that
// their values are assigned to MyPar1Var and MyPar2Var.

MyPort.check(getcall(MyProc:{5, MyVar}) -> sender MySenderVar);
// Will accept a call of MyProc at MyCL with the in or inout parameters 5 and MyVar. The calling
// party is retrieved and stored in MySenderVar.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)92

22.3.7.1 The Check any operation

A check operation with no argument list allows to check whether something waits for processing in an incoming port
queue. The CheckAny operation allows to distinguish between different senders (in case of one-to-many connections)
by using a from clause and to retrieve the sender by using a shorthand assignment part with a sender clause.

EXAMPLE:

MyPort.check;

MyPort.check(from MyPartner);

MyPort.check(-> sender MySenderVar);

22.4 Controlling communication ports
TTCN-3 operations for controlling message-based, procedure-based and mixed ports are:

• clear: remove the contents of an incoming port queue;

• start: start listening at and give access to a port;

• stop: stop listening and disallow sending operations at a port.

22.4.1 The Clear port operation

The clear operation removes the contents of the incoming queue of the named port. If the port queue is already empty
then this operation shall have no action.

MyPort.clear; // clears port MyPort

22.4.2 The Start port operation

If a port is defined as allowing receiving operations such as receive, getcall etc., the start operation clears the
incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such as send, call, raise etc., are also allowed to be performed at that port. For
example:

MyPort.start; // starts MyPort

By default, all ports of a component shall be started when a component starts execution.

22.4.3 The Stop port operation

If a port is defined as allowing receiving operations such as receive, getcall the start operation stop
operation causes listening at the named port to cease. If the port is defined to allow sending operations then stop port
disallows the operations such as send, call, raise etc., to be performed. For example:

MyPort.stop; // stops MyPort

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)93

22.5 Use of any and all with ports
The keywords any and allmay be used with configuration operations as indicated in table 16.

Table 16: Any and All with ports

Operation Allowed Example
any all

Receive communication operations (receive,
trigger, getcall, getreply, catch, check)

yes any port.receive

connect / map

Start yes all port.start
Stop yes all port.stop
Clear yes all port.clear

23 Timer operations
TTCN-3 supports a number of timer operations. These operations may be used in test cases, functions and in module
control.

Table 17: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol

Start timer Start
Stop timer Stop
Read elapsed time Read
Check if timer running running
Timeout event timeout

23.1 The Start timer operation
The start timer operation is used to indicate that a timer should start running. Timer values shall be of type float.
For example:

MyTimer1.start; // MyTimer1 is started with the default duration
MyTimer2.start(20E-3); // MyTimer2 is started with a duration of 20ms

The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default
value specified in the timer declaration. When a timer duration is overridden, the new value applies only to the current
instance of the timer, any later start operations for this timer, which do not specify a duration, shall use the default
duration. The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

23.2 The Stop timer operation
The stop operation is used to stop a running timer and to remove it from the list of running timers. A stopped timer
becomes inactive and its elapsed time is set to the float value zero (0.0). If the timer name on the stop operation is
all, then all running (i.e., active) timers are stopped. For example:

MyTimer1.stop; // stops MyTimer1
all timer.stop; // stops all running timers

Stopping an inactive timer is a valid operation, although it does not have any effect.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)94

23.3 The Read timer operation
The read operation is used to retrieve the time that has elapsed since the specified timer was started and to store it into
the specified variable. This variable shall be of type float. For example:

var float Myvar;
MyVar := MyTimer1.read; // assign to MyVar the time that has elapsed since MyTimer1 was started

Applying the read operation on an inactive timer will return the value zero.

23.4 The Running timer operation
The running operation is used to check whether or not a timer is running (i.e., that it has been started and has neither
timed out nor been cancelled). The operation returns the value true if the timer is running, false otherwise. For
example:

if (MyTimer1.running) { … }

23.5 The Timeout event
The timeout operation denotes the timeout of a previously started timer. The timeout operation can be used in
alternatives together with receive and getcall, getreply, catch and other timeout operations.

EXAMPLE:

MyTimer1.timeout; // checks for the timeout of the previously started timer MyTimer1

The any keyword is used to indicate the timeout of any timer (rather than an explicitly named timer) started within
the scope of the timeout. For example:

any timer.timeout; // checks for the timeout of any previously started timer

23.6 Use of any and all with timers
The keywords any and allmay be used with timer operations as indicated in table 18.

Table 18: Any and All with Timers

Operation Allowed Example
any all

start
stop yes All timer.stop
read
running yes if (any timer.running) {…}
timeout yes Any timer.timeout

24 Test verdict operations
Verdict operations allow to set and retrieve verdicts using the get and set operations respectively. These operations
shall only be used in test cases and functions.

Table 19: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol

Set local verdict Verdict.set
Get local verdict Verdict.get

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)95

Each test component of the active configuration shall maintain it's own local verdict. The local verdict is an object
which is created for each test component at the time of its instantiation. It is used to track the individual verdict in each
test component (i.e., in the MTC and in each and every PTC).

NOTE: Unlike TTCN-2 assigning a final verdict does not halt execution of the test component in which the
behaviour is executing. If required, this shall be explicitly done using the stop statement.

24.1 Test case verdict
Additionally there is a global verdict that is updated when each test component (i.e., the MTC and each and every PTC)
terminates execution. This verdict is not accessible to the get and set operations. The value of this verdict shall be
returned by the test case when it terminates execution. If the returned verdict is not explicitly saved in the control part
(e.g., assigned to a variable) then it is lost.

Verdict returned
by the test case

when it terminates

MTC
V PTC1 V PTCn V

V

Figure 10: Illustration of the relationship between verdicts

NOTE: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.

24.2 Verdict values and overwriting rules
The verdict can have five different values: pass, fail, inconc, none and error i.e., the distinguished values of
the verdicttype (see clause 6.1).

NOTE: inconc means an inconclusive verdict.

The set operation shall only be used with the values pass, fail, inconc and none. For example:

verdict.set(pass);
verdict.set(inconc);

The value of the local verdict may be retrieved using the get operation. For example:

MyResult := verdict.get; // Where MyResult is a variable of type verdicttype

When a test component is instantiated, its local verdict object is created and set to the value none.

When changing the value of the verdict (i.e., using the set operation) the effect of this change shall follow the
overwriting rules listed in table 20. The test case verdict is implicitly set on the termination of a test component. The
effect of this implicit operation shall also follow the overwriting rules listed in table 20.

Table 20: Overwriting rules for the verdict

Current Value of New verdict assignment value
Verdict pass inconc fail none

none pass inconc fail none
pass pass inconc fail pass
inconc inconc inconc fail inconc
fail fail Fail fail fail

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)96

EXAMPLE:

:
verdict.set(pass); // the local verdict is set to pass
:
verdict.set(fail); // until this line is executed which will result in the value
: // of the local verdict being overwritten to fail
: // When the ptc terminates the test case verdict is set to fail

24.2.1 Error verdict

The error verdict is special in that it is set by the test system to indicate that a test case (i.e., run-time) error has
occurred. It shall not be set by the set operation. No other verdict value can override an error verdict. This means
that an error verdict can only be a result of an execute test case operation.

25 SUT operations
In some testing situations where there may be no explicit interface to the SUT and it may be necessary that the SUT
should be made to initiate certain actions (e.g., send a message to the test system).

This action may defined as a string, for example:

sut.action("Send MyTemplate on lower PCO"); // Informal description of the SUT action

or as a reference to a template which specifies the structure of the message to be sent by the SUT, for example:

sut.action(MyTemplate); // This is equivalent to the TTCN-2 IMPLICIT SEND statement.

In both cases there is no specification of what is done to or by the SUT to trigger this action, only an informal
specification of the required reaction itself.

SUT actions can be specified in test cases, functions, named alternatives and module control.

26 Module control part
Test cases are defined in the module definitions and executed in the module control. All variables, timers etc. (if any)
defined in the control part of a module shall be passed into the test case by parameterization if they are to be used in the
behaviour definition of that test case i.e., TTCN-3 does not support global variables of any kind.

At the start of each test case the test configuration shall be reset. This means that all create, connect, etc.
operations that may have been performed in a previous test case are not 'visible' to the new test case.

26.1 Execution of test cases
A test case is called using an execute statement. As the result of the execution of a test case a test verdict of either
none, pass, inconclusive, fail or error shall be returned and may be assigned to a variable for further
processing.

Optionally, the execute statement allows supervision of a test case by means of a timer duration. If the test case does
not end within this duration, the result of the test case execution shall be an error verdict and the test system shall
terminate the test case.

EXAMPLE:

execute(MyTestCase1()); // executes MyTestCase1, without storing the
// returned test verdict and without time
// supervision

MyVerdict := execute(MyTestCase2()); // executes MyTestCase2 and stores the resulting
// verdict in variable MyVerdict

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)97

MyVerdict := execute(MyTestCase3(),5E-3); // executes MyTestCase3 and stores the resulting
// verdict in variable MyVerdict. If the test case
// does not terminate within 5ms, MyVerdict will
// get the value 'error'

26.2 Termination of test cases
A test case terminates with the termination of the MTC. After the termination of the MTC all running parallel test
components shall be terminated by the means of testing (i.e., test system).

NOTE 1: The concrete mechanism for stopping all PTCs is tool specific and therefore outside the scope of the
present document.

The final verdict of a test case is calculated based on the final local verdicts of the different test components according
to the rules defined in clause 24. The actual local verdict of a test component becomes its final local verdict when the
test component terminates itself or is stopped by the means of testing (i.e., test system).

NOTE 2: To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, the MTC
should ensure that all PTCs have stopped (by means of the done statement) before it stops itself.

26.3 Controlling execution of test cases
Program statements, limited to those defined in table 11, may be used in the control part of a module to specify such
things as the order in which the tests are to be executed or the number of times a test case may be run. For example:

module MyTestSuite
{ :

control
{ :

// Do this test 10 times
count:=0;
while (count < 10)
{ execute (MySimpleTestCase1());

count := count+1;
}

}
}

If no programming statements are used then, by default, the test cases are executed in the sequential order in which they
appear in the module control.

NOTE: This does not preclude the possibility that certain tools may wish to override this default ordering to allow
a user or tool to select a different execution order.

Test cases return a single value of type verdicttype so it is possible to control the order of execution depending on
the outcome of a test case. For example:

if (MySimpleTestCase() == pass) { log("Success!") }

26.4 Test case selection
Boolean expressions may be used to select and deselect which test cases are to be executed. This includes, of course, the
use of functions that return a boolean value.

NOTE: This is equivalent to the TTCN-2 named test selection expressions.

EXAMPLE:

module MyTestSuite
{ :

control
{ :

if (MySelectionExpression1())
{ execute(MySimpleTestCase1());

execute(MySimpleTestCase2());
execute(MySimpleTestCase3());

}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)98

if (MySelectionExpression2())
{ execute(MySimpleTestCase4());

execute(MySimpleTestCase5());
execute(MySimpleTestCase6());

}
:

}
}

Another way to execute test cases as a group is to collect them in a function and execute that function from the module
control. For example:

:
function MyTestCaseGroup1()
{ execute(MySimpleTestCase1());

execute(MySimpleTestCase2());
execute(MySimpleTestCase3());

}
function MyTestCaseGroup2()
{ execute(MySimpleTestCase4());

execute(MySimpleTestCase5());
execute(MySimpleTestCase6());

}
:
control
{ if (MySelectionExpression1()) { MyTestCaseGroup1(); }

if (MySelectionExpression1()) { MyTestCaseGroup2(); }
:

}
:

26.5 Use of timers in control
Timers may be used to control execution of test cases. This may be done using an explicit timeout in the execute
statement. For example:

MyReturnVal := execute (MyTestCase(), 7E-3); // variable of verdicttype
// Where the return verdict will be error if the TestCase does not complete execution
// within 7ms

The timer operations may also be used. For example:

// Example of the use of the running timer operation
while (T1.running or x<10) // Where T1 is a previously started timer
{ execute(MyTestCase());

x := x+1;
}

// Example of the use of the start and timeout operations

timer T1 := 1;
:
execute(MyTestCase1());
T1.start;
T1.timeout; // Pause before executing the next test case
execute(MyTestCase2());

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)99

27 Specifying attributes
Attributes can be associated with TTCN-3 language elements by means of the with statement. The syntax for the
argument of the with statement (i.e., the actual attributes) is simply defined as a free text string.

There are three kinds of attributes:

a) display: allows the specification of display attributes related to specific presentation formats;

b) encode: allows references to specific encoding rules;

c) extension: allows the specification of user-defined attributes.

27.1 Display attributes
All TTCN-3 language elements can have display attributes to specify how particular language elements should be
displayed in, for example, a graphical format.

Special attribute strings related to the display attributes for the tabular (conformance) presentation format can be found
in ES 201 873-2 [1].

Special attribute strings related to the display attributes for the graphical presentation format can be found in
TR 101 873-3 [2].

Other display attributes may be defined by the user.

NOTE: Because user-defined attributes are not standardised the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

27.2 Encoding attributes
Encoding rules define how a particular value, template etc. is encoded and transmitted, usually as a bit stream, over a
communication port. TTCN-3 does not have a default encoding mechanism. This means that encoding rules or
encoding directives are defined in some external manner to TTCN-3.

The encode attribute allows the association of some referenced encoding rule or encoding directive to be made to a
TTCN-3 type definitions (and to a type definitions only).

Special attribute strings related to ASN.1 encoding attributes can be found in annex E.

The manner in which the actual encoding rules are defined (e.g., prose, functions etc.) is outside the scope of the present
document. If no specific rules are referenced then encoding shall be a matter for individual implementation.

In most cases encoding attributes will be used in a hierarchical manner. The top-level is the entire module, the next
level is a group of types and the lowest is an individual type:

a) module: encoding applies to all types defined in the module, including TTCN-3 base types;

b) group: encoding applies to a group of user-defined type definitions;

c) type: encoding applies to a single user-defined type;

d) field:encoding applies to a field in a record or set type;

EXAMPLE:

module MyTTCNmodule
{ :

import type MyRecord from MySecondModule with {encode "MyRule 1"}
// All instances of MyRecord will be encoded according to MyRule 1

:
type charstring MyType; // Normally encoded according to the global rule
:
group MyRecords
{ :

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)100

type record MyPDU1
{

integer field1, // field1 will be encoded according to Rule 3
boolean field2, // field2 will be encoded according to Rule 3
Mytype field3 // field3 will be encoded according to Rule 2

}
with {encode (field1, field2) "Rule 3"}
:

}
with {encode "Rule 2"}

}
with {encode "Global encoding rule"}

27.2.1 Invalid encodings

If it is desired to specify invalid encoding rules then these shall be specified in a referenceable source external to the
module in the same way that valid encoding rules are referenced.

27.3 Extension attributes
All TTCN-3 language elements can have extension attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

27.4 Scope of attributes
A with statement always associates attributes to single language elements. It is also possible to associate attributes to a
number of language elements by associating a with statement to the surrounding scope unit or group of language
elements.

The with statement follows the scoping rules as defined in clause 5.4, i.e., a with statement that is placed inside the
scope of another with statement shall override the outermost with. This shall also apply to the use of the with
statement with groups. Care should be taken when the overwriting scheme is used in combination with references to
single definitions. The general rule is that attributes shall be assigned and overwritten according to the order of their
occurrence.

EXAMPLE:

// MyPDU1 will be displayed as PDU
type record MyPDU1 { … } with { display "PDU"}

// MyPDU2 will be displayed as PDU with the application specific extension attribute MyRule
type record MyPDU2 { … }
with
{

display "PDU";
extension "MyRule"

}

// The following group definition …
group MyPDUs {

type record MyPDU3 { … }
type record MyPDU4 { … }

}
with {display "PDU"} // All types of group MyPDUs will be displayed as PDU

// is identical to
group MyPDUs {

type record MyPDU3 { … } with { display "PDU"}
type record MyPDU4 { … } with { display "PDU"}

}

// Example of the use of the overwriting scheme of the with statement
group MyPDUs
{

type record MyPDU1 { … }
type record MyPDU2 { … }

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)101

group MySpecialPDUs
{

type record MyPDU3 { … }
type record MyPDU4 { … }

}
with {extension "MySpecialRule"} // MyPDU3 and MyPDU4 will have the application

// specific extension attribute MySpecialRule
}
with
{

display "PDU"; // All types of group MPDUs will be displayed as PDU and
extension "MyRule"; // (if not overwritten) have the extension attribute MyRule

}

// is identical to …
group MyPDUs
{

type record MyPDU1 { … } with {display "PDU"; extension "MyRule" }
type record MyPDU2 { … } with {display "PDU"; extension "MyRule" }
group MySpecialPDUs {

type record MyPDU3 { … } with {display "PDU"; extension "MySpecialRule" }
type record MyPDU4 { … } with {display "PDU"; extension "MySpecialRule" }

}
}

27.5 Overwriting rules for attributes
An attribute definition in a lower scope unit will override a general attribute definition in a higher scope. For example:

type record MyRecordA
{

:
} with {encode "RuleA"}

// In the following, MyRecordA is encoded according to RuleA and not according to RuleB
type record MyRecordB
{ :

field MyRecordA
} with {encode "RuleB"}

An attribute definition in a lower scope can be overwritten in a higher scope by using the override directive. For
example:

type record MyRecordA
{

:
} with {encode "RuleA"}

// In the following, MyRecordA is encoded according to RuleB
type record MyRecordB
{ :

fieldA MyRecordA
} with {encode override "RuleB"}

The override directive forces all contained types at all lower scopes to be forced to the specified attribute.

27.6 Changing attributes of imported language elements
In general, a language element is imported together with its attributes. In some cases these attributes may have to be
changed when importing the language element e.g., a type may be displayed in one module as ASP, then it is imported
by another module where it should be displayed as PDU. For such cases it is allowed to change attributes on the import
statement.

EXAMPLE:

Import type MyType from MyModule with {display "ASP"} // MyType will be displayed as ASP

Import group MyGroup from MyModule with
{

display "ASP"; // By default all types will be displayed as ASP.
extension "MyRule"

}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)102

Annex A (normative):
BNF and static semantics

A.1 TTCN-3 BNF
This annex defines the syntax of TTCN-3 using extended BNF (henceforth just called BNF).

A.1.1 Conventions for the syntax description
Table A.1 defines the metanotation used to specify the extended BNF grammar for TTCN-3:

Table A.1: The Syntactic Metanotation

::= is defined to be
abc xyz abc followed by xyz
| alternative
[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textual grouping
Abc the non-terminal symbol abc
abc a terminal symbol abc
"abc" a terminal symbol abc

A.1.2 Statement terminator symbols
In general all TTCN-3 language constructs (i.e., definitions, declarations, statements and operations) are terminated
with a semi-colon (;). The semi-colon is optional if the language construct ends with a right-hand curly brace (}) or the
following symbol is a right-hand curly brace (}), i.e., the language construct is the last statement in a statement block.

A.1.3 Identifiers
TTCN-3 identifiers are case sensitive and may only contain lowercase letters (a-z) uppercase letters (A-Z) and numeric
digits (0-9). Use of the underscore (_) symbol is also allowed. An identifier shall begin with a letter (i.e., not a number
and not an underscore).

A.1.4 Comments
Comments written in free text may appear anywhere in a TTCN-3 specification.

Block comments shall be opened by the symbol pair /* and closed by the symbol pair */. For example:

/* This is a block comment
spread over two lines */

Block comments shall not be nested.

/* This is not /* a legal */ comment */

Line comments shall be opened by the symbol pair // and closed by a <newline>. For example:

// This is a line comment
// spread over two lines

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)103

Line comments may follow TTCN-3 program statements but they shall not be embedded in a statement. For example:

// The following is not legal
const // This is MyConst integer MyConst := 1;

// The following is legal
const integer MyConst := 1; // This is MyConst

A.1.5 TTCN-3 terminals
TTCN-3 terminal symbols and reserved words are listed in table A.2 and table A.3.

Table A.2: List of TTCN-3 special terminal symbols

Begin/end block symbols { }
Begin/end list symbols ()
Alternative symbols []
To symbol (in a range) ..
Line comments and Block comments /* */ //
Line/statement terminator symbol ;
Arithmetic operator symbols + / -
String concatenation operator symbol &
Equivalence operator symbols != == >= <=
String enclosure symbols " '
Wildcard/matching symbols ? *
Assignment symbol :=
Communication operation assignment ->
Bitstring, hexstring and Octetstring values B H O
Float exponent E

The following lists the special identifiers reserved for the predefined functions defined in annex D:

int2char, char2int, int2unichar, unichar2int, bit2int, hex2int, int2bit, int2hex, int2oct, int2str,
oct2int, str2int, lengthof, sizeof, ischosen, ispresent

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)104

Table A.3: List of TTCN-3 terminals which are reserved words

action
activate
address
all
alt
and
and4b
any

bitstring
boolean

call
catch
char
charstring
check
clear
complement
component
connect
const
control
create

deactivate
disconnect
display
do
done

else
encode
enumerated
error
exception
execute
expand
extension
external

fail
false
float
for
from
function

get
getcall
getreply
goto
group

hexstring

if
ifpresent
import
in
inconc
infinity
inout
integer
interleave

label
language
length
log

map
match
message
mixed
mod
modifies
module
mtc

named
none
nonrecursive
not
not4b
nowait
null

objid
octetstring
of
omit
on
optional
or
or4b
out
override

param
pass
pattern
port
procedure

raise
read
receive
record
rem
repeat
reply
return
running
runs

self
send
sender
set
signature
start
stop
sut
system

template
testcase
timeout
timer
to
trigger
true
type

union
universal
unmap

value
valueof
var
verdict
verdicttype

while
with

xor
xor4b

The TTCN-3 terminals listed in table A.3 shall not be used as identifiers in a TTCN-3 module. These terminals shall be
written in all lowercase letters.

A.1.6 TTCN-3 syntax BNF productions

A.1.6.1 TTCN Module
1. TTCN3Module ::= TTCN3ModuleKeyword TTCN3ModuleId [ModuleParList]

BeginChar
[ModuleDefinitionsPart]
[ModuleControlPart]
EndChar
[WithStatement] [SemiColon]

2. TTCN3ModuleKeyword ::= "module"
3. TTCN3ModuleId ::= ModuleIdentifier [DefinitiveIdentifier]
4. ModuleIdentifier ::= Identifier
5. DefinitiveIdentifier ::= Dot ObjectIdentifierKeyword "{" DefinitiveObjIdComponentList "}"
6. DefinitiveObjIdComponentList ::= {DefinitiveObjIdComponent}+
7. DefinitiveObjIdComponent ::= NameForm |

DefinitiveNumberForm |
DefinitiveNameAndNumberForm

8. DefinitiveNumberForm ::= Number
9. DefinitiveNameAndNumberForm ::= Identifier "(" DefinitiveNumberForm ")"
10. ModuleParList ::= "(" ModulePar {"," ModulePar} ")"

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)105

11. ModulePar ::= [InParKeyword] ModuleParType ModuleParIdentifier
[AssignmentChar ConstantExpression]

/* STATIC SEMANTICS - The Value of the ConstantExpression shall be of the same type as the stated
type for the Parameter */
12. ModuleParType ::= Type
13. ModuleParIdentifier ::= Identifier

A.1.6.2 Module Definitions Part
14. ModuleDefinitionsPart ::= ModuleDefinitionsList
15. ModuleDefinitionsList ::= {ModuleDefinition [SemiColon]}+
16. ModuleDefinition ::= (TypeDef |

ConstDef |
TemplateDef |
FunctionDef |
SignatureDef |
TestcaseDef |
NamedAltDef |
ImportDef |
GroupDef |
ExtFunctionDef |
ExtConstDef) [WithStatement]

A.1.6.2.1 Typedef Definitions

17. TypeDef ::= TypeDefKeyword TypeDefBody
18. TypeDefBody ::= StructuredTypeDef | SubTypeDef
19. TypeDefKeyword ::= "type"
20. StructuredTypeDef ::= RecordDef | UnionDef | SetDef | RecordOfDef | SetOfDef | EnumDef |

PortDef | ComponentDef
21. RecordDef ::= RecordKeyword StructDefBody
22. RecordKeyword ::= "record"
23. StructDefBody ::= (StructTypeIdentifier [StructDefFormalParList] | AddressKeyword)

BeginChar
[StructFieldDef {"," StructFieldDef}]
EndChar

24. StructTypeIdentifier ::= Identifier
25. StructDefFormalParList ::= "(" StructDefFormalPar {"," StructDefFormalPar} ")"
26. StructDefFormalPar ::= FormalValuePar | FormalTypePar
/* STATIC SEMANTICS - FormalValuePar shall resolve to an in parameter */
27. StructFieldDef ::= Type StructFieldIdentifier [ArrayDef] [SubTypeSpec] [OptionalKeyword]
28. StructFieldIdentifier ::= Identifier
29. OptionalKeyword ::= "optional"
30. UnionDef ::= UnionKeyword UnionDefBody
31. UnionKeyword ::= "union"
32. UnionDefBody ::= (StructTypeIdentifier [StructDefFormalParList] | AddressKeyword)

BeginChar
UnionFieldDef {"," UnionFieldDef}
EndChar

33. UnionFieldDef ::= Type StructFieldIdentifier [ArrayDef] [SubTypeSpec]
34. SetDef ::= SetKeyword StructDefBody
35. SetKeyword ::= "set"
36. RecordOfDef ::= RecordKeyword OfKeyword [StringLength] StructOfDefBody
37. OfKeyword ::= "of"
38. StructOfDefBody ::= Type (StructTypeIdentifier | AddressKeyword) [SubTypeSpec]
39. SetOfDef ::= SetKeyword OfKeyword [StringLength] StructOfDefBody
40. EnumDef ::= EnumKeyword (EnumTypeIdentifier | AddressKeyword)

BeginChar
NamedValueList
EndChar

41. EnumKeyword ::= "enumerated"
42. EnumTypeIdentifier ::= Identifier
43. NamedValueList ::= NamedValue {"," NamedValue}
44. NamedValue ::= NamedValueIdentifier ["(" Number ")"]
45. NamedValueIdentifier ::= Identifier
46. SubTypeDef ::= Type (SubTypeIdentifier | AddressKeyword) [ArrayDef] [SubTypeSpec]
47. SubTypeIdentifier ::= Identifier
48. SubTypeSpec ::= AllowedValues | StringLength
/* STATIC SEMANTICS - The values shall be of the same type as the field being subtyped */
49. AllowedValues ::= "(" ValueOrRange {"," ValueOrRange} ")"
50. ValueOrRange ::= IntegerRangeDef | SingleConstExpression
/* STATIC SEMANTICS - IntergerRangeDef production shall only be used with integer based types */
51. IntegerRangeDef ::= LowerBound ".." UpperBound
52. StringLength ::= LengthKeyword "(" SingleConstExpression [".." UpperBound] ")"
/* STATIC SEMANTICS - StringLength shall only be used with String types or to limit set of and
record of */
53. LengthKeyword ::= "length"
54. PortType ::= [GlobalModuleId Dot] PortTypeIdentifier

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)106

55. PortDef ::= PortKeyword PortDefBody
56. PortDefBody ::= PortTypeIdentifier PortDefAttribs
57. PortKeyword ::= "port"
58. PortTypeIdentifier ::= Identifier
59. PortDefAttribs ::= MessageAttribs | ProcedureAttribs | MixedAttribs
60. MessageAttribs ::= MessageKeyword

BeginChar
{MessageList [SemiColon]}+
EndChar

61. MessageList ::= Direction AllOrTypeList
62. Direction ::= InParKeyword | OutParKeyword | InOutParKeyword
63. MessageKeyword ::= "message"
64. AllOrTypeList ::= AllKeyword | TypeList
65. AllKeyword ::= "all"
66. TypeList ::= Type {"," Type}
67. ProcedureAttribs ::= ProcedureKeyword

BeginChar
{ProcedureList [SemiColon]}+
EndChar

68. ProcedureKeyword ::= "procedure"
69. ProcedureList ::= Direction AllOrSignatureList
70. AllOrSignatureList ::= AllKeyword | SignatureList
71. SignatureList ::= Signature {"," Signature}
72. MixedAttribs ::= MixedKeyword

BeginChar
{MixedList [SemiColon]}+
EndChar

73. MixedKeyword ::= "mixed"
74. MixedList ::= Direction ProcOrTypeList
75. ProcOrTypeList ::= AllKeyword | (ProcOrType {"," ProcOrType})
76. ProcOrType ::= Signature | Type
77. ComponentDef ::= ComponentKeyword ComponentTypeIdentifier

BeginChar
[ComponentDefList]
EndChar

78. ComponentKeyword ::= "component"
79. ComponentType ::= [GlobalModuleId Dot] ComponentTypeIdentifier
80. ComponentTypeIdentifier ::= Identifier
81. ComponentDefList ::= {ComponentElementDef [SemiColon]}+
82. ComponentElementDef ::= PortInstance | VarInstance | TimerInstance | ConstDef
83. PortInstance ::= PortKeyword PortType PortElement {"," PortElement}
84. PortElement ::= PortIdentifier [ArrayDef]
85. PortIdentifier ::= Identifier

A.1.6.2.2 Constant Definitions

86. ConstDef ::= ConstKeyword Type ConstList
87. ConstList ::= SingleConstDef {"," SingleConstDef}
88. SingleConstDef ::= ConstIdentifier [ArrayDef] AssignmentChar ConstantExpression
/* STATIC SEMANTICS - The Value of the ConstantExpression shall be of the same type as the stated
type for the constant */
89. ConstKeyword ::= "const"
90. ConstIdentifier ::= Identifier

A.1.6.2.3 Template Definitions

91. TemplateDef ::= TemplateKeyword BaseTemplate [DerivedDef]
AssignmentChar TemplateBody

92. BaseTemplate ::= (Type | Signature) TemplateIdentifier ["(" TemplateFormalParList ")"]
93. TemplateKeyword ::= "template"
94. TemplateIdentifier ::= Identifier
95. DerivedDef ::= ModifiesKeyword TemplateRef
96. ModifiesKeyword ::= "modifies"
97. TemplateFormalParList ::= TemplateFormalPar {"," TemplateFormalPar}
98. TemplateFormalPar ::= FormalValuePar |

FormalTemplatePar
/* STATIC SEMANTICS - FormalValuePar shall resolve to an in parameter */
99. TemplateBody ::= SimpleSpec | FieldSpecList |

ArrayValueOrAttrib
100. SimpleSpec ::= SingleValueOrAttrib
/* STATIC SEMANTICS - SimpleSpec shall not be used for constructed types */
101. FieldSpecList ::= "{"[FieldSpec {"," FieldSpec}] "}"
102. FieldSpec ::= FieldReference AssignmentChar TemplateBody
103. FieldReference ::= RecordRef | ArrayOrBitRef | ParRef
104. RecordRef ::= StructFieldIdentifier
105. ParRef ::= SignatureParIdentifier
/* OPERATIONAL SEMANTICS - SignatureParIdentifier shall be a formal parameter Identifier from the
associated signature definition */

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)107

106. SignatureParIdentifier ::= ValueParIdentifier
107. ArrayOrBitRef ::= "[" FieldOrBitNumber "]"
/* STATIC SEMANTICS - ArrayRef shall be optionally used for array types and ASN.1 SET OF and
SEQUENCE OF and TTCN record, record of, set and set Identifier of. The same notation can be used for
a Bit reference inside an ASN.1 or TTCN bitstring type */
108. FieldOrBitNumber ::= SingleExpression
/* STATIC SEMANTICS - SingleExpression will resolve to a value of integer type */
109. SingleValueOrAttrib ::= MatchingSymbol [ExtraMatchingAttributes] |

SingleExpression [ExtraMatchingAttributes] |
TemplateRefWithParList

/* STATIC SEMANTIC - VariableIdentifier (accessed via singleExpression) may only be used in inline
template definitions to reference variables in the current scope */
110. ArrayValueOrAttrib ::= "{" ArrayElementSpecList "}"
111. ArrayElementSpecList ::= ArrayElementSpec {"," ArrayElementSpec}
112. ArrayElementSpec ::= NotUsedSymbol | TemplateBody
113. NotUsedSymbol ::= Dash
114. MatchingSymbol ::= Complement | Omit | AnyValue | AnyOrOmit | ValueList |

IntegerRange | BitStringMatch | HexStringMatch |
OctetStringMatch | CharStringMatch

115. ExtraMatchingAttributes ::= LengthMatch | IfPresentMatch
116. BitStringMatch ::= "'" {BinOrMatch} "'" B
117. BinOrMatch ::= Bin | AnyValue | AnyOrOmit
118. HexStringMatch ::= "'" {HexOrMatch} "'" H
119. HexOrMatch ::= Hex | AnyValue | AnyOrOmit
120. OctetStringMatch ::= "'" {OctOrMatch} "'" O
121. OctOrMatch ::= Oct | AnyValue | AnyOrOmit
122. CharStringMatch ::= PatternKeyword CharStringPattern {StringOp CharStringPattern}
/* STATIC SEMANTICS - all CharStringPatterns shall resolve to the same character or character string
type */
123. CharStringPattern ::= CharStringValue | TemplateRefWithParList
124. PatternKeyword ::= "pattern"
125. Complement ::= ComplementKeyword (SingleConstExpression | ValueList)
126. ComplementKeyword ::= "complement"
127. Omit ::= OmitKeyword
128. OmitKeyword ::= "omit"
129. AnyValue ::= "?"
130. AnyOrOmit ::= "*"
131. ValueList ::= "(" SingleConstExpression {"," SingleConstExpression}+ ")"
132. LengthMatch ::= StringLength
133. IfPresentMatch ::= IfPresentKeyword
134. IfPresentKeyword ::= "ifpresent"
135. IntegerRange ::= "(" LowerBound ".." UpperBound ")"
136. LowerBound ::= SingleConstExpression | Minus InfinityKeyword
137. UpperBound ::= SingleConstExpression | InfinityKeyword
138. InfinityKeyword ::= "infinity"
139. TemplateInstance ::= InLineTemplate
140. TemplateRefWithParList ::= [GlobalModuleId Dot] TemplateIdentifier [TemplateActualParList] |

TemplateParIdentifier
141. TemplateRef ::= [GlobalModuleId Dot] TemplateIdentifier | TemplateParIdentifier
142. InLineTemplate ::= [(Type | Signature) Colon] [DerivedDef AssignmentChar] TemplateBody
/* STATIC SEMANTICS - The type field may only be omitted when the type is implicitly unambigous */
143. TemplateActualParList ::= "(" TemplateActualPar {"," TemplateActualPar} ")"
144. TemplateActualPar ::= TemplateInstance
/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions */
145. TemplateOps ::= MatchOp | ValueofOp
146. MatchOp ::= MatchKeyword "(" Expression "," TemplateInstance")"
/* STATIC SEMANTICS - The type of the value returned by the expression shall be the same as the
template type and each field of the template shall resolve to a single value */
147. MatchKeyword ::= "match"
148. ValueofOp ::= ValueofKeyword "(" TemplateInstance")"
149. ValueofKeyword ::= "valueof"

A.1.6.2.4 Function Definitions

150. FunctionDef ::= FunctionKeyword FunctionIdentifier
"("[FunctionFormalParList] ")" [RunsOnSpec] [ReturnType]
BeginChar
FunctionBody
EndChar

151. FunctionKeyword ::= "function"
152. FunctionIdentifier ::= Identifier
153. FunctionFormalParList ::= FunctionFormalPar {"," FunctionFormalPar}
154. FunctionFormalPar ::= FormalValuePar |

FormalTimerPar |
FormalTemplatePar |
FormalPortPar

155. ReturnType ::= ReturnKeyword Type

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)108

156. ReturnKeyword ::= "return"
157. RunsOnSpec ::= RunsKeyword OnKeyword (ComponentType | MTCKeyword)
158. RunsKeyword ::= "runs"
159. OnKeyword ::= "on"
160. MTCKeyword ::= "mtc"
161. FunctionBody ::= [FunctionStatementOrDefList]
162. FunctionStatementOrDefList ::= {FunctionStatementOrDef [SemiColon]}+
163. FunctionStatementOrDef ::= FunctionLocalDef |

FunctionLocalInst |
FunctionStatement

164. FunctionLocalInst ::= VarInstance |
TimerInstance

165. FunctionLocalDef ::= ConstDef
166. FunctionStatement ::= ConfigurationStatements |

TimerStatements |
CommunicationStatements |
BasicStatements |
BehaviourStatements |
VerdictStatements |
SUTStatements

167. FunctionInstance ::= FunctionRef "(" [FunctionActualParList] ")"
168. FunctionRef ::= [GlobalModuleId Dot] FunctionIdentifier
169. FunctionActualParList ::= FunctionActualPar {"," FunctionActualPar}
170. FunctionActualPar ::= TimerRef |

TemplateInstance |
Port |
ComponentRef

/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions i.e. eqivelent to the
Expression production */

A.1.6.2.5 Signature Definitions

171. SignatureDef ::= SignatureKeyword SignatureIdentifier
"("[SignatureFormalParList] ")" [ReturnType]
[ExceptionSpec]

172. SignatureKeyword ::= "signature"
173. SignatureIdentifier ::= Identifier
174. SignatureFormalParList ::= SignatureFormalPar {"," SignatureFormalPar}
175. SignatureFormalPar ::= FormalValuePar
176. ExceptionSpec ::= ExceptionKeyword "(" ExceptionTypeList ")"
177. ExceptionKeyword ::= "exception"
178. ExceptionTypeList ::= Type {"," Type}
179. Signature ::= [GlobalModuleId Dot] SignatureIdentifier

A.1.6.2.6 Testcase Definitions

180. TestcaseDef ::= TestcaseKeyword TestcaseIdentifier
"("[TestcaseFormalParList] ")" ConfigSpec
BeginChar
FunctionBody
EndChar

181. TestcaseKeyword ::= "testcase"
182. TestcaseIdentifier ::= Identifier
183. TestcaseFormalParList ::= TestcaseFormalPar {"," TestcaseFormalPar}
184. TestcaseFormalPar ::= FormalValuePar |

FormalTemplatePar
185. ConfigSpec ::= RunsOnSpec [SystemSpec]
186. SystemSpec ::= SystemKeyword ComponentType
187. SystemKeyword ::= "system"
188. TestcaseInstance ::= ExecuteKeyword "(" TestcaseRef "(" [TestcaseActualParList] ")" [","
TimerValue] ")"
189. ExecuteKeyword ::= "execute"
190. TestcaseRef ::= [GlobalModuleId Dot] TestcaseIdentifier
191. TestcaseActualParList ::= TestcaseActualPar {"," TestcaseActualPar}
192. TestcaseActualPar ::=

TemplateInstance
/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions i.e. equivalent to the
Expression production */

A.1.6.2.7 NamedAlt Definitions

193. NamedAltDef ::= NamedKeyword AltKeyword NamedAltIdentifier
"(" [NamedAltFormalParList] ")"
BeginChar
AltGuardList EndChar

194. NamedKeyword ::= "named"

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)109

195. NamedAltIdentifier ::= Identifier
196. NamedAltFormalParList ::= NamedAltFormalPar {"," NamedAltFormalPar}
197. NamedAltFormalPar ::= FormalValuePar |

FormalTimerPar |
FormalTemplatePar |
FormalPortPar

198. NamedAltInstance ::= NamedAltRef "(" [NamedAltActualParList]")"
199. NamedAltRef ::= [GlobalModuleId Dot] NamedAltIdentifier
200. NamedAltActualParList ::= NamedAltActualPar {"," NamedAltActualPar}
201. NamedAltActualPar ::=

TimerRef |
TemplateInstance |
Port |
ComponentRef

/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions i.e. equivalent to the
Expression production */

A.1.6.2.8 Import Definitions

202. ImportDef ::= ImportKeyword ImportSpec
203. ImportKeyword ::= "import"
204. ImportSpec ::= ImportAllSpec |

ImportGroupSpec |
ImportTypeDefSpec |
ImportTemplateSpec |
ImportConstSpec |
ImportTestcaseSpec |
ImportNamedAltSpec |
ImportFunctionSpec |
ImportSignatureSpec

205. ImportAllSpec ::= AllKeyword [DefKeyword] ImportFromSpec
206. ImportFromSpec ::= FromKeyword ModuleId [NonRecursiveKeyword]
207. ModuleId ::= GlobalModuleId [LanguageSpec]
/* STATIC SEMANTICS - LanguageSpec may only be omitted if the referenced module contains TTCN-3
notation */
208. LanguageKeyword ::= "language"
209. LanguageSpec ::= LanguageKeyword FreeText
210. GlobalModuleId ::= ModuleIdentifier [Dot ObjectIdentifierValue]
211. DefKeyword ::= TypeDefKeyword |

ConstKeyword |
TemplateKeyword |
TestcaseKeyword |
FunctionKeyword |
SignatureKeyword |
NamedKeyword AltKeyword

212. NonRecursiveKeyword ::= "nonrecursive"
213. ImportGroupSpec ::= GroupKeyword GroupIdentifier {"," GroupIdentifier} ImportFromSpec
214. ImportTypeDefSpec ::= TypeDefKeyword TypeDefIdentifier {"," TypeDefIdentifier} ImportFromSpec
215. TypeDefIdentifier ::= StructTypeIdentifier |

EnumTypeIdentifier |
PortTypeIdentifier |
ComponentTypeIdentifier |
SubTypeIdentifier

216. ImportTemplateSpec ::= TemplateKeyword TemplateIdentifier {"," TemplateIdentifier}
ImportFromSpec
217. ImportConstSpec ::= ConstKeyword ConstIdentifier {"," ConstIdentifier} ImportFromSpec
218. ImportTestcaseSpec ::= TestcaseKeyword TestcaseIdentifier {"," TestcaseIdentifier}
ImportFromSpec
219. ImportFunctionSpec ::= FunctionKeyword FunctionIdentifier {"," FunctionIdentifier}
ImportFromSpec
220. ImportSignatureSpec ::= SignatureKeyword SignatureIdentifier {"," SignatureIdentifier}
ImportFromSpec
221. ImportNamedAltSpec ::= NamedKeyword AltKeyword NamedAltIdentifier {"," NamedAltIdentifier}
ImportFromSpec

A.1.6.2.9 Group Definitions

222. GroupDef ::= GroupKeyword GroupIdentifier
BeginChar
[ModuleDefinitionsPart]
EndGroupChar

223. GroupKeyword ::= "group"
224. EndGroupChar ::= "}"
225. GroupIdentifier ::= Identifier

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)110

A.1.6.2.10 External Function Definitions

226. ExtFunctionDef ::= ExtKeyword FunctionKeyword ExtFunctionIdentifier
"("[FunctionFormalParList] ")" [ReturnType]

227. ExtKeyword ::= "external"
228. ExtFunctionIdentifier ::= Identifier

A.1.6.2.11 External Constant Definitions

229. ExtConstDef ::= ExtKeyword ConstKeyword Type ExtConstIdentifier
230. ExtConstIdentifier ::= Identifier

A.1.6.3 Control Part
231. ModuleControlPart ::= ControlKeyword

BeginChar
ModuleControlBody
EndChar
[WithStatement] [SemiColon]

232. ControlKeyword ::= "control"
233. ModuleControlBody ::= [ControlStatementOrDefList]
234. ControlStatementOrDefList ::= {ControlStatementOrDef [SemiColon]}+
235. ControlStatementOrDef ::= FunctionLocalInst |

ControlStatement |
FunctionLocalDef

236. ControlStatement ::= TimerStatements |
BasicStatements |
BehaviourStatements |
SUTStatements

A.1.6.3.1 Variable Instantiation

237. VarInstance ::= VarKeyword Type VarList
238. VarList ::= SingleVarInstance {"," SingleVarInstance}
239. SingleVarInstance ::= VarIdentifier [ArrayDef] [AssignmentChar VarInitialValue]
240. VarInitialValue ::= Expression
241. VarKeyword ::= "var"
242. VarIdentifier ::= Identifier
243. VariableRef ::= (VarIdentifier | ValueParIdentifier) [ExtendedFieldReference]

A.1.6.3.2 Timer Instantiation

244. TimerInstance ::= TimerKeyword TimerIdentifier [ArrayDef]
[AssignmentChar TimerValue]

245. TimerKeyword ::= "timer"
246. TimerIdentifier ::= Identifier
247. TimerValue ::= SingleExpression
/* STATIC SEMANTICS - SingleExpression shall resolve to a value of type float */
248. TimerRef ::= TimerIdentifier [ArrayOrBitRef]|

TimerParIdentifier [ArrayOrBitRef]

A.1.6.3.3 Component Operations

249. ConfigurationStatements ::= ConnectStatement |
MapStatement |
DisconnectStatement |
UnmapStatement |
DoneStatement |
StartTCStatement |
StopTCStatement

250. ConfigurationOps ::= CreateOp | SelfOp | SystemOp | MTCOp | RunningOp
251. CreateOp ::= ComponentType Dot CreateKeyword
252. SystemOp ::= "system"
253. SelfOp ::= "self"
254. MTCOp ::= MTCKeyword
255. DoneStatement ::= ComponentId Dot DoneKeyword
256. ComponentId ::= ComponentIdentifier | (AnyKeyword | AllKeyword) ComponentKeyword
257. DoneKeyword ::= "done"
258. RunningOp ::= ComponentId Dot RunningKeyword
259. RunningKeyword ::= "running"
260. CreateKeyword ::= "create"
261. ConnectStatement ::= ConnectKeyword PortSpec
262. ConnectKeyword ::= "connect"
263. PortSpec ::= "(" PortRef "," PortRef ")"
264. PortRef ::= ComponentRef Colon Port
265. ComponentRef ::= ComponentIdentifier | SystemOp | SelfOp | MTCOp
266. DisconnectStatement ::= DisconnectKeyword PortSpec

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)111

267. DisconnectKeyword ::= "disconnect"
268. MapStatement ::= MapKeyword PortSpec
269. MapKeyword ::= "map"
270. UnmapStatement ::= UnmapKeyword PortSpec
271. UnmapKeyword ::= "unmap"
272. StartTCStatement ::= ComponentIdentifier Dot StartKeyword "(" FunctionInstance ")"
/* STATIC SEMANTICS - The Function instance may only have in parameters */
273. StartKeyword ::= "start"
274. StopTCStatement ::= StopKeyword
275. ComponentIdentifier ::= VariableRef | FunctionInstance
/* STATIC SEMANTICS - The variable associated with VariableRef or the Return type associated with
FunctionInstance shall be of component type */

A.1.6.3.4 Port Operations

276. Port ::= (PortIdentifier | PortParIdentifier) [ArrayOrBitRef]
277. CommunicationStatements ::= SendStatement | CallStatement | ReplyStatement | RaiseStatement |

ReceiveStatement | TriggerStatement | GetCallStatement |
GetReplyStatement | CatchStatement | CheckStatement |
ClearStatement | StartStatement | StopStatement

278. SendStatement ::= Port Dot PortSendOp
279. PortSendOp ::= SendOpKeyword "(" SendParameter ")" [ToClause]
280. SendOpKeyword ::= "send"
281. SendParameter ::= TemplateInstance
282. ToClause ::= ToKeyword AddressRef
283. ToKeyword ::= "to"
284. AddressRef ::= VariableRef | FunctionInstance
/* STATIC SEMANTICS - VariableRef and FunctionInstance return shall be of address or component type
*/
285. CallStatement ::= Port Dot PortCallOp [PortCallBody]
286. PortCallOp ::= CallOpKeyword "(" CallParameters ")" [ToClause]
287. CallOpKeyword ::= "call"
288. CallParameters ::= TemplateInstance ["," CallTimerValue]
/* STATIC SEMANTICS - only out parameters may be omited or specified with a matching attribute */
289. CallTimerValue ::= TimerValue | NowaitKeyword
/* STATIC SEMANTICS - Value shall be of type float */
290. NowaitKeyword ::= "nowait"
291. PortCallBody ::= BeginChar

CallBodyStatementList
EndChar

292. CallBodyStatementList ::= {CallBodyStatement [SemiColon]}+
293. CallBodyStatement ::= CallBodyGuard StatementBlock
294. CallBodyGuard ::= AltGuardChar CallBodyOps
295. CallBodyOps ::= GetReplyStatement | CatchStatement
296. ReplyStatement ::= Port Dot PortReplyOp
297. PortReplyOp ::= ReplyKeyword "(" TemplateInstance [ReplyValue]")" [ToClause]
298. ReplyKeyword ::= "reply"
299. ReplyValue ::= ValueKeyword Expression
300. RaiseStatement ::= Port Dot PortRaiseOp
301. PortRaiseOp ::= RaiseKeyword "(" Signature "," TemplateInstance ")" [ToClause]
302. RaiseKeyword ::= "raise"
303. ReceiveStatement ::= PortOrAny Dot PortReceiveOp
304. PortOrAny ::= Port | AnyKeyword PortKeyword
305. PortReceiveOp ::= ReceiveOpKeyword ["(" ReceiveParameter ")"] [FromClause] [PortRedirect]
/* STATIC SEMANTICS - The PortRedirect option may only be present if the ReceiveParameter option is
also present */
306. ReceiveOpKeyword ::= "receive"
307. ReceiveParameter ::= TemplateInstance
308. FromClause ::= FromKeyword AddressRef
309. FromKeyword ::= "from"
310. PortRedirect ::= PortRedirectSymbol (ValueSpec [SenderSpec] | SenderSpec)
311. PortRedirectSymbol ::= "->"
312. ValueSpec ::= ValueKeyword VariableRef
313. ValueKeyword ::= "value"
314. SenderSpec ::= SenderKeyword VariableRef
/* STATIC SEMANTICS - Variable ref shall be of address or component type */
315. SenderKeyword ::= "sender"
316. TriggerStatement ::= PortOrAny Dot PortTriggerOp
317. PortTriggerOp ::= TriggerOpKeyword ["(" ReceiveParameter ")"] [FromClause] [PortRedirect]
/* STATIC SEMANTICS - The PortRedirect option may only be present if the ReceiveParameter option is
also present */
318. TriggerOpKeyword ::= "trigger"
319. GetCallStatement ::= PortOrAny Dot PortGetCallOp
320. PortGetCallOp ::= GetCallOpKeyword ["(" ReceiveParameter ")"] [FromClause]
[PortRedirectWithParam]
/* STATIC SEMANTICS - The PortRedirectWithParam option may only be present if the ReceiveParameter
option is also present */
321. GetCallOpKeyword ::= "getcall"

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)112

322. PortRedirectWithParam ::= PortRedirectSymbol RedirectSpec
323. RedirectSpec ::= ValueSpec [ParaSpec] [SenderSpec] |

ParaSpec [SenderSpec] |
SenderSpec

324. ParaSpec ::= ParaKeyword ParaAssignmentList
325. ParaKeyword ::= "param"
326. ParaAssignmentList ::= "(" (AssignmentList | VariableList) ")"
327. AssignmentList ::= VariableAssignment {"," VariableAssignment}
328. VariableAssignment ::= VariableRef AssignmentChar ParameterIdentifier
/* STATIC SEMANTICS - The parameterIdentifiers shall be from the corresponding signature definition
*/
329. ParameterIdentifier ::= ValueParIdentifier |

TimerParIdentifier |
TemplateParIdentifier |
PortParIdentifier

330. VariableList ::= VariableEntry {"," VariableEntry}
331. VariableEntry ::= VariableRef | NotUsedSymbol
332. GetReplyStatement ::= PortOrAny Dot PortGetReplyOp
333. PortGetReplyOp ::= GetReplyOpKeyword ["(" ReceiveParameter [ValueMatchSpec] ")"]

[FromClause] [PortRedirectWithParam]
/* STATIC SEMANTICS - The PortRedirectWithParam option may only be present if the ReceiveParameter
option is also present */
334. GetReplyOpKeyword ::= "getreply"
335. ValueMatchSpec ::= ValueKeyword TemplateInstance
336. CheckStatement ::= PortOrAny Dot PortCheckOp
337. PortCheckOp ::= CheckOpKeyword ["(" CheckParameter ")"]
338. CheckOpKeyword ::= "check"
339. CheckParameter ::= PortReceiveOp | PortGetCallOp | PortGetReplyOp | PortCatchOp |

[FromClause] [PortRedirectSymbol SenderSpec]
340. CatchStatement ::= PortOrAny Dot PortCatchOp
341. PortCatchOp ::= CatchOpKeyword ["("CatchOpParameter ")"] [FromClause] [PortRedirect]
/* STATIC SEMANTICS - The PortRedirect option may only be present if the CatchOpParameter option is
also present */
342. CatchOpKeyword ::= "catch"
343. CatchOpParameter ::= Signature "," TemplateInstance | TimeoutKeyword
344. ClearStatement ::= PortOrAll Dot PortClearOp
345. PortOrAll ::= Port | AllKeyword PortKeyword
346. PortClearOp ::= ClearOpKeyword
347. ClearOpKeyword ::= "clear"
348. StartStatement ::= PortOrAll Dot PortStartOp
349. PortStartOp ::= StartKeyword
350. StopStatement ::= PortOrAll Dot PortStopOp
351. PortStopOp ::= StopKeyword
352. StopKeyword ::= "stop"
353. AnyKeyword ::= "any"

A.1.6.3.5 Timer Operations

354. TimerStatements ::= StartTimerStatement | StopTimerStatement | TimeoutStatement
355. TimerOps ::= ReadTimerOp | RunningTimerOp
356. StartTimerStatement ::= TimerRef Dot StartKeyword ["(" TimerValue ")"]
357. StopTimerStatement ::= TimerRefOrAll Dot StopKeyword
358. TimerRefOrAll ::= TimerRef | AllKeyword TimerKeyword
359. ReadTimerOp ::= TimerRef Dot ReadKeyword
360. ReadKeyword ::= "read"
361. RunningTimerOp ::= TimerRefOrAny Dot RunningKeyword
362. TimeoutStatement ::= TimerRefOrAny Dot TimeoutKeyword
363. TimerRefOrAny ::= TimerRef | AnyKeyword TimerKeyword
364. TimeoutKeyword ::= "timeout"

A.1.6.4 Type
365. Type ::= PredefinedType | ReferencedType
366. PredefinedType ::= BitStringKeyword |

BooleanKeyword |
CharStringKeyword |
UniversalCharString |
CharKeyword |
UniversalChar |
IntegerKeyword |
OctetStringKeyword |
ObjectIdentifierKeyword |
HexStringKeyword |
VerdictKeyword |
FloatKeyword |
AddressKeyword

367. BitStringKeyword ::= "bitstring"
368. BooleanKeyword ::= "boolean"

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)113

369. IntegerKeyword ::= "integer"
370. OctetStringKeyword ::= "octetstring"
371. ObjectIdentifierKeyword ::= "objid"
372. HexStringKeyword ::= "hexstring"
373. VerdictKeyword ::= "verdict"
374. FloatKeyword ::= "float"
375. AddressKeyword ::= "address"
376. CharStringKeyword ::= "charstring"
377. UniversalCharString ::= UniversalKeyword CharStringKeyword
378. UniversalKeyword ::= "universal"
379. CharKeyword ::= "char"
380. UniversalChar ::= UniversalKeyword CharKeyword
381. ReferencedType ::= [GlobalModuleId Dot] TypeReference [ExtendedFieldReference]
382. TypeReference ::= StructTypeIdentifier[TypeActualParList] |

EnumTypeIdentifier |
SubTypeIdentifier |
TypeParIdentifier |
ComponentTypeIdentifier

383. TypeActualParList ::= "(" TypeActualPar {"," TypeActualPar} ")"
384. TypeActualPar ::= SingleConstExpression | Type

A.1.6.4.1 Array Types

385. ArrayDef ::= {"[" ArrayBounds [".." ArrayBounds] "]"}+
386. ArrayBounds ::= SingleConstExpression
/* STATIC SEMANTICS - ArrayBounds will resolve to a non negative value of integer type */

A.1.6.5 Value
387. Value ::= PredefinedValue | ReferencedValue
388. PredefinedValue ::= BitStringValue |

BooleanValue |
CharStringValue |
IntegerValue |
OctetStringValue |
ObjectIdentifierValue |
HexStringValue |
VerdictValue |
EnumeratedValue |
FloatValue |
AddressValue

389. BitStringValue ::= Bstring
390. BooleanValue ::= "true" | false
391. IntegerValue ::= Number
392. OctetStringValue ::= Ostring
393. ObjectIdentifierValue ::= ObjectIdentifierKeyword "{" ObjIdComponentList "}"
/* STATIC SEMANTICS - ReferencedValue shall be of type object Identifer */
394. ObjIdComponentList ::= {ObjIdComponent}+
395. ObjIdComponent ::= NameForm |

NumberForm |
NameAndNumberForm

396. NumberForm ::= Number | ReferencedValue
/* STATIC SEMANTICS - referencedValue shall be of type integer and have a non negative Value */
397. NameAndNumberForm ::= Identifier NumberForm
398. NameForm ::= Identifier
399. HexStringValue ::= Hstring
400. VerdictValue ::= "pass" | fail | inconc | none | error
401. EnumeratedValue ::= NamedValueIdentifier
402. CharStringValue ::= Cstring | Quadruple | ReferencedValue
/* STATIC SEMANTICS - ReferencedValue shall resolve to a string type */
403. Quadruple ::= "(" Group "," Plane "," Row "," Cell ")"
404. Group ::= Number
405. Plane ::= Number
406. Row ::= Number
407. Cell ::= Number
408. FloatValue ::= FloatDotNotation | FloatENotation
409. FloatDotNotation ::= Number Dot DecimalNumber
410. FloatENotation ::= Number [Dot DecimalNumber] Exponential [Minus] Number
411. Exponential ::= E
412. ReferencedValue ::= ValueReference [ExtendedFieldReference]
413. ValueReference ::= [GlobalModuleId Dot] ConstIdentifier |

ExtConstIdentifier |
ValueParIdentifier |
ModuleParIdentifier |
VarIdentifier

414. Number ::= (NonZeroNum {Num}) | 0
415. NonZeroNum ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
416. DecimalNumber ::= {Num}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)114

417. Num ::= 0 | NonZeroNum
418. Bstring ::= "'" {Bin} "'" B
419. Bin ::= 0 | 1
420. Hstring ::= "'" {Hex} "'" H
421. Hex ::= Num | A | B | C | D | E | F| a | b | c | d | e | f
422. Ostring ::= "'" {Oct} "'" O
423. Oct ::= Hex Hex
424. Cstring ::= """ {Char} """
425. Char ::= /* REFERENCE - A character defined by the relevant CharacterString type */
426. Identifier ::= Alpha{AlphaNum | Underscore}
427. Alpha ::= UpperAlpha | LowerAlpha
428. AlphaNum ::= Alpha | Num
429. UpperAlpha ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T |
U | V | W | X | Y | Z
430. LowerAlpha ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t |
u | v | w | x | y | z
431. ExtendedAlphaNum ::= /* REFERENCE - A character from any character set defined in ISO/IEC 10646
*/
432. FreeText ::= """ {ExtendedAlphaNum} """
433. AddressValue ::= "null"

A.1.6.6 Parameterisation
434. InParKeyword ::= "in"
435. OutParKeyword ::= "out"
436. InOutParKeyword ::= "inout"
437. FormalValuePar ::= [(InParKeyword | InOutParKeyword | OutParKeyword)] Type ValueParIdentifier
438. ValueParIdentifier ::= Identifier
439. FormalTypePar ::= [InParKeyword] TypeParIdentifier
440. TypeParIdentifier ::= Identifier
441. FormalPortPar ::= [InOutParKeyword] PortTypeIdentifier PortParIdentifier
442. PortParIdentifier ::= Identifier
443. FormalTimerPar ::= [InOutParKeyword] TimerKeyword TimerParIdentifier
444. TimerParIdentifier ::= Identifier
445. FormalTemplatePar ::= [InParKeyword] TemplateKeyword Type TemplateParIdentifier
446. TemplateParIdentifier ::= Identifier

A.1.6.7 With Statement
447. WithStatement ::= WithKeyword WithAttribList
448. WithKeyword ::= "with"
449. WithAttribList ::= "{" MultiWithAttrib "}"
450. MultiWithAttrib ::= {SingleWithAttrib [SemiColon]}+
451. SingleWithAttrib ::= AttribKeyword [OverrideKeyword] [AttribQualifier] AttribSpec
452. AttribKeyword ::= EncodeKeyword |

DisplayKeyword |
ExtensionKeyword

453. EncodeKeyword ::= "encode"
454. DisplayKeyword ::= "display"
455. ExtensionKeyword ::= "extension"
456. OverrideKeyword ::= "override"
457. AttribQualifier ::= "(" DefOrFieldRefList ")"
458. DefOrFieldRefList ::= DefOrFieldRef {"," DefOrFieldRef}
459. DefOrFieldRef ::= DefinitionRef | FieldReference
460. DefinitionRef ::= StructTypeIdentifier |

EnumTypeIdentifier |
PortTypeIdentifier |
ComponentTypeIdentifier |
SubTypeIdentifier |
ConstIdentifier |
TemplateIdentifier |
NamedAltIdentifier |
TestcaseIdentifier |
FunctionIdentifier |
SignatureIdentifier

461. AttribSpec ::= FreeText

A.1.6.8 Behaviour Statements
462. BehaviourStatements ::= TestcaseInstance |

FunctionInstance |
ReturnStatement |
AltConstruct |
InterleavedConstruct |
LabelStatement |
GotoStatement |
ActivateStatement |

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)115

DeactivateStatement |
NamedAltInstance

/* STATIC SEMANTICS - TestcaseInstance shall not be called from within an existing executing
testcase or function chain called from a testcase i.e. testcases can only be instantiated from the
control part or from functions directly called from the control part */
463. VerdictStatements ::= SetLocalVerdict
464. VerdictOps ::= GetLocalVerdict
465. SetLocalVerdict ::= SetVerdictKeyword "(" SingleExpression ")"
/* STATIC SEMANTICS - SingleExpression shall resolve to a value of type verdict */
/* STATIC SEMANTICS - The SetLocalVerdict shall not be used to assign the Value error */
466. SetVerdictKeyword ::= VerdictKeyword Dot SetKeyword
467. GetLocalVerdict ::= VerdictKeyword Dot GetKeyword
468. GetKeyword ::= "get"
469. SUTStatements ::= SUTAction "(" (FreeText | TemplateRefWithParList) ")"
470. SUTAction ::= SUTKeyword Dot ActionKeyword
471. SUTKeyword ::= "sut"
472. ActionKeyword ::= "action"
473. ReturnStatement ::= ReturnKeyword [Expression]
474. AltConstruct ::= AltKeyword BeginChar AltGuardList EndChar
475. AltKeyword ::= "alt"
476. AltGuardList ::= {AltGuardElement [SemiColon]}+ [ElseStatement [SemiColon]]
477. AltGuardElement ::= GuardStatement | ExpandStatement
478. GuardStatement ::= AltGuardChar GuardOp StatementBlock
479. ExpandStatement ::= "["ExpandKeyword "]" NamedAltInstance
480. ElseStatement ::= "["ElseKeyword "]" StatementBlock
481. ExpandKeyword ::= "expand"
482. AltGuardChar ::= "[" [BooleanExpression] "]"
483. GuardOp ::= TimeoutStatement | ReceiveStatement | TriggerStatement | GetCallStatement |

CatchStatement | CheckStatement | GetReplyStatement | DoneStatement
/* STATIC SEMANTICS - GuardOp used within the module control part. Shall only contain the
timeoutStatement */
484. StatementBlock ::= BeginChar [FunctionStatementOrDefList] EndChar
485. InterleavedConstruct ::= InterleavedKeyword BeginChar InterleavedGuardList EndChar
486. InterleavedKeyword ::= "interleave"
487. InterleavedGuardList ::= {InterleavedGuardElement [SemiColon]}+
488. InterleavedGuardElement ::= InterleavedGuard InterleavedAction
489. InterleavedGuard ::= "[" "]" GuardOp
490. InterleavedAction ::= StatementBlock
/* STATIC SEMANTICS - The StatementBlock may not contain loop statements, goto, activate,
deactivate, stop, return or calls to functions */
491. LabelStatement ::= LabelKeyword LabelIdentifier
492. LabelKeyword ::= "label"
493. LabelIdentifier ::= Identifier
494. GotoStatement ::= GotoKeyword (LabelIdentifier | AltKeyword)
/* STATIC SEMANTICS - The AltKeyword option may only be used within an ALT construct */
495. GotoKeyword ::= "goto"
496. ActivateStatement ::= ActivateKeyword "(" NamedAltList ")"
497. ActivateKeyword ::= "activate"
498. NamedAltList ::= NamedAltInstance {"," NamedAltInstance}
499. DeactivateStatement ::= DeactivateKeyword ["(" NamedAltRefList ")"]
500. DeactivateKeyword ::= "deactivate"
501. NamedAltRefList ::= NamedAltRef {"," NamedAltRef}

A.1.6.9 Basic Statements
502. BasicStatements ::= Assignment | LogStatement | LoopConstruct | ConditionalConstruct
503. Expression ::= SingleExpression | CompoundExpression
/* STATIC SEMANTICS - Expression shall not contain Configuration or verdict operations within the
module control part */
504. CompoundExpression ::= FieldExpressionList | ArrayExpression
505. FieldExpressionList ::= "{" FieldExpressionSpec {"," FieldExpressionSpec} "}"
506. FieldExpressionSpec ::= FieldReference AssignmentChar Expression
507. ArrayExpression ::= "{" [ArrayElementExpressionList] "}"
508. ArrayElementExpressionList ::= NotUsedOrExpression {"," NotUsedOrExpression}
509. NotUsedOrExpression ::= Expression | NotUsedSymbol
510. ConstantExpression ::= SingleConstExpression | CompoundConstExpression
511. SingleConstExpression ::= SingleExpression
/* STATIC SEMANTICS - SingleConstExpression shall not contain Variables or Module parameters and
shall resolve to a constant Value at compile time */
512. BooleanExpression ::= SingleExpression
/* STATIC SEMANTICS - BooleanExpression shall resolve to a Value of type Boolean */
513. CompoundConstExpression ::= FieldConstExpressionList | ArrayConstExpression
514. FieldConstExpressionList ::= "{" FieldConstExpressionSpec {"," FieldConstExpressionSpec} "}"
515. FieldConstExpressionSpec ::= FieldReference AssignmentChar ConstantExpression
516. ArrayConstExpression ::= "{" [ArrayElementConstExpressionList] "}"
517. ArrayElementConstExpressionList ::= ConstantExpression {"," ConstantExpression}
518. Assignment ::= VariableRef ":=" Expression

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)116

/* OPERATIONAL SEMANTICS - The Expression on the RHS of Assignment shall evaluate to an explicit
Value of the type of the LHS. */
519. SingleExpression ::= SimpleExpression {BitOp SimpleExpression}
/* OPERATIONAL SEMANTICS - If both SimpleExpressions and the BitOp exist then the SimpleExpressions
shall evaluate to specific values of compatible types */
520. SimpleExpression ::= SubExpression [RelOp SubExpression]
/* OPERATIONAL SEMANTICS - If both SubExpressions and the RelOp exist then the SubExpressions shall
evaluate to specific values of compatible types. */
/* OPERATIONAL SEMANTICS - If RelOp is "<" | ">" | ">=" | "<=" then each SubExpression shall
evaluate to a specific integer, Enumerated or float Value (these values can beTTCN or ASN.1 values)
*/
521. SubExpression ::= Product [ShiftOp Product]
/* OPERATIONAL SEMANTICS - Each Product shall resolve to a specific Value. If more than one Product
exists the right-hand operand shall be of type integer and if the shift op is '<<' or '>>' then the
left-hand operand shall resolve to either bitstring, hexstring, octetstring or integer type. If the
shift op is '<@' or '@>' then the left-hand operand shall be of type bitstring, hexstring,
charstring or universal charstring */
522. Product ::= Term {AddOp Term}
/* OPERATIONAL SEMANTICS - Each Term shall resolve to a specific Value. If more than one Term exists
then the Terms shall resolve to type integer or float. */
523. Term ::= Factor {MultiplyOp Factor}
/* OPERATIONAL SEMANTICS - Each Factor shall resolve to a specific Value. If more than one Factor
exists then the Factors shall resolve to type integer or float. */
524. Factor ::= [UnaryOp] Primary
/* OPERATIONAL SEMANTICS - The Primary shall resolve to a specific Value. If UnaryOp exists and is
"not" then Primary shall resolve to type BOOLEAN if the UnaryOp is "+" or "-" then Primary shall
resolve to type integer or float. If the UnaryOp resolves to not4b then the Primary shall resolve to
the type bitstring, hexstring or octetstring. */
525. Primary ::= OpCall | Value | "(" SingleExpression ")"
526. ExtendedFieldReference ::= {(Dot StructFieldIdentifier | ArrayOrBitRef)}+
527. OpCall ::= ConfigurationOps | VerdictOps | TimerOps | TestcaseInstance | FunctionInstance |
TemplateOps
528. AddOp ::= "+" | "-"
/* OPERATIONAL SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or
float(i.e., TTCN or ASN.1 predefined) or derivations of integer or float (i.e., subrange) */
529. MultiplyOp ::= "*" | "/" | mod | rem
/* OPERATIONAL SEMANTICS - Operands of the "*", "/", rem or mod operators shall be of type integer
or float(i.e., TTCN or ASN.1 predefined) or derivations of integer or float (i.e., subrange). */
530. UnaryOp ::= "+" | "-" | not | not4b
/* OPERATIONAL SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or
float(i.e., TTCN or ASN.1 predefined) or derivations of integer or float (i.e., subrange). Operands
of the not operator shall be of type boolean (TTCN or ASN.1) or derivatives of type Boolean.
Operands of the not4b operator will be of type bitstring, octetstring or hexstring. */
531. RelOp ::= "==" | "<" | ">" | "!=" | ">=" | "<="
/* OPERATIONAL SEMANTICS - The precedence of the operators is defined in table 7 */
532. BitOp ::= "and4b" | xor4b |or4b | and | xor | or | StringOp
/* OPERATIONAL SEMANTICS - Operands of the and, or or xor operators shall be of type boolean (TTCN
or ASN.1) or derivatives of type Boolean. Operands of the and4b, or4b or xor4b operator shall be of
type bitstring, hexstring or octetstring (TTCN or ASN.1) or derivatives of these types. */
/* OPERATIONAL SEMANTICS - The precedence of the operators is defined in table 7 */
533. StringOp ::= "&"
/* OPERATIONAL SEMANTICS - Operands of the string operator shall be bitstring, hexstring,
octetstring or character string */
534. ShiftOp ::= "<<" | ">>" | "<@" | "@>"
535. LogStatement ::= LogKeyword "(" [FreeText] ")"
536. LogKeyword ::= "log"
537. LoopConstruct ::= ForStatement |

WhileStatement |
DoWhileStatement

538. ForStatement ::= ForKeyword "(" Initial [SemiColon] Final [SemiColon] Step ")"
StatementBlock

539. ForKeyword ::= "for"
540. Initial ::= VarInstance | Assignment
541. Final ::= BooleanExpression
542. Step ::= Assignment
543. WhileStatement ::= WhileKeyword "(" BooleanExpression ")"

StatementBlock
544. WhileKeyword ::= "while"
545. DoWhileStatement ::= DoKeyword StatementBlock

WhileKeyword "(" BooleanExpression ")"
546. DoKeyword ::= "do"
547. ConditionalConstruct ::= IfKeyword "(" BooleanExpression ")"

StatementBlock
{ElseIfClause} [ElseClause]

548. IfKeyword ::= "if"
549. ElseIfClause ::= ElseKeyword IfKeyword "(" BooleanExpression ")" StatementBlock
550. ElseKeyword ::= "else"
551. ElseClause ::= ElseKeyword StatementBlock

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)117

A.1.6.10 Miscellaneous productions
552. Dot ::= "."
553. Dash ::= "-"
554. Minus ::= Dash
555. SemiColon ::= ";"
556. Colon ::= ":"
557. Underscore ::= "_"
558. BeginChar ::= "{"
559. EndChar ::= "}"
560. AssignmentChar ::= ":="

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)118

Annex B (normative):
Operational semantics
This annex defines the meaning of a TTCN-3 behaviour in an intuitive and unambiguous manner. The operational
semantics is not meant to be formal and therefore the ability to perform mathematical proofs based on this semantics is
very limited.

This operational semantics provides a state oriented view on the execution of a TTCN module. Different kinds of states
are introduced and the meaning of the different TTCN-3 constructs is described by (1) using state information to define
the preconditions for the execution of a construct and by (2) defining how the execution of a construct will change a
state.

The operational semantics is restricted to the meaning of behaviour in TTCN-3, i.e., functions, test cases, module
control and language constructs for defining test behaviour, e.g., send and receive operations, if-else-, or
while- statements. The meaning of several TTCN-3 constructs is explained by replacing them with other language
constructs. For example, named alternatives are macros and their meaning is completely explained by replacing all
macro references by the corresponding macro definitions. This includes the handling of default behaviour.

In most cases, the definition of the semantics of a language is based on an abstract syntax tree of the code that shall be
described. This semantics does not work on an abstract syntax tree but requires a graphical representation of TTCN-3
behaviour descriptions in form of flow graphs. A flow graph describes the flow of control in a test case, function or the
module control. The mapping of TTCN-3 behaviour descriptions onto flow graphs is straightforward.

B.1 Structure of this annex
This annex is structured into two parts:

1) The first part (see clause B.2) defines the meaning of TTCN-3 shorthand and macro notations by their
replacement by other TTCN-3 language constructs. These replacements in a TTCN-3 module can be seen as
pre-processing step before the module can be interpreted according to the following operational semantics
description.

2) The second part (see clause B.3) describes the operational semantics of TTCN-3 by means of flow graph
interpretation and state modification.

B.2 Replacement of shorthand notations and macro calls
Shorthand notations have to be expanded and macro references have to be replaced by the corresponding definitions on
a textual level before this operational semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 shorthand notations are:

• stand-alone receiving operations;

• trigger operations;

• usages of the keyword any in timer and receiving operations;

• usages of the keyword all in timer and port operations;

• missing return and stop statements at the end of function and test case definitions.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)119

TTCN-3 macros are named alternatives, i.e., named alt definitions. They are called:

• explicitly instead of an alt statement, i.e., they appear like a function call;

• explicitly in alt statements by using an expand keyword;

• implicitly in case they are referenced as default behaviour in activate and deactivate statements.

In addition to shorthand notations and macro calls, the operational semantics requires a special handling for module
parameters and global constants, i.e., constants that are defined in the module definitions part. All references to module
parameters and global constants shall be replaced by concrete values. This means, it is assumed that the value of module
parameters and global constants can be determined before the operational semantics becomes relevant.

NOTE 1: The handling of module parameters and global constants in the operational semantics will be different
from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3
behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

NOTE 2: The operational semantics handles parameters of and local constants in test components, test cases,
functions and module control like variables. The wrong usage of local constants or in, out and inout
parameters has to be checked statically.

B.2.1 Order of replacement steps
The textual replacements of shorthand notations, macro calls, global constants and module parameters have to be done
in the following order:

1) adding stop and return statements in module control, functions and test cases;

2) replacement of global constants and module parameters by concrete values;

3) embedding stand-alone receiving operations into alt statements;

4) macro expansion of pure macro calls, this means:

- explicit expansions of alt statements which include the expand keyword (and refers to a named alt
definition);

- explicit expansion of calls of named alt-definitions.

5) expansion of interleave statements;

6) expansion of default behaviour;

7) replacement of all trigger operations by equivalent receive operations and goto statements;

8) replacement of all usages of the keywords any and all in timer and port operations.

NOTE: Without keeping this order of replacement steps, the result of the replacements would not represent the
defined behaviour.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)120

B.2.2 Adding stop and return operations in behaviour descriptions
TTCN-3 allows leaving module control, test cases and functions that do not return any value without specifying an
explicit stop or return operation. For the operational semantics it is assumed that missing return and stop
operations are added, i.e., stop operations are added in module control and test cases and return operations are
added in functions.

EXAMPLE:

// Function and test case definition without explicit return and stop statements at
// the end of their behaviour description

function MyFunction(inout integer MyPar) {
// MyFunction doesn't return a value but changes the value

MyPar := 10 * MyPar1; // of MyPar which is passed in by refefernce
if (MyPar == 999) stop; // Stops execution if MyPar has the value 999

// IMPLICIT return if MyPar != 999
}

testcase MyTestCase() runs on MyMTCtype {
MyMTCbehaviour(); // Function that defines MTC behavior

// IMPLICIT stop after return of MyMTCbehaviour
}

// MyFunction and MyTestCase after adding explicit return and stop operations

function MyFunction(inout integer MyPar) {
// MyFunction doesn't return a value but changes the value

MyPar := 10 * MyPar1; // of MyPar which is passed in by refefernce
if (MyPar == 999) stop; // Stops execution if MyPar has the value 999

return; // EXPLICIT return
}

testcase MyTestCase() runs on MyMTCtype {

MyMTCbehaviour(); // Function that defines MTC behavior

stop; // EXPLICIT stop
}

B.2.3 Replacement of global constants and module parameters
Constants declared in the module definitions part are global for module control and all test components that are created
during the execution of a TTCN-3 module. Module parameters are meant to be global constants at run-time.

All references to global constants and module parameters shall be replaced by the actual values before the operational
semantics starts the interpretation of the module. If the value of a constant or module parameter is given in form of an
expression, the expression has to be evaluated. Then, the result of the evaluation shall replace all references of the
constant or module parameter.

B.2.4 Embedding single receiving operations into alt statements
TTCN-3 receiving operations are: receive, trigger, getcall, getreply, catch, check, timeout, and
done.

NOTE: The operations receive, trigger, getcall, getreply, catch and check operate on ports and
they allow branching due to the reception of messages, procedure calls, replies and exceptions. The
operations timeout and done are not real receiving operations, but they can be used in the same
manner as receiving operations, i.e., as alternatives in alt statements. Therefore, the operational
semantics handles timeout and done like receiving operations.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)121

A receiving operation can be used as stand-alone statement in a function, a named alternative or a test case. In such a
case the receiving operation as considered to be shorthand for an alt statement with only one alternative defined by
the receiving operation. For the operational semantics an alt statement in which the receiving statement is embedded
shall replace all stand-alone occurrences of receiving operations.

EXAMPLE:

// The stand-alone occurrence of
:
MyCL.trigger(MyType:*);
:

// shall be replaced by
:
alt {

[] MyCL.trigger (MyType:*);
}
:

// or
:
MyPTC.done;
:

// shall be replaced by
:
alt {

[] MyPTC.done;
}
:

B.2.5 Macro expansion
The macro expansion in TTCN-3 is related to the usage of named alternatives (named alt definitions) in alt
statements or instead of alt statements, i.e., the named alt definition is referenced similar to a function call in a
sequence of statements.

B.2.5.1 Expansion of named alternatives in alternative statements

The expansion of named alternatives in alt statements is related to the alternative branches indicated by the expand
keyword in square brackets followed by a reference to a named alt definition (as only statement of that branch). In
such a case the alternative branches of the referenced named alternative replace the branch with the expand keyword.
For the operational semantics it is assumed that this replacement is done on a syntactical level. An example of this
expansion can be found in the main part of the present document.

B.2.5.2 Explicit call of a named alternative

Named alternatives can also be referenced similar to a function call in a sequence of statements. In this case the
reference shall be expanded by the corresponding named alt definition. An example of this expansion can be found in
the main part of the present document.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)122

B.2.6 Replacement of the interleave construct
The meaning of the interleave statement is defined by its replacement by a series of nested alt statements that
have the same meaning. The algorithm for the construction of the replacement for an interleave statement is
described in this clause. The replacement shall be made on a syntactical level.

A series of nested alt statements can be described by means of a tree. Tree nodes represent the statements in the alt
statements. A branching denotes an alt statement and statements in the same branch describe statements in the same
alternative. This is schematically shown in figure B.1. Figure B.1a) presents a tree and figure B.1b) shows the
corresponding representation in form of a series of nested alt statements.

BA DC

FE HG

LKI

alt {
[] A {

alt {
[] E ;
[] F {

I
}

}
}

[] B;
[] C {

G;
alt {

[] K;
[] L;

}
}

[] D{
H

}
}

(a) Tree (b) TTCN-3 like representation of (a)

Figure B.1: Nested alt statements and a corresponding tree representation

In the following the construction of a tree representation of an interleave statement is presented. The
transformation of the tree into the series of nested alt statements is straightforward and needs no further explanation.

An interleave statement can be seen as a partial ordered set POS of allowed TTCN-3 statements. Formally:

• POS = (S, <) where:

S is the set of allowed TTCN-3 statements; and

< ⊆ (S� S) describes the reflexive and transitive order relation.

The term allowed TTCN-3 statements refers to the fact that the control transfer statements for, while, do-while,
goto, activate, deactivate, stop, return and calls of user-defined functions which include communication
operations are not allowed to be used in interleave statements. In addition, it is also not allowed to guard branches
of an interleave statement with Boolean expressions, to expand interleave statements with named alternatives
or to specify else branches.

For the construction algorithm the following functions need to be defined:

• The DISCARD function deletes an element s from a partially ordered set POS and returns the resulting partially
ordered set POS':

DISCARD(s, POS) = POS' where:

POS' = (S', <') ; and

S' = S\{s} ; and

<' = < ∩ (S\{s}� S\{s}).

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)123

• The ENABLED function takes a partially ordered set POS = (S, <) and returns all elements which have no
predecessors in POS:

ENABLED(POS) = { s | s ∈ S ∧ (< ∩ (S� {s}) = ∅)}

• The RECEIVING function takes a set of TTCN-3 statements S and returns all receiving statements from this set.

RECEIVING(S) = { s | s ∈ S ∧ kind(s) ∈ {receive, trigger, getcall, getreply, catch,
check, done, timeout}}

• The SELECT function selects randomly an element s from a given set S and returns s.

SELECT(S) = s where s ∈ S

NOTE: The kind function in the RECEIVING function above is not defined formally. kind (or type) returns the
kind of a given TTCN-3 statement.

The construction algorithm of the tree is a recursive procedure where in each recursive call the successor nodes for a
given node is constructed. The procedure is provided in a C-like pseudo-code notation that uses the functions defined
above and some additional mathematical notation:

CONSTRUCT-SUCCESSORS (treeNode *predecessor, partiallyOrderedSet POS) {
// treeNode refers to the node type of the tree to be constructed
// partiallyOrderedSet denotes type for a partially ordered set of TTCN-3 statements

var statement myStmt; // for the storage of a TTCN-3 statement
var treeNode *newSonNode; // for the handling of new tree nodes

// RETRIEVING SETS OF TTCN-3 STATEMENTS THAT HAVE NO PREDECESSORS IN 'POS'
var statementSet enabStmts := ENABLED(POS); // all statements without predecessor
var statementSet enabRecStmts := RECEIVING(enabStmts); // receiving statements in 'enabStmts'
var statementSet enabNonRecStmts := enabStmts\enabRecStmts;

// non receiving statements in 'enabStmts'

if (POS == ∅)
return; // TERMINATION CRITERION OF RECURSION

else {
if (enabNonRecStmts != ∅) { // Handling of non receiving statements in 'enabStmts'

myStmt := SELECT(enabNonRecStmts);
newSonNode := create(myStmt, predecessor);

// Creation of a new tree node representing 'myStmt' in the tree
// and update of pointers in 'newSonNode' and 'predecessor'.

CONSTRUCT-SUCCESSORS(newSonNode, DISCARD(myStmt, POS)); // NEXT RECURSION STEP
}
else { // Handling of receiving events, the tree will branch

for each (myStmt in enabRecStmts) {
newSonNode := create(myStmt, predecessor); // New tree node
CONSTRUCT-SUCCESSORS(newSonNode, DISCARD(myStmt, POS)); // NEXT RECURSION STEP(S)

}
}

}
}

Initially, the CONSTRUCT-SUCCESSORS function will be called with a root node of an empty tree and the partially
ordered set of TTCN-3 statements describing the interleave statement that shall be replaced. After termination, the
root node can be used to access the constructed tree.

B.2.7 Expansion of defaults
The TTCN-3 default behaviour mechanism is defined by means of a macro expansion mechanism. The default
behaviour has to be provided in form of named alt definitions. A named alt definition used as default behaviour is
referenced in an activate statement. The scope of a default is determined by an activate statement and
corresponding deactivate statements or by an activate statement and the end of the function or test case in
which the activate statement is used. Within this scope the alternatives of all alt statements are extended by the
behaviour specified in the activated named alt definitions. The operational semantics assumes that this extension is
done on the syntactical level. An example for the extension mechanism can be found in the main part of the present
document.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)124

B.2.8 Replacement of trigger operations
The trigger operation filters messages with a certain matching criterion from a stream of messages on a given port.
The semantics of the trigger operation can be described by its replacement with two receive operations and a
goto statement. The operational semantics assumes that this replacement is done on the syntactical level.

EXAMPLE 1:

// The following trigger operation …

alt {
[] MyCL.trigger (MyType:*);

}

// shall be replaced by …

alt {
[] MyCL.receive (MyType:*);
[] MyCL.receive {

goto alt
}

}

If the trigger statement is used in a more complex alt statement, the replacement is done in the same manner.

EXAMPLE 2:

// The following alt statement includes a trigger statement …

alt {
[] PCO2.receive {

stop;
}

[] MyCL.trigger (MyType:*);
[] PCO3.catch {

verdict.set(fail);
stop;

}
}

// which will be replaced by

alt {
[] PCO2.receive {

stop;
}

[] MyCL.receive (MyType:*);
[] MyCL.receive {

goto alt;
}

[] PCO3.catch {
verdict.set(fail);
stop;

}
}

B.2.9 Replacement of the keywords 'any' and 'all'
The usage of the keyword any is allowed for:

• the timer operations running and timeout;

• the receiving operations receive, trigger, getcall, getreply, catch, check.

The usage of the keyword all is allowed for:

• the timer operation stop;

• the port operations start, stop and clear.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)125

The usage of both keywords is allowed for:

• the done and running operations for components.

B.2.9.1 Replacement of 'all' in timer and port operations

The application of timer and port operations is related to the scope in which they are used. This means, the keyword
all addresses all timers and ports known in the scope unit in which all (+ operation) is used. The replacement of
all usages in timer and port operations is straightforward.

A usage of all port in a start, stop, or clear operation shall be replaced by a separate start, stop, or
clear operation for each known port. A usage of all timer in a stop operation shall be replaced by a separate
stop operation for each known timer.

EXAMPLE:

// Assume the ports PCO1, PCO2 and the timers T1 and T2 are known

:
all port.clear;
:
:
all timer.stop;
:

// will be replaced by

:
PCO1.clear;
PCO2.clear;
:
:
T1.stop;
T2.stop;
:

B.2.9.2 Replacement of 'any' in timer and receiving operations

The application of timer and receiving operations is related to the scope in which they are used. This means, the
keyword any addresses all timers and ports (in case of receiving operations) known in the scope unit in which any
(+ operation) is used. The replacement of any usages in timer and receiving operations is straightforward.

A usage of any port in a receive, trigger, getcall, getreply, catch or check operation shall be
replaced by separate alternative operations for each known and possible port. Possible means that an any
port.receive occurrence only is relevant for message based ports.

A usage of any timer in a timeout operation shall be replaced by separate alternative operations for each known
timer in the scope unit.

EXAMPLE:

// Assume the ports PCO1, PCO2 and the timers T1 and T2 are known

alt {
[] PCO2.receive {

aTestStep();
}

[] any port.receive {
verdict.set(fail);
stop;

}
[] any timer.timeout {

verdict.set(fail);
stop;

}
}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)126

// will be replaced by

alt {
[] PCO2.receive {

stop;
}

[] PCO1.receive {
verdict.set(fail);
stop;

}
[] PCO1.receive {

verdict.set(fail);
stop;

}
[] T1.receive {

verdict.set(fail);
stop;

}
[] T2.receive {

verdict.set(fail);
stop;

}
}

A usage of any timer in a running operation shall be replaced by separate running operations for each known
timer in the scope unit that are combined by means of or operators.

EXAMPLE:

// Assume the timers T1 and T2 are known in the scope unit

:
if (any timer.running) {

verdict.set(fail);
stop;

}
:

// will be replaced by

:
if (T1.running or T2.running) {

verdict.set(fail);
stop;

}
:

B.2.9.3 The keywords 'any' and 'all' in 'done' and 'running'

The operations any component.done, all component.done, any component.running and all
component.running can only be executed by the MTC. Due to dynamic test component creation, the MTC may not
know all components that have been created during test case execution. Thus, the execution of these operations requires
communication with the means of testing. Therefore, any component.done, all component.done, any
component.running and all component.running are assumed to be system commands, i.e., cannot be
replaced by other commands.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)127

B.3 Flow graph semantics of TTCN-3
The operational semantics of TTCN-3 is based on the interpretation of flow graphs. In this clause flow graphs are
introduced (see clause B.3.1), the construction of flow graphs representing TTCN-3 module control, test cases,
functions and component type definitions is explained (see clause B.3.2), module and component states for the
description of the execution states of a TTCN-3 module are defined (see clause B.3.3), the handling of messages,
remote procedure calls, replies to remote procedure calls and exceptions is described (see clause B.3.4), the evaluation
procedure of module control and test cases is explained (see clause B.3.6) and the meaning of the different TTCN-3
statements is described (see clause B.3.7).

B.3.1 Flow graphs
A flow graph is a directed graph that consists of labelled nodes and labelled edges. Walking through a flow graph
describes the flow of control during the execution of a represented behaviour description.

B.3.1.1 Flow graph frame

A flow graph shall be put into a frame defining the border of the flow graph. The name of flow graph follows the
keywords flow graph (these are not TTCN-3 core language keywords) and shall be put into the upper left corner of the
flow graph. As convention it is assumed that the flow graph name refers to the TTCN behaviour description represented
by the flow graph. A simple flow graph is shown in figure B.2.

flow graph
MySimpleFlowGraph

inscription

Figure B.2: A simple flow graph

B.3.1.2 Flow graph nodes

Flow graphs consist of start nodes, end nodes, basic nodes and reference nodes.

B.3.1.2.1 Start nodes

Start nodes describe the starting point of a flow graph. A flow graph shall only have one start node. A start node is
shown in figure B.3a).

(a) Flow graph start node (b) Flow graph end node

Figure B.3: Start and end nodes

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)128

B.3.1.2.2 End nodes

End nodes describe end points of a flow graph. A flow graph may have several end nodes or in case of loops no end
node. Basic nodes (see clause B.3.1.2.3) and reference nodes (see clause B.3.1.2.4) that have no successor nodes shall
be connected to an end node to indicate that they describe the last action of a path through a flow graph. An end node is
shown in figure B.3b).

B.3.1.2.3 Basic nodes

A basic node describes an execution unit, i.e., it is executed in one step. A basic node has a type and, depending on the
type, may have an associated list of attributes. A basic node is shown in figure B.4a).

In the inscription of a basic node the attributes of a node follow the node type and are put into round parentheses. Type
and attributes are used to determine the action to be performed during execution of the represented language construct.
The attributes describe information to be retrieved from the corresponding TTCN-3 construct.

Attributes have values and the operational semantics will retrieve these values by referring to the attribute name. If
required, it is allowed to assign explicit values in basic nodes by using assignment '='. An example is shown in
figure B.4b).

node-type
(attr1, attr2, … ,

attrn)

node-type
(attr1=5.0, attr2, …

,
)

(a) (b)

Figure B.4: Basic nodes with attributes

B.3.1.2.4 Reference nodes

Reference nodes refer to flow graph segments (see clause B.3.1.4) that are sub-flow graphs. The meaning of a reference
node is defined by its replacement by the referenced flow graph segment in the flow graph. The node inscription of the
reference node provides the reference to a flow graph segment. A reference node is shown in figure B.5a).

segment-reference

segment-reference1
OR

segment-reference2
OR

segment-reference3

(a) Single reference node (b) OR combination of three reference nodes

Figure B.5: Reference node

B.3.1.2.4.1 OR combination of reference nodes

In some cases several flow graph segments may replace a reference node. For these cases an OR operator may be used
to refer to several flow graph segments (figure B.5b). In the actual flow graph representing the module control, a test
case or a function, one alternative is determined by the represented construct.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)129

B.3.1.2.4.2 Multiple occurrences of reference nodes

In some cases the same kind of reference node may occur zero, one or more times in a flow graph. In regular
expressions the possible repetition of parts of a regular expression is described by using the operator symbols '+' (one or
more repetitions) and '*' (zero or more repetitions). As shown in figure B.6, these operators have been adopted to flow
graphs by introducing double-framed reference nodes with associated operator symbols. A single flow line shall replace
a reference node, in case of zero occurrences (using a double-framed reference node with '*'-operator).

segment-
f

+
segment-
f

*

Figure B.6: Repetition of reference nodes

An upper bound of possible repetitions of a reference node can be given in form of an integer number in round
parenthesis following the '*' or '+' symbol in the double framed reference node. The segment reference shown in
figure B.7 may occur from zero up to 5 times.

segment-
f

*(5)

Figure B.7: Restricted repetition of a reference node

B.3.1.3 Flow lines

Flow lines are represented by means of arrows. A flow line has an inscription of true or false which indicates a
condition under which the flow line is chosen during the flow graph interpretation. As a short hand notation it is
allowed to omit the true inscription. Examples of flow lines are shown below.

false

true

which is identical to

To support the joining of several flow lines into one flow line on a graphical level, a special join node is introduced.
The join node and an example for its usage are shown below:

join node:

usage of join node:

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)130

Drawing long flow lines in big diagrams as it is, for example, necessary to model the TTCN-3 constructs goto and
label, is awkward. For this purpose, labels for outgoing and incoming flow lines can be used. Examples are shown
below.

Incoming flow line with label: in-label

Outgoing flow line with label: out-label

An outgoing flow line with a label is connected with an incoming flow line with a label, if the labels are identical. The
flow line labels for the incoming flow lines shall be unique. If there are several outgoing flow lines with the same label,
this is considered to be a join of lines to the incoming flow line with an identical label.

B.3.1.4 Flow graph segments

Flow graph segments are sub-flow graphs. They are referenced in reference nodes and define the meaning of that
reference node. Flow graph segments may include further reference nodes.

As shown in figure B.8, flow graph segments have precise interfaces that consist of incoming and outgoing flow lines.
There is only one unlabeled incoming and one or none unlabeled outgoing flow lines. In addition there might exist
several labelled incoming and outgoing flow lines. The labelled incoming and outgoing flow lines are needed to
describe the meaning of TTCN-3 goto statements.

Flow graph segments are put into a frame and the name of the flow graph segment shall follow the keyword segment
in the upper left corner of the frame. The flow lines describing the flow graph segment interface shall cross the flow
graph segment frame.

segment-ref

segment

inscription…

…

…

…

…
LI1
…
LIN

Figure B.8: Schematical flow graph segment description

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)131

B.3.1.5 Comments

To improve readability and coherence a special comment symbol can be used to associate comments to flow graph
nodes and flow lines. The comment symbol and its usage are shown in figure B.9.

This is a comment in
a comment symbol inscription

Comment related to
flow line

Comment related to
basic node

(a) Comment symbol (b) Usage of comment symbols

Figure B.9: Flow graph representation of comments

B.3.1.6 Handling of flow graph descriptions

The evaluation procedure of the operational semantics traverses flow graphs that only consist of basic nodes, i.e., all
reference nodes are expanded by the corresponding flow graph segment definitions. The NEXT function is required to
support this traversal. NEXT is defined in the following manner:

<actualNodeRef>.NEXT(<bool>) = <successorNodeRef> where:

<actualNodeRef> is the reference of a basic flow graph node;

<successorNodeRef>is the reference of a successor node of the node referenced by <actualNodeRef>;

<bool> is a Boolean expressing whether a true or a false successor is returned (see clause B.3.1.3).

B.3.2 Flow Graph Representation of TTCN-3 behaviour
The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e., for each TTCN-3 behaviour description a separate flow graph has to be constructed.

The operational semantics interprets the following kinds of TTCN-3 definitions as behaviour descriptions:

a) module control;

b) test case definitions;

c) function definitions;

d) component type definitions.

The module control specifies the test campaign, i.e., the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Function definitions describe behaviour to be executed by the
module control or by the test components. Component type definitions are assumed to be behaviour descriptions
because they specify the creation, declaration and initialization of ports, constants, variables and timers during the
creation of an instance of a component type.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)132

B.3.2.1 The flow graph construction procedure

The flow graphs presented in the figures B.10 and B.11 and the flow graph segments presented in clause B.3.6 are only
templates. They include placeholders for information that has to be provided in order to produce a concrete flow graph
or flow graph segment. The placeholders are marked with '<' and '> parenthesis.

The construction of a flow graph representation of a TTCN-3 module is done in three steps:

1) For each TTCN-3 statement in module control, test cases, functions and component type definitions a concrete
flow graph segment is constructed.

2) For the module control and for each test case, function and component type definition a concrete flow graph
(with reference nodes) is constructed.

3) In a stepwise procedure all reference nodes in the concrete flow graphs are replaced by corresponding flow graph
segment definitions until all flow graphs only include one start node, end nodes and basic flow graph nodes.

NOTE 1: Basic flow graph nodes describe basic indivisible execution units. The operational semantics for TTCN-3
behaviour is based on the interpretation of basic flow graph nodes. clause B.4 presents execution methods
for basic flow graph nodes only.

The replacement of a reference node by the corresponding flow graph segment definition may lead to unconnected parts
in a flow graph, i.e., parts which cannot be reached from the start node by traversing through the flow graph along the
flow lines. The operational semantics will ignore unconnected parts of a flow graph.

NOTE 2: An unconnected part of a flow graph is a result of the mechanical replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements
also has to be taken into consideration. However, the goal of this annex is to provide a correct and
complete semantics, not an optimal flow graph representation.

B.3.2.2 Flow graph representation of module control

Schematically, the syntactical structure of a TTCN-3 module is:

module <identifier> (<parameter>) <module-definitions-part> control <statement-block>

For the flow graph behaviour representation the following information is relevant only:

module <identifier> <statement-block>

This is comparable to a function definition and therefore the flow graph representation of module control is similar to
the flow graph representation of a function (see clause B.3.2.4). The semantics will access the flow graph representing
the module control by using the module name.

NOTE: The meaning of the module definitions part is outside the scope of this operational semantics. Module
parameters are defined as global constants at run-time. References to module parameters have to be
replaced by their concrete values on a syntactical level (see clause B.2.3).

B.3.2.3 Flow graph representation of test cases

Schematically, the syntactical structure of a TTCN-3 test case definition is:

testcase <identifier> (<parameter>) <testcase-interface> <statement-block>

The <testcase-interface> above refers to the (mandatory) runs on and the (optional) system clauses in the
test case definition. The flow graph description of a test case describes the behaviour of the MTC. The information
provided by the <testcase-interface> is not relevant for the MTC. It will be used by the execute statement,
but needs not to be represented in the flow graph representation of a test case. Thus, for the flow graph representation
the following information is relevant only:

testcase <identifier> (<parameter>) <statement-block>

This is comparable to a function definition and therefore the flow graph representation of a test case is similar to the
flow graph representation of a function (see clause B.3.2.4). The semantics will access the flow graphs representing test
cases by using the test case names.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)133

B.3.2.4 Flow graph representation of functions

Schematically, the syntactical structure of a TTCN-3 function is:

function <identifier> (<parameter>) [<function-interface>] <statement-block>

The optional <function-interface> above refers to the runs on and the return clauses in the function
definition. The information provided by the <function-interface> is not relevant for the behaviour description.
It will be used for static semantics checks, but needs not to be represented in the flow graph. Thus, for the flow graph
representation the following information is relevant only:

function <identifier> (<parameter>) <statement-block>

The semantics will access flow graphs representing functions by using the function names.

The scheme of the flow graph representation of a function is shown in figure B.10. The flow graph name
<identifier> refers to the name of the represented function (or module control or test case). The nodes of the flow
graph have associated comments describing the meaning of the different nodes.

flow graph <identifier>

<parameter-handling>

<statement-block>

- Actual parameter values are assumed to
be in the value stack

- Formal parameters are handled like
local variables and local timers.

- The function body is a statement block.
- The function will terminate inside the
statement block either by a stop operation or
a return statement.

Figure B.10: Flow graph representation of functions

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)134

B.3.2.5 Flow graph representation of component type definitions

Schematically, the syntactical structure of a TTCN-3 component type definition is:

type component <identifier> <port-constant-variable-timer-declartions>

The semantics will access flow graphs representing types by using the component type names.

The scheme of the flow graph representation of a component type definition is shown in figure B.11. The flow graph
name <identifier> refers to the name of the represented component type.

flow graph <identifier>

<finalise-component-init>

- Ports are created

- Constants, variables and timers are
declared and initialised

- The 'father' component waits for the
completion of the component creation,
i.e., is in a 'blocking' state.
- The created component gives the control
back to the 'father' component

- The new component goes into a 'blocking'
state and waits to be started

<port-declaration>
OR

<constant-declaration>
OR

<variable-declaration>
OR

<timer-declaration>

+

<init-component-scope>
// The component scope is initialised

Figure B.11: Flow graph representation of component type definitions

B.3.2.6 Retrieval of start nodes of flow graphs

For the retrieval of the start node reference of a flow graph the following function is required:

The GET-FLOW-GRAPH function: GET-FLOW-GRAPH (<flow-graph-identifier>)

The function returns a reference to the start node of a flow graph with the name <flow-graph-identifier>. The
<flow-graph-identifier> refers to the module name for the control, to test case names, to function names and to
component type definitions.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)135

B.3.3 State definitions for TTCN-3 modules
During the interpretation of flow graphs representing TTCN-3 behaviour, module states are manipulated. A module
state is a structured state that consists of several sub-states describing the states of test components and ports. Module
states, component states and port states are introduced in this clause. In addition, functions to retrieve information from
and to manipulate states are defined.

B.3.3.1 Module state

As shown in figure B.12 a module state is structured into a list of entity states, a list of port states, a reference to an
MTC and a TC-VERDICT. The list of entity states describes the state of the module control and during the execution of
a test case the states of the instantiated test components. The list of port states, the MTC reference and the
TC-VERDICT are only relevant during test case execution. The list of port states describes the states of the different
ports. MTC provides a reference to the MTC, TC-VERDICT stores the actual global test verdict of a test case and
DONE is a counter that counts the number of updates of TC-VERDICT.

NOTE 1: The number of updates of TC-VERDICT is identical to the number of test components that have
terminated.

The behaviour of module control (M-CONTROL in figure B.12) is handled like a normal test component and its state is
the first element in the list of entity states of a module state.

list of entity states list of port states MTC TC-VERDICT DONE

M-CONTROL ES1 … ESn P1 … Pn

Figure B.12: Structure of a module state

NOTE 2: Port states may be considered to be part of the entity states. However, by connect and map ports are
made visible for other components and therefore they are handled on the top level of a module state.

B.3.3.1.1 Accessing the module state

The MTC, SYSTEM, TC-VERDICT and DONE are parts of a module state are handled like global variables, i.e., the
keywords MTC and TC-VERDICT can be used to retrieve and to change the values of the corresponding module state.

NOTE 1: There only exists one module state during the interpretation of a TTCN-3 module. Therefore the
keywords MTC and TC-VERDICT can be considered as unique identifiers for the evaluation procedure.

For the handling of the list of entity states and the list of port states, the list operations append, delete, first and length
can be used.

NOTE 2: The list operations append, delete, first and length have the following meaning:

• <list>.append(<item>) appends <item> as last element into the list <list>;

• <list>.delete(<item>) deletes <item> from the list <list>;

• <list>.first() returns the first element of <list>;

• <list>.length() returns the length of <list>;

• <list>.next(<item>) returns the element that follows <item> in the list, or NULL if <item> is the last
element in the list.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)136

B.3.3.2 Entity states

Entity states are used to describe the actual states of module control and test components. The structure of an entity state
is shown in figure B.13.

<identifier> STATUS CONTROL-STACK Data state timer state VALUE-STACK E-VERDICT

Figure B.13: Structure of an entity state

The <identifier> is a unique identifier of an entity, i.e., module control of test component, in the test system. Such
unique identifiers are created implicitly for the module control, the mtc and the test system when a module starts
execution or a test case is executed by means of the execute statement. The identifier is used to identify and address
entities in the test system, e.g., in case of send operations with to clauses or receive operations with from clauses.

The STATUS describes whether the module control or a test component is ACTIVE or BLOCKED. Module control is
blocked during the execution of a test case. Test components may be blocked during the creation of other test
components, i.e., during the execution of a create operation.

The CONTROL-STACK is a stack of flow graph node references. The top element in CONTROL-STACK is the flow
graph node that has to be interpreted next. The stack is required to model function calls in an adequate manner.

The data state is considered to be a list of lists of variable bindings. The list of lists structure reflects nested scope units
due to nested function calls. Each list in the list of lists of variable bindings describes the variable bindings in a certain
scope unit. Entering or leaving a scope unit corresponds to adding or deleting a list of variable bindings from the data
state. A more detailed description of the data state part of an entity state can be found in clause B.3.3.2.2.

The timer state is considered to be a list of lists of timer states. The list of lists structure reflects nested scope units due
to nested function calls. Each list in the list of lists of timer states describes the timer bindings (known timers and their
status) in a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting a list of timer states
from the timer state. A more detailed description of the timer state part of an entity state can be found in
clause B.3.3.2.3.

The VALUE-STACK is a stack of values of all possible types that allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, the result of the evaluation of an expression or the result of
the mtc function will be pushed onto the VALUE-STACK. In addition to the values of all data types known in a module
we define the special value MARK to be part of the stack alphabet. When leaving a scope unit, the MARK is used to clean
VALUE-STACK.

The E-VERDICT stores the actual local verdict of a test component. The E-VERDICT is ignored if an entity state
represents the module control.

B.3.3.2.1 Accessing entity states

The STATUS and E-VERDICT parts of an entity state are handled like global variables, i.e., the values of STATUS and
E-VERDICT can be retrieved or changed by using the 'dot' notation <identifier>.STATUS and <identifier>.E-VERDICT.
The <identifier> in the 'dot' notation refers to the unique identifier of an entity.

The CONTROL-STACK and VALUE-STACK of an entity state can be addressed by using the 'dot' notation
<identifier>.CONTROL-STACK and <identifier>.VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operations push, pop, top,
clear and clear-until.

NOTE: The stack operations push, pop, top, clear and clear-until have the following meaning:

• <stack>.push(<item>) pushes <item> onto <stack>;

• <stack>.pop() pops the top item from <stack>;

• <stack>.top() returns the top element of <stack> or NULL if <stack> is empty;

• <stack>.clear() clears <stack>, i.e., pops all items from <stack>;

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)137

• <stack>.clear-until(<item>) pops items from <stack> until <item> is found or <stack> is empty.

For the creation of a new entity state the function NEW-ENTITY is assumed to be available:

NEW-ENTITY (<entity-identifier>, <flow-graph-node-reference>)

creates a new entity state and returns its reference. The components of the new entity state have the following values:

• <entity-identifier> is the unique identifier;

• STATUS is set to ACTIVE;

• <flow-graph-node-reference> is the only (top) element in CONTROL-STACK;

• data state and timer state are empty lists;

• VALUE-STACK is an empty stack;

• E-VERDICT is set to none.

During the traversal of a flow graph the CONTROL-STACK changes its value often in the same manner: the top element
is popped from and the successor node of the popped node is pushed onto CONTROL-STACK. This series of stack
operations is encapsulated in the NEXT-CONTROL function:

<identifier>.NEXT-CONTROL(boolean <bool>) {

FlowGraphNodeType successorNode := <identifier>.CONTROL-STACK.NEXT(<bool>).top();

<identifier>.CONTROL-STACK.pop();

<identifier>.CONTROL-STACK.push(successorNode).

}

B.3.3.2.2 Data state and variable binding

As shown in figure B.14 a data state is a list of lists of variable bindings. Each list of variable bindings defines the
variable bindings in a certain scope unit. Adding a new list of variable bindings corresponds to entering a new scope
unit, e.g., a function is called. Deleting a list of variable bindings corresponds to leaving a scope unit, e.g., a function
executes a return statement.

VariableBinding1

VariableBindingn

VariableBinding1

VariableBindingx

root

Figure B.14: Structure of the data state part of an entity state

The structure of a variable binding is shown in figure B.15. A variable has a name <var-name>, a location and a value.
<var-name> identifies a variable in a scope unit. The location is a unique identifier of the storage location of the value
of the variable. The value part of a variable binding describes the actual value of a variable.

NOTE: Unique location identifiers shall be provided automatically when a variable is declared.

<var-name> location value

Figure B.15: Structure of a variable binding

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)138

The distinction between variable name and location has been made to model function calls and the execution of test
cases with value and reference parameterization in an appropriate manner:

a) a parameter passed in by value is handled like the declaration of a new variable, i.e., a new variable binding is
appended to the list of variable bindings of the scope of the called function or executed test case. The new
variable binding uses the formal parameter name as <var-name>, receives a new location and gets the value that
is passed into the function or test case;

b) a parameter passed in by reference also leads to a new variable binding in the scope of the called function or
executed test case. The new variable binding also uses the formal parameter name as <var-name>, but receives
no new location and no new value. The new variable binding gets a copy of location and value of the variable
that is passed in by reference.

When updating a variable value, e.g., in case of an assignment to a variable, the variable name is used to identify a
location and all variable bindings with the same location are updated at the same time. Thus, when leaving the scope
unit, the list of variables belonging to this scope unit can be deleted without further update. Due to the update
procedure, variables passed in by reference automatically have the correct value.

B.3.3.2.3 Timer state and timer binding

As shown in figure B.16 and figure B.17 a timer state and a data state in an entity state are comparable. Both are a list
of lists of bindings and each list of bindings defines the valid bindings in a certain scope. Adding a new list corresponds
to entering a new scope unit and deleting a list of bindings corresponds to leaving a scope unit.

TimerBinding1

TimerBindingn

TimerBinding1

TimerBindingx

root

Figure B.16: Structure of the timer state part of an entity state

The structure of a timer binding is shown in figure B.17. The meaning of <timer-name> and location is similar to the
meaning of <var-name> and location for a variable binding (figure B.15).

<timer-name> location STATUS DEF-DURATION ACT-DURATION TIME-LEFT

Figure B.17: Structure of a timer binding

STATUS denotes whether a timer is active, inactive or has timed out. The corresponding STATUS values are IDLE,
RUNNING and TIMEOUT. DEF-DURATION describes the default duration of a timer. ACT-DURATION stores the
actual duration with which a running timer has been started. TIME-LEFT describes the actual duration a running timer
has to run before it times out.

NOTE: DEF-DURATION is undefined if a timer is declared without default duration. ACT-DURATION and
TIME-LEFT are set to 0.0 if a timer is stopped or times out. If a timer is started without duration, the
value of DEF-DURATION is copied into ACT-DURATION. A dynamic error occurs if a timer is started
without a defined duration.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)139

Timer can be only passed by reference into functions, i.e., the mechanism is similar to the mechanism for variables
described in clause B.3.3.2.2. This means a new timer binding (with the formal parameter name as <timer-name>) is
created which gets copies of location, STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT from the timer
that is passed in by reference. When updating <timer-name> all timer bindings with the same location are updated at
the same time.

B.3.3.2.4 Accessing timer and data states

The value of a variable can be retrieved by using the dot notation <identifier>.<var-name> where <identifier> refers
to the unique identifier of an entity. For changing the value of a variable, the VAR-SET function has to be used:

<identifier>.VAR-SET (<var-name>, <value>)

sets the value of variable <var-name> in the actual scope of an entity with the unique identifier <identifier>. In addition,
the value of all variables with the same location as variable <var-name> will also be set to <value>.

The values of STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT of a timer <timer-name> can be
retrieved by using the dot notation:

<identifier>.<timer-name>.STATUS;

<identifier>.<timer-name>.DEF-DURATION;

<identifier>.<timer-name>.ACT-DURATION;

<identifier>.<timer-name>.TIME-LEFT.

For changing the values of STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT of a timer <timer-name>, a
generic TIMER-SET operation has to be used, for example:

<identifier>.TIMER-SET(<timer-name>, STATUS, <value>)

sets the STATUS value of timer <timer-name> in the actual scope of an entity with the unique identifier <identifier> to
the value <value>. In addition, the STATUS of all timers with the same location as timer <timer-name> will also be set
to <value>. The TIMER-SET function can also be used to change the values of DEF-DURATION, ACT-DURATION
and TIME-LEFT.

For the handling of variables, timers and scope units the following functions have to be defined:

a) The INIT-VAR function: <identifier>.INIT-VAR (<var-name>, <value>)

creates a new variable binding for a variable <var-name> with the initial value <value> in the actual scope unit
of an entity with the unique identifier <identifier>. Using the keyword NONE as <value> means that a variable
with undefined initial value is created.

b) The INIT-TIMER function: <identifier>.INIT-TIMER (<timer-name>, <duration>)

creates a new timer binding for a timer <timer-name> with the default duration <duration> in the actual scope of
an entity with the unique identifier <identifier>. Using the keyword NONE as <duration> means that a timer
without default duration is created.

c) The GET-VAR-LOC function: <identifier>.GET-VAR-LOCATION (<var-name>)

retrieves the location of variable <var-name> owned by an entity with the unique identifier <identifier>

d) The GET-TIMER-LOC function: <identifier>.GET-TIMER-LOCATION (<timer-name>)

retrieves the location of timer <timer-name> owned by an entity with the unique identifier <identifier>

e) The INIT-VAR-LOC function: <identifier>.INIT-VAR-LOC (<var-name>, <location>)

creates a new variable binding for a variable <var-name> with the location <location> in the actual scope unit of
an entity with the unique identifier <identifier>. The variable will be initialized with the value of another
variable with the location <location>.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)140

NOTE 1: Variables with the same location are a result of parameterization by reference. Due to the handling of
reference parameters as described in clause B.3.3.2.2 all variables with the same location will have
identical values during their lifetime.

f) The INIT-TIMER-LOC function: <identifier>.INIT-TIMER-LOC (<timer-name>, <location>)

creates a new timer binding for a timer <timer-name> with the location <location> in the actual scope unit of an
entity with the unique identifier <identifier>. The timer will be initialized with the values of STATUS,
DEF-DURATION, ACT-DURATION and TIME-LEFT of another timer with the location <location>.

NOTE 2: Timers with the same location are a result of parameterization by reference. Due to the handling of timer
reference parameters as described in clause B.3.3.2.3 all timers with the same location will have identical
values for STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT during their lifetime.

g) The INIT-VAR-SCOPE function: <identifier>.INIT-VAR-SCOPE ()

initializes a new variable scope in the data state of entity with the unique identifier <identifier>, i.e., an empty
list is appended as first list in the list of lists of variable bindings.

h) The INIT-TIMER-SCOPE function: <identifier>.INIT-TIMER-SCOPE ()

initializes a new timer scope in the timer state of entity with the unique identifier <identifier>, i.e., an empty list
is appended as first list in the list of lists of timer bindings.

i) The DEL-VAR-SCOPE function: <identifier>.DEL-VAR-SCOPE ()

deletes a variable scope of the data state of entity with the unique identifier <identifier>, i.e., the first list in the
list of lists of variable bindings is deleted.

j) The DEL-TIMER-SCOPE function: <identifier>.DEL-TIMER-SCOPE ()

deletes a timer scope of the timer state of entity with the unique identifier <identifier>, i.e., the first list in the list
of lists of timer bindings is deleted.

B.3.3.3 Port states

Port states are used to describe the actual states of ports. The structure of a port state is shown in figure B.18. The
<port-name> refers to the port name that is used by the test component <owner> that owns the port to identify the port.
STATUS provides the actual status of the port. A port may either be STARTED or STOPPED.

NOTE: A port in a test system is uniquely identified by the owning test component <owner> and by the port
name <port-name> local to <owner>.

The list of connections part of a port state keeps track of the connections between the different ports in the test system.
The mechanism is explained in clause B.3.3.2.1.

The queue of values part of a port state includes the data items that are received at this port but not yet consumed.

<port-name> <owner> STATUS list of connections queue of values

Figure B.18: Structure of a port state

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)141

B.3.3.3.1 Handling of connections between ports

A connection between two test components is made by connecting two of their ports by means of a connect
operation. Thus, a component can afterwards use its local port name to address the remote queue. As shown in
figure B.19, connection is represented in the states of both connected queues by a pair of <remote-entity>and
<remote-port-name>. The <remote-entity> is the unique identifier of the test component that owns the remote port. The
<remote-port-name> refers to the local name used by the <remote-entity> to address the queue. TTCN-3 supports
one-to-many connections of ports and therefore all connections of a port are organized in a list.

NOTE 1: Connections made by map operations are also handled in the list of connections. The map operation:
map(PTC1:MyPort, system.PCO1) leads to a new connection (system, PCO1) in the port state of
MyPort owned by PTC1. The remote side to which PCO1 is connected to resides inside the SUT. Its
behaviour is outside the scope of this semantics.

NOTE 2: The operational semantics handles the keyword system as a symbolic address. A connection (system,
<port-name>) in the list of connections of a port it indicates that the port is mapped onto the port
<port-name> in the test system interface.

<remote-entity> <remote-port-name>

Figure B.19: Structure of a connection

B.3.3.3.2 Handling of ports states

The handling of port states is supported by the following methods:

a) The NEW-PORT function: NEW-PORT(<owner>,<port-name>)

creates a new port and returns its reference. The new port is owned by <owner> and has the name <port-name>
to the port identified by the test component <owner> and the port name <port-name>. The status of the new port
is STARTED and both, the list of connections and the queue of values are empty.

b) The GET-PORT function: GET-PORT(<owner>, <port-name>)

returns a reference to the port identified by the test component <owner> that owns the port and the port name
<port-name>.

c) The GET-REMOTE-PORT function: GET-REMOTE-PORT(<owner>, <port-name>, <remote-entity>)

returns the reference to the port that is owned by test component <remote-entity> and connected to a port
identified by <owner> and <port-name>. The symbolic address SYSTEM is returned, if the remote port is
mapped onto a port in the test system interface.

NOTE 1: GET-REMOTE-PORT returns NULL if there is no remote port or if the remote port cannot be identified
uniquely. The special value NONE can be used as value for the <remote-entity> parameter if the remote
entity is not known or not required, i.e., there exits only a one-to-one connection for this port.

d) The STATUS of a port is handled like a variable. It can be addressed by qualifying STATUS with a GET-PORT
call:

GET-PORT(<owner>,<port-name>).STATUS

e) The ADD-CON function: ADD-CON(<owner>, <port-name>, <remote-entity>, <remote-port-name>)

adds a connection (<remote-entity>, <remote-port-name>) to the list of connections of port <port-name> owned
by <owner>.

f) The DEL-CON function: DEL-CON(<owner>, <port-name>, <remote-entity>, <remote-port-name>)

deletes connection (<remote-entity>, <remote-port-name>) from the list of connections of port <port-name>
owned by <owner>.

The queue of values in a port state can be accessed and manipulated by using the known queue operations enqueue,
dequeue, first and clear. Using a GET-PORT or a GET-REMOTE function references the queue that shall be accessed.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)142

NOTE 2: The queue operations enqueue, dequeue, first and clear have the following meaning:

• <queue>.enqueue(<item>) puts <item> as last item into <queue>;

• <queue>.dequeue() deletes the first item from <queue>;

• <queue>.first() returns the first item in <queue> or NULL if <queue> is empty;

• <queue>.clear() removes all elements from <queue>.

B.3.3.4 General functions for the handling of module states

The operational semantics assumes the existence of the following functions for the handling of module states.

NOTE: During the interpretation of a TTCN-3 module, there only exists one module state. It is assumed that the
components of the module state are stored in global variables and not in a complex data object. Thus, the
following functions are assumed to work on global variables and do not address a specific module state
object.

a) The DEL-ENTITY function: DEL-ENTITY(<entity-identifier>)

deletes an entity with the unique identifier <entity-identifier>. The deletion comprises:

- the deletion of the entity state of <entity-identifier>;

- deletion of all ports owned by <entity-identifier>;

- deletion of all connections in which <entity-identifier> is involved.

b) The EXISTING function: EXISTING(<entity-identifier>)

returns true if an entity state for the entity identified by <entity-identifier> exists. Otherwise it returns false.

c) The UPDATE-REMOTE-REFERENCES function:

UPDATE-REMOTE-REFERENCES (<source-entity>, <target-entity>)

the UPDATE-REMOTE-REFERENCES updates variables and timers with the same location in both entities. The
values that will be used for the update are the values of variables and timers owned by <source-entity>.

B.3.4 Messages, procedure calls, replies and exceptions
The exchange of information among test components and between test components and the SUT is related to messages,
procedure calls, replies to procedure calls and exceptions. For communication purposes these items have to be
constructed, encoded and decoded. The concrete encoding, i.e., mapping of TTCN-3 data types to bits and bytes, and
decoding, i.e., mapping of bits and bytes to TTCN-3 data types, is outside the scope of the operational semantics. In the
present document messages, procedure calls, replies to procedure calls and exceptions are handled on a conceptual
level.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)143

B.3.4.1 Messages

Messages are related to asynchronous communication. Values of all (pre- and user-defined) data types can be
exchanged among the entities that communicate. As shown in figure B.20, the operational semantics handles a message
as structured object that consist of a sender and a value part. The sender part identifies the sender entity of a message
and the value part defines the message value.

sender Value

Figure B.20: Structure of a message

NOTE: The operational semantics only presents a model for the concepts of TTCN-3. Whether and how the
sender information is or has to be sent and/or received depends on the implementation of the test system,
e.g., in some cases the sender information may be part of the value part of a message and therefore is no
separate part of the message structure.

B.3.4.2 Procedure calls and replies

Procedure calls and replies to procedures are related to synchronous calls. They are defined like values of a record with
components representing the parameters. The operational semantics also handles procedure calls and replies to
procedure calls like values in structured types. The structure of a message call and the structure of a reply are presented
in figure B.21 and figure B.23.

The sender and the procedure reference part have the same meaning in both figures. The sender part refers to the sender
entity of a call or the reply to a procedure call. The procedure reference refers to the procedure to which call and reply
belong. The parameter part of the procedure call in figure B.21 refers to the in parameters and inout parameters and
the parameter part of the reply in figure B.22 refers to the inout parameters and out parameters of the procedure to
which call and reply belong. In addition, the reply has a value part for the return values in the reply to a procedure.

NOTE 1: As stated in the previous note, the operational semantics only presents a model for the concepts of
TTCN-3. Whether and how the information described in figure B.21 and figure B.22 is or has to be sent
and/or received depends on the implementation of the test system.

NOTE 2: For a procedure call, out parameters are of no relevance and are omitted in figure B.21. For a reply to a
procedure call, in parameters are of no relevance and are omitted in figure B.22.

sender procedure reference parameter part

in-or-inout-parameter1 … in-or-inout-parametern

Figure B.21: Structure of a procedure call

sender procedure reference parameter part value

inout-or-out-parameter1 … inout-or-out-parametern

Figure B.22: Structure of a reply to a procedure call

B.3.4.3 Exceptions

Exceptions are also related to synchronous communication. The structure of an exception is shown in figure B.23. It
consists of three parts. The sender part identifies the sender of the exception; the procedure reference part refers to the
procedure to which the exception belongs and the value part provides the value of the exception. The type of the value
of an exception is defined in the signature of the procedure referred to in the procedure reference part. In general it can
be of any pre- or user-defined TTCN-3 data type.

Sender procedure reference value

Figure B.23: Structure of an exception

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)144

B.3.4.4 Construction of messages, procedure calls, replies and exceptions

The operations for sending a message, a procedure call, a reply to a procedure call or an exception are send, call,
reply and raise. All these sending operations are built up in the same manner:

<port-name>.<sending-operation>(<send-specification>) [to <receiver>]

The <port-name> and <sending-operation> define port and operation used for sending an item. In case of one-to-many
connections a <receiver> entity needs to be specified. The item to be sent is constructed by using the
<send-specification>. The send specification may use concrete values, template references, variable values, constants,
expressions, functions, etc. to construct and encode the item to be sent.

The operational semantics assumes that there exists a generic CONSTRUCT-ITEM function:

CONSTRUCT-ITEM(<sender>, <sending-operation>, <send-specification>)

returns a message, a procedure call, a reply to a procedure call or an exception depending on the
<sending-operation> and the <send-specification>. The <sender> information is also assumed to be part of the
item to be sent (figures B.20 to B.23).

B.3.4.5 Matching of messages, procedure calls, replies and exceptions

The operations for receiving a message, a procedure call, a reply to a procedure call or an exception are receive,
getcall, getreply and catch. All these receiving operations are built up in the same manner:

<port-name>.<receiving-operation>(<matching-part>) [from <sender>] [<assignment-part>]

The <port-name> and <receiving-operation> define port and operation used for the reception of an item. In case of one-
to-many connections a from-clause can be used to select a specific sender entity <sender>. The item to be received has
to fulfil the conditions specified in the <matching-part>, i.e., it has to match. The <matching-part> may use concrete
values, template references, variable values, constants, expressions, functions, etc. to specify the matching conditions.

The operational semantics assumes that there exists a generic MATCH-ITEM function:

MATCH-ITEM(<item-to-check>, <matching-part>, <sender>)

returns true if <item-to-check> fulfils the conditions of <matching-part> and if <item-to-check> has been sent by
<sender>, otherwise it returns false.

B.3.4.6 Retrieval of information from received items

Information from received messages, procedure calls, replies to procedure calls and exceptions can be retrieved in the
<assignment-part> (see clause B.3.4.3) of the receiving functions receive, getcall, getreply and catch. The
<assignment-part> describes how the parameters of procedure calls and replies, return values encoded in replies,
messages, exceptions and the identifier of the <sender> entity are assigned to variables.

The operational semantics assumes that there exists a generic RETRIEVE-INFO function:

RETRIEVE-INFO(<item-received>, <assignment-part>, <receiver>)

all values to be retrieved according to the <assignment-part> are retrieved and assigned to the variables listed in
the assignment part. Assignments are done by means of the VAR-SET operation, i.e., variables with the same
location are updated at the same time.

B.3.5 Call records for functions and test cases
Functions and test cases are called (or executed) by their name and a list of actual parameters. The actual parameters
provide references for reference parameter and concrete values for the value parameter as defined by the formal
parameters in the function or test case definition. The operational semantics handles function calls and calls of test cases
by using call records as shown in figure B.24. The value of BEHAVIOUR-ID is the name of a function or test case,
value parameters provide concrete values <parId1> … <parIdn> for the formal parameters <parId1> … <parIdn>.
Reference parameters provide references to locations of existing variables and timers. Before a function or test case can
be executed an appropriate call record has to be constructed.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)145

BEHAVIOUR-ID value parameter reference parameter

<parId1> … <parIdn> <parId1> … <parIdn>

value1 … valuen loc1 … locn

Figure B.24: Structure of a call record

B.3.5.1 Handling of call records

The function or test case name and the actual parameter values can be retrieved by using the dot notation, e.g.,
<myRecord>.<parIdn> or <myRecord>.BEHAVIOUR-ID where <myRecord> is a pointer to a call record.

For the construction of a call the function NEW-CALL-RECORD is assumed to be available:

NEW-CALL-RECORD(<behaviour-name>)

creates a new call record for function or test case <behaviour-name> and returns a pointer to the new record. The
parameter fields of the new call record have undefined values.

<call-record>.INIT-CALL-RECORD()

creates variables and timers for the handling of value and reference parameters in the actual scope of a function
or test case. The variables for the handling of value parameters are initialized with the corresponding values
provided in the call record. The variables and timers for the handling of reference parameters get the provided
location. In addition, they get a value of an existing variable or timer in another scope unit of the component in
which the call record was created.

B.3.6 The evaluation procedure for a TTCN-3 module

B.3.6.1 Evaluation phases

The evaluation procedure for a TTCN-3 module is structured into (1) initialization phase, (2) update phase, (3)
selection phase and (4) execution phase. The phases (2), (3) and (4) are repeated until module control terminates. The
evaluation procedure is described by means of a mixture of informal text, pseudo-code and the functions introduced in
the previous clauses.

B.3.6.1.1 Phase I: Initialization

The initialization phase includes the following actions:

a) Declaration and initialization of variables:

- INIT-FLOW-GRAPHS(); // Initialization of flow graph handling. INIT-FLOW-GRAPHS is
// explained in clause B.3.5.1.

- Entity := NULL; // Entity will be used to refer to an entity state. An entity state either
// represents module control or a test component.

- AllEntities:= NULL; // AllEntities will be a list of entity states

- AllPorts:= NULL; // AllPorts will be a list of port states

- MTC:= NULL; // MTC will refer to the MTC when a test case is running

- TC-VERDICT:= none; // TC-VERDICT will store the actual test case verdict
// when a test case is running

- DONE:= 0; // During the execution of a test case DONE counts the number
// of test components that have terminated.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)146

NOTE: The global variables AllEntities, AllPorts, MTC, TC-VERDICT and DONE form the module state that is
manipulated during the interpretation of a TTCN-3 module.

b) Creation and initialization of module control

- Entity:= NEW-ENTITY (GET-UNIQUE-ID(),GET-FLOW-GRAPH (<moduleId>));
// A new entity state is created and initialized with the start node of the
// flow graph representing the behaviour of the control of the module
// with the name <moduleId>. GET-UNIQUE-ID will be explained in
// clause 3.5.1.

- Entity.INIT-VAR-SCOPE(); // New variable scope

- Entity.INIT-TIMER-SCOPE(); // New timer scope

- Entity.VALUE-STACK.push(MARK); // A mark is pushed onto the value stack

- AllEntities.append(Entity); // The new entity is put into the module state.

B.3.6.1.2 Phase II: Update

The update phase is related to all actions that are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:

a) Time progress: All running timers are updated, i.e., the TIME-LEFT values of running timers are (possibly)
decreased, and if due to the update a timer expires, the corresponding timer bindings are updated, i.e.,
TIME-LEFT is set to 0.0 and STATUS is set to TIMEOUT;

b) Behaviour of the SUT: Messages, remote procedure calls, replies to remote procedure calls and exceptions
(possibly) received from the SUT are put into the port queues at which the corresponding receptions shall take
place.

NOTE: This operational semantics makes no assumptions about time progress and the behaviour of the SUT.

B.3.6.1.3 Phase III: Selection

The selection phase consists of the following two actions:

a) Selection: Select a non-blocked entity, i.e., an entity that has the STATUS value ACTIVE;

b) Storage: Store the identifier of the selected entity in the global variable Entity.

B.3.6.1.4 Phase IV: Execution

The execution phase consists of the following two actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of Entity;

b) Check termination criterion: Stop execution if module control has terminated, i.e., the list of entity states is
empty, otherwise continue with Phase II.

NOTE: The execution step of the selected entity can be seen as a procedure call. The check of the termination
criterion is done when the execution step terminates, i.e., returns the control.

B.3.6.2 Global functions

The evaluation procedure uses the global functions INIT-FLOW-GRAPHS and GET-UNIQUE-ID:

a) INIT-FLOW-GRAPHS is assumed to be the function that initializes the flow graph handling. The handling may
include the creation of the flow graphs and the handling of the pointers to the flow graphs and flow graph nodes.

b) GET-UNIQUE-ID is assumed to be a function that returns a unique identifier each time it is called. The unique
identifier may be implemented in form of a counter variable that is increased and returned each time
GET-UNIQUE-ID is called.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)147

The pseudo-code used the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, ***DYNAMIC-ERROR***:

c) CONTINUE-COMPONENT the actual test component continues its execution with the node lying on top of the
control stack, i.e., the control is not given back to the module evaluation procedure described in this clause.

d) RETURN returns the control back to the module evaluation procedure described in this clause. The RETURN is
the last action of the 'execution step of the selected entity' of the execution phase.

e) ***DYNAMIC-ERROR*** refers to the occurrence of a dynamic error. The error handling procedure itself is
outside the scope of the operational semantics. If a dynamic error occurs all following behaviour of the module is
meant to be undefined.

NOTE: The occurrence of a dynamic error is related to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g., wrong usage or race condition.

B.3.7 Flow graph segment definitions for TTCN-3 constructs
The operational semantics represents TTCN-3 behaviour in form of flow graphs. The construction algorithm for the
flow graphs representing behaviour is described in clause B.3.2.1. It is based on templates for flow graphs and flow
graph segments that have to be used for the construction of concrete flow graphs for module control, test cases,
functions and component type definitions defined in a TTCN-3 module. The definitions of the templates for the flow
graph segments can be found in this Clause. They are presented in an alphabetical order and not in a logical order.

The flow graph segment definitions are provided in the form of figures. The flow graph nodes are presented on the left
side of the figures and comments associated to nodes and flow lines are shown on the right side. Descriptive comments
are presented for reference nodes and comments in form of pseudo-code are associated to basic nodes. The pseudo-code
describes how a basic node is interpreted, i.e., changes the module state. It make use of the functions defined in the
previous parts of clause B.3 and the global variables declared and initialized in the evaluation procedure for TTCN-3
modules (Clause B.3.6). An overall view of all functions and keywords used by the pseudo-code can also be found in
clause B.3.7.

B.3.7.1 Alt statement

The flow graph representation of alt statement in figure B.25 distinguishes between alt statements that have an
else branch and alt statements that have no else branch.

<alt-with-else>
OR

<alt-without-else>

segment <alt-stmt>

// An alt statement may or may not
// have an else branch

Figure B.25: Flow graph segment <alt-stmt >

The flow graph segments <alt-with-else> and <alt-without-else> are shown in figure B.26 and
figure B.27. The else branch is a statement block that needs no further explanation. However, both flow graph
segments are very similar with the difference that the else branch provides a definite exit for the alt statement,
whereas an alt statement without else branch may loop.

Both flow graph segments have an entry node and beside one incoming flow line, an additional flow line with a label
<altId>. This is a symbolic label for the alt statement. It identifies the target of goto alt statements and also defines
the looping in the <alt-without-else> flow graph segment. Both flow graph segments also have a defined exit
point by means of the label <altIdExit> and the alt-exit node.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)148

segment <alt-with-else>

alt-entry

<altId>

alt-exit

<altIdExit>

<receiving-branch>

+

<altIdExit>

<statement-block> <altIdExit>

Entity.NEXT-CONTROL(true);
RETURN;

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.26: Flow graph segment <alt-with-else>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)149

segment <alt-without-else>

alt-entry

<receiving-branch>

+

<altIdExit>

alt-exit

<altIdExit>

Entity.NEXT-CONTROL(true);
RETURN;

Entity.NEXT-CONTROL(true);
RETURN;

<altId>

goto Entity.NEXT-CONTROL(true);
RETURN;

Figure B.27: Flow graph segment <alt-without-else>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)150

B.3.7.1.1 Flow graph segment <receiving-branch>

The execution of the flow graph segment <receiving-branch> is shown in figure B.28.

segment <receiving-branch>

decision

<receive-op> OR
<getcall-op> OR
<getreply-op> OR
<catch-op> OR
<timeout-op> OR

<done-component-op>

<altIdExit>

// Continue with
// next alternative

Entity.NEXT-CONTROL(Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop()
RETURN;

<expression>
// Boolean expression that
// guards a branch

true

<statement-block>

false

false

Figure B.28: Flow graph segment <receiving-branch>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)151

B.3.7.2 Assignment statement

The syntactical structure of an assignment statement is:

<varId> := <expression>

The value of the expression <expression> is assigned to variable <varId>. The execution of an assignment statement is
defined by the flow graph segment <assignment-stmt> in figure B.29.

segment <assignment-stmt>

assignment-stmt
(varId)

Entity.VAR-SET(varId, Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop();

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression is evaluated and the
// result is pushed onto the value stack

Figure B.29: Flow graph segment <assignment-stmt>

B.3.7.3 Call operation

The syntactical structure of the call operation is:

<portId>.call (<callSpec> [<blocking-info>]) [to <component_expression>]
[<call-reception-part>]

The optional <blocking-info> consists of either the keyword nonblocking or a duration for a timeout
exception. The optional <component_expression> in the to clause refers to the receiver entity. It may be
provided in form of a variable value or the return value of a function. The optional <call-reception-part> denotes the
alternative receptions in case of a blocking call operation.

The operational semantics distinguishes between blocking and a non-blocking call operations. A call is
non-blocking if it expects no replies or if the keyword nonblocking is used. A blocking call has a
<call-reception-part>.

The flow graph segment <call-op> in figure B.30 defines the execution of a call operation. It reflects the
distinction between blocking and non-blocking calls.

<blocking-call-op>
OR

<non-blocking-call-op>

segment <call-op>

// A call operation may be blocking
// or non-blocking

Figure B.30: Flow graph segment <call-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)152

For blocking and non-blocking call operations a receiver entity may be specified in form of an expression. The
possibilities are shown in figure B.31 and figure B.32.

<b-call-with-receiver>
OR

<b-call-without-receiver>
OR

<b-call-with-rec-dur>
OR

<b-call-without-rec-dur>

segment <blocking-call-op>

// A blocking call may or may not
// have a receiver specification

Figure B.31: Flow graph segment <blocking-call-op>

<nb-call-with-receiver>
OR

<nb-call-without-receiver>

segment <non-blocking-call-op>

// A non-blocking call may or may
// not have a receiver
// specification

Figure B.32: Flow graph segment <non-blocking-call-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)153

B.3.7.3.1 Flow graph segment <nb-call-with-receiver>

The flow graph segment <nb-call-with-receiver> in figure B.33 defines the execution of a non-blocking
call operation where the receiver is specified in form of an expression.

nb-call-with-receiver
(portId, callSpec)

segment <nb-call-with-receiver>

let {
receiver := Entity.VALUE-STACK.top();
remotePort := GET-REMOTE-PORT(Entity, portId, receiver);

if (remotePort == NULL) {
DYNAMIC-ERROR; // Remote port cannot be found

}
remotePort.enqueue(CONSTRUCT-ITEM(Entity, call, callSpec));

} // end of scope of receiver and remotePort

Entity.VALUE-STACK.pop(); // clean value stack

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a component reference

Figure B.33: Flow graph segment <nb-call-with-receiver>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)154

B.3.7.3.2 Flow graph segment <nb-call-without-receiver>

The flow graph segment <nb-call-without-receiver> in figure B.34 defines the execution of a non-blocking
call operation without a to-clause.

nb-call-without-receiver
(portId, callSpec)

segment <nb-call-without-receiver>

let {
receiver := Entity.VALUE-STACK.top();
remotePort := GET-REMOTE-PORT(Entity, portId, NONE);

if (remotePort == NULL) {
DYNAMIC-ERROR; // Remote port cannot be found

}
remotePort.enqueue(CONSTRUCT-ITEM(Entity, call, callSpec));

} // end of scope of receiver and remotePort

Entity.VALUE-STACK.pop(); // clean value stack
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.34: Flow graph segment <nb-call-without-receiver>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)155

B.3.7.3.3 Flow graph segment <b-call-with-receiver>

Blocking calls are modelled by a non-blocking call followed by an alt statement. The flow graph segment
<b-call-with-receiver> describes the execution of a blocking call, without a duration as timer guard, but with
a receiver description for the call. The flow graph segment is shown in figure B.35.

segment <b-call-with-receiver>

<nb-call-with-receiver>
// Non-blocking-call with receiver
// description

<alt-statement>
// Alt statement to capture the
// different receive alternatives
// for the call

Figure B.35: Flow graph segment <b-call-with-receiver>

B.3.7.3.4 Flow graph segment <b-call-without-receiver>

The flow graph segment <b-call-without-receiver> describes the execution of a blocking call, without a
duration as timer guard and without a receiver specification for the call. The flow graph segment is shown in
figure B.36.

segment <b-call-without-receiver>

<nb-call-without-receiver>
// Non-blocking-call without
// receiver description

<alt-statement>
// Alt statement to capture the
// different receive alternatives
// for the call

Figure B.36: Flow graph segment <b-call-without-receiver>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)156

B.3.7.3.5 Flow graph segment <b-call-with-rec-dur>

Blocking calls guarded by timers are modelled by a non-blocking call followed by an alt statement. For the duration a
special system timer SYS-TI is started. The catch timeout branch in the alt statement refers to the system timer. The
flow graph segment <b-call-with-rec-dur> describes the execution of a blocking call, with a duration as timer
guard and a receiver description for the call. The flow graph segment is shown in figure B.37.

NOTE: The handling of the system timer is only handled in an informal manner. The implementation is
proprietary to the test equipment.

segment <b-call-with-rec-dur>

<nb-call-with-receiver>
// Non-blocking-call with receiver
// description

<alt-statement>
// Alt statement to capture the
// different receive alternatives
// for the call

Setting-of-System-Timer

(duration)

SET(SYS-TI, duration);
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.37: Flow graph segment <b-call-with-rec-dur>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)157

B.3.7.3.6 Flow graph segment <b-call-without-rec-dur>

The flow graph segment <b-call-without-rec-dur> describes the execution of a blocking call, with a duration
as timer guard and without a receiver description for the call. The flow graph segment is shown in figure B.38.

segment <b-call-without-rec-dur>

<nb-call-without-receiver>
// Non-blocking-call with receiver
// description

<alt-statement>
// Alt statement to capture the
// different receive alternatives
// for the call

Setting-of-System-Timer

(duration)

SET(SYS-TI, duration);
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.38: Flow graph segment <b-call-without-rec-dur>

B.3.7.4 Catch operation

The syntactical structure of the catch operation is:

<portId>.catch (<matchingSpec>) [from <component_expression>] -> [<assignmentPart>]

The optional <component_expression> in the from clause refers to the sender of the exception. It may be
provided in form of a variable value or the return value of a function, i.e., it is assumed to be an expression. The
optional <assignmentPart> denotes the assignment of catched information if the catched exception matches to the
matching specification <matchingSpec> and to the (optional) from clause.

The flow graph segment <catch-op> in figure B.39 defines the execution of a catch operation.

<catch-with-sender>
OR

<catch-without-sender>

segment <catch-op>

// Distinction due to the optional
// from-clause

Figure B.39: Flow graph segment <catch-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)158

B.3.7.4.1 Flow graph segment <catch-with-sender>

The flow graph segment <catch-with-sender> in figure B.40 defines the execution of a catch operation where
the sender is specified in form of an expression.

segment
<catch-with-sender>

let {
portRef := GET-PORT(Entity, portId); // Reference to actual

port
sender := Entity.VALUE-STACK.top(); // Reference to sender

entity
Entity.VALUE-STACK.pop(); //

deleting sender reference

if (PortRef.first() == NULL) { // Port queue is empty,
no match

Entity.NEXT-CONTROL(false);
}
else {

if (MATCH-ITEM(portRef.first(), matchingSpec,
sender)) {

// The exception in the queue matches
Entity.NEXT-CONTROL(true);

}
else { // The exception in the

queue does not match
Entity NEXT- ONTROL(false);

<expression>
// The Expression shall evaluate
// to a component reference. The
// result is pushed onto the value stack

catch-with-sender
(portID, matchingSpec)

true

false

<receive-assignment>

*(1)
// optional value
// assignemt

remove-from-port
(portId)

// Removal of received exception from
port
GET-PORT(Entity, portId).dequeue();

Entity.NEXT-CONTROL(true);

Figure B.40: Flow graph segment <catch-with-sender>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)159

B.3.7.4.2 Flow graph segment <catch-without-sender>

The flow graph segment <catch-with-sender> in figure B.41 defines the execution of a catch operation
without a from clause.

segment <catch-without-sender>

let {
portRef := GET-PORT(Entity, portId); // Reference to actual

port

if (PortRef.first() == NULL) { // Port queue is empty,
no match

Entity.NEXT-CONTROL(false);
}
else {

if (MATCH-ITEM(portRef.first(), matchingSpec, NULL)) {
// The exception in the queue matches

Entity.NEXT-CONTROL(true);
}
else { // The exception in the

queue does not match
Entity.NEXT-CONTROL(false);

}
}

catch-without-sender
(portID, matchingSpec)

true

false

<receive-assignment>

*(1)
// optional value
// assignemt

remove-from-port
(portId)

// Remove received exception from port
GET-PORT(Entity, portId).dequeue();

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.41: Flow graph segment <catch-without-sender>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)160

B.3.7.5 Clear port operation

The syntactical structure of the clear port operation is:

<portId>.clear

The flow graph segment <clear-port-op> in figure B.42 defines the execution of the clear port operation.

clear-port-op
(portId)

segment <clear-port-op>

// The port name <portId> is copied
// into the node attribute ‘portId’

clear(GET-PORT(Entity, portId));

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.42: Flow graph segment <clear-port-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)161

B.3.7.6 Connect operation

The syntactical structure of a the connect operation is:

connect(<component_expression1>.<portId1>,<component_expression2>.<portId2>)

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<component_expression1> and <component_expression2>. The references may be stored in variables or
is returned by a function. For simplicity we consider them as expressions which evaluate to a component reference.
Thus, the value stack is used for storing the component references.

The execution of the connect operation is defined by the flow graph segment <connect-op> shown in figure B.43.
In the flow graph description the first expression to be evaluated refers to <component_expression1> and the
second expression to <component_expression2>, i.e., the <component_expression2> is on top of the
value stack when the connect-op node is executed.

<expression>

segment <connect-op>

<expression>

connect-op
(portId1,portId2)

let {
comp2 = Entity.VALUE-STACK.top();

// Local variable to store the owner
of portId2

Entity.VALUE-STACK.pop();
comp1 = Entity.VALUE-STACK.top();

// Local variable to store the owner
of portId2

Entity.VALUE-STACK.pop();

. ADD-CON(comp1, portId1, comp2, portId2)
ADD-CON(comp2, portId2, comp1, portId1)

} // end of scope of comp1 and comp2

Figure B.43: Flow graph segment <connect-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)162

B.3.7.7 Declaration of a constant

The syntactical structure of a constant declaration is:

const <constType> <constId> := <constType-expression>

The value of a constant is considered to be an expression that evaluates to a value of the type of the constant.

NOTE: Global constants are replaced by their values in a preprocessing step before this semantics is applied
(clause B.2.3). Local constants are treated like variable declarations with initialization. The correct usage
of constants, i.e., constants shall never occur on the left side of an assignment, shall be checked during the
static semantics analysis of a TTCN-3 module.

The flow graph segment <constant-declaration> in figure B.44 defines the execution of a constant declaration where the
value of the constant is provided in form of an expression.

var-declaration-init
(constId)

segment <constant-declaration>

Entity.INIT-VAR(constId, Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop(); // clean VALUE-STACK

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a value of the type of the
// variable that is declared.

Figure B.44: Flow graph segment <constant-declaration>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)163

B.3.7.8 Create operation

The syntactical structure of the create operation is:

<componentTypeId>.create

The flow graph segment <create-op> in figure B.45 defines the execution of the create operation.

create-op
(componentTypeId)

segment <create-op>

// The identifier for the new entity is created and pushed

// onto the value stack of the 'father' entity

Entity.VALUE-STACK.push(GET-UNIQUE-ID());

// New entity state is created and pushed onto the value stack of the

// 'father' entity

Entity.VALUE-STACK.push(NEW-ENTITY(Entity.VALUE-STACK.top(),
componentTypeID));

// The identifier of the 'father' entity is pushed onto the

// value stack of the new entity

Entity.VALUE-STACK.top().VALUE-STACK.push(Entity);

// The new entity is put into the module state (AllEntities is a global variable)

AllEntities.append().Entity.VALUE-STACK.top();

// The new entity state is removed from the value stack of the 'father' entity

// The 'father' entity goes into a blocking state and the control is returned

// to the module evaluation procedure

Entity.VALUE-STACK.pop();
Entity.STATUS := BLOCKED;
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.45: Flow graph segment <create-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)164

B.3.7.9 Declaration of a port

The syntactical structure of a port declaration is:

<portType> <portName>

Port declarations can be found in component type definitions. The effect of a port declaration is the creation of a new
port. The flow graph segment <port-declaration> in figure B.46 defines the execution of a port declaration.

port-declaration
(portName)

segment <port-declaration>

// The timer reference <portName> is copied
// into the node attribute ‘portName’

AllPorts.append(NEW-PORT(Entity, portName);

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.46: Flow graph segment <port-declaration>

B.3.7.10 Declaration of a timer

The syntactical structure of a timer declaration is:

timer <timerId> [:= <float_expression>]

The effect of a timer declaration is the creation of a new timer binding. The declaration of a variable with a default
duration is optional. The default value is considered to be an expression that evaluates to a value of the type float.

The flow graph segment <timer-declaration> in figure B.47 defines the execution of the declaration of a timer.

<timer-decl-default>
OR

<timer-decl-no-def>

segment <timer-declaration>

// A timer may be declared with
// or without a default duration

Figure B.47: Flow graph segment <timer-declaration>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)165

B.3.7.10.1 Flow graph segment <timer-decl-default>

The flow graph segment <timer-decl-default> in figure B.48 defines the execution of a timer declaration where a default
duration in form of an expression is provided.

timer-decl-default
(timerId)

segment <timer-decl-default>

Entity.INIT-TIMER(timerId, Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop(); // clean VALUE-STACK

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a value of type float

Figure B.48: Flow graph segment <timer-decl-default>

B.3.7.10.2 Flow graph segment <timer-decl-no-def>

The flow graph segment <timer-decl-no-def> in figure B.49 defines the execution of a timer declaration where no
default duration is provided, i.e., the default duration of the timer is undefined.

timer-decl-no-def
(timerId)

segment <timer-decl-no-def>

Entity.INIT-TIMER(timerId, NONE);

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.49: Flow graph segment <timer-decl-no-def>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)166

B.3.7.11 Declaration of a variable

The syntactical structure of a variable declaration is:

var <varType> <varId> [:= <varType_expression>]

The initialization of a variable by providing an initial value is optional. The initial value is considered to be an
expression that evaluates to a value of the type of the variable.

The flow graph segment <variable-declaration> in figure B.50 defines the execution of the declaration of a variable.

<var-declaration-init>
OR

<var-declaration-undef>

segment <variable-declaration>

// A variable may be declared with
// or without initial value

Figure B.50: Flow graph segment <variable-declaration>

B.3.7.11.1 Flow graph segment <var-declaration-init>

The flow graph segment <var-declaration-init> in figure B.51 defines the execution of a variable declaration where an
initial value in form of an expression is provided.

var-declaration-init
(varId)

segment <var-declaration-init>

Entity.INIT-VAR(varId, Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop(); // clean VALUE-STACK;

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a value of the type of the
// variable that is declared.

Figure B.51: Flow graph segment <var-declaration-init>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)167

B.3.7.11.2 Flow graph segment <var-declaration-undef>

The flow graph segment <var-declaration-undef> in figure B.52 defines the execution of a variable declaration where
no initial value is provided, i.e., the value of the variable is undefined.

var-declaration-undef
(varId)

segment <var-declaration-undef>

Entity.INIT-VAR(varId, NONE);

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.52: Flow graph segment < var-declaration-undef >

B.3.7.12 Disconnect operation

The syntactical structure of a the disconnect operation is:

disconnect(<component_expression1>.<portId1>,<component_expression2>.<portId2>)

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<component_expression1> and <component_expression2>. The references may be stored in variables or
is returned by a function. For simplicity we consider them as expressions which evaluate to a component reference.
Thus, the value stack is used for storing the component references.

The execution of the disconnect operation is defined by the flow graph segment <disconnect-op> shown in
figure B.53. In the flow graph segment the first expression to be evaluated refers to <component_expression1>
and the second expression to <component_expression2>, i.e., the <component_expression2> is on top of
the value stack when the disconnect-op node is executed.

<expression>

segment <disconnect-op>

<expression>

disconnect-op
(portId1,portId2)

let {
comp2 = Entity.VALUE-STACK.top();

// Local variable to store the owner
of portId2

Entity.VALUE-STACK.pop();
comp1 = Entity.VALUE-STACK.top();

// Local variable to store the owner
of portId2

Entity.VALUE-STACK.pop();

. DEL-CON(comp1, portId1, comp2, portId2)
DEL-CON(comp2, portId2, comp1, portId1)

} // end of scope of comp1 and comp2

Figure B.53: Flow graph segment <disconnect-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)168

B.3.7.13 Do-while statement

The syntactical structure of the do-while statement is:

do <statement-block>

while (<boolean_expression>)

The execution of a do-while statement is defined by the flow graph segment <do-while-stmt> shown in
figure B.54.

if (Entity.VALUE-STACK.top()== true) {
Entity.NEXT-CONTROL(true);

}
else {

Entity.NEXT-CONTROL(true);
}
Entity.VALUE-STACK.pop();
RETURN;

segment <do-while-stmt>

decision

false

true

<statement-block>

<expression>

Figure B.54: Flow graph segment <do-while-stmt>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)169

B.3.7.14 Done-all-components operation

The done-all-components operation refers to the usage of the keywords all component in the done operation
(Clause B.7.16). The done-all-components operation can only be called by the mtc. It allows to check whether all
parallel test components of a test case have terminated. The syntactical structure of the done-all-components
operation is:

all component.done;

The execution of the done-all-components operation is defined by the flow graph segment
<done-all-comp-op> in figure B.55.

done-any-comp-op

segment <done-any-comp-op> if (Entity != MTC) {
DYNAMIC-ERROR
// Entity is not allowed to call the

operation
}
if (AllEntities.length() == 2) {

// only mtc and control exist
Entity.NEXT-CONTROL(true);

}
else {

Entity.NEXT-CONTROL(false);
}

RETURN;

truefalse

Figure B.55: Flow graph segment <done-all-comp-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)170

B.3.7.15 Done-any-component operation

The done-any-component operation refers to the usage of the keywords any component in the done operation
(Clause B.7.16). The done-any-component operation can only be called by the mtc. It allows to check whether a
parallel test component of a test case has already terminated. The syntactical structure of the done-any-component
operation is:

any component.done;

The execution of the done-any-component operation is defined by the flow graph segment
<done-any-comp-op> in figure B.56.

done-any-comp-op

segment <done-any-comp-op> if (Entity != MTC) {
DYNAMIC-ERROR
// Entity is not allowed to call the

operation
}
if (DONE != 0) {

// at least one ptc has terminated

Entity.NEXT-CONTROL(true);
}
else {

Entity.NEXT-CONTROL(false);
}
RETURN;

truefalse

Figure B.56: Flow graph segment <done-any-comp-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)171

B.3.7.16 Done component operation

The syntactical structure of the done component operation is:

<component_expression>.done

The done component operation checks whether a component is running or has stopped. Depending on whether a
checked component is running or has stopped the done operation decides how the flow of control continues. Using a
component reference identifies the component to be checked. The reference may be stored in a variable or be returned
by a function. For simplicity this is considered to be an expression that evaluates to a component reference.

The flow graph segment <done-component-op> in figure B.57 defines the execution of the done component operation.

done-component-op

segment
<done-component-op>

if (EXISTING(Entity.VALUE-STACK.top() == true) {
Entity.VALUE-STACK.pop();
Entity.NEXT-CONTROL(true);

}
else {

Entity.VALUE-STACK.pop();
Entity.NEXT-CONTROL(false);

}

RETURN;

<expression>
// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

truefalse

Figure B.57: Flow graph segment <done-component-op>

B.3.7.17 Execute statement

The syntactical structure of the execute statement is:

execute(<testCaseId>([<act-par1>, … , <act-parn>)]) [, <float_expression>])

The execute statement describes the execution of a test case <testCaseId> with the (optional) actual parameters
<act-par1>, … , <act-parn>. Optionally the execute statement may be guarded by a duration provided in form
of an expression that evaluates to a float. If within the specified duration the test case doesn't return a verdict, a timeout
exception occurs, the test case is stopped and an error verdict is returned. However, TTCN-3 has no real-time
semantics and, thus, the decision whether a timeout exception occurs or not is modelled in form of a non-deterministic
choice.

NOTE: The operational semantics only models the non-deterministic choice. The <float_expression> is
not evaluated.

If due to the non-deterministic choice no timeout exception occurs, the mtc is created, the control instance
(representing the control part of the TTCN-3 module) is blocked until the test case terminates, and for the further test
case execution the flow of control is given to the mtc. The flow of control is given back to the control instance when
the mtc terminates.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)172

The flow graph segment <execute-stmt> in figure B.58 defines the execution of an execute statement.

<execute-timeout>
OR

<execute-without-timeout>

segment <execute-stmt>

// An execute statement may or may
// not be guarded by a timeout

Figure B.58: Flow graph segment <execute-stmt>

B.3.7.17.1 Flow graph segment <execute-timeout>

The flow graph segment <execute-timeout> in figure B.59 defines the execution of an execute statement that
is guarded by a timeout value.

segment <execute-timeout>

random-choice

// The path is randomly
// chosen
Entity.NEXT-CONTROL(random);
RETURN;

<execute-without-timeout>

true

false

execute-timeout

Entity.VALUE-STACK.push(error);
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.59: Flow graph segment <execute-timeout>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)173

B.3.7.17.2 Flow graph segment <execute-without-timeout>

The execution of a test case starts with the creation of the mtc. Then the mtc is started with the behaviour defined in the
test case definition. Afterwards, the module control waits until the test case terminates. The creation and the start of the
mtc can be described by using create and start statements:

mtcType MyMTC := mtcType.create;

MyMTC.start(TestCaseName(P1…Pn);

The flow graph segment <execute-without-timeout> in figure B.60 defines the execution of an execute
statement without the occurrence of a timeout exception by using the flow graph segments of the create and the
start operations.

segment <execute-without-timeout>

init-test-case-state

MTC := Entity.VALUE-STACK.top();
TC-VERDICT := none;
DONE := 0;

Entity.NEXT-CONTROL(true);
RETURN;

<create-op>
// Creation of the MTC

<start-component-op> // Start of MTC

wait-for-termination

Entity.STATUS := BLOCKED;

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.60: Flow graph segment <execute-without-timeout>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)174

B.3.7.18 Expression

For the handling of expressions, the following four cases have to be distinguished:

a) The expression is a literal value (or a constant);

b) The expression is a variable;

c) The expression is an operator applied to one or more operands;

d) The expression is a function or operation call.

The syntactical structure of an expression is:

<lit-val> | <var-val> | <func-op-call> | <operand-appl>

where:

<lit-val> denotes a literal value;

<var-val> denotes a variable value;

<func-op-call> denotes a function or operation call;

<operator-appl> denotes the application of arithmetic operators like +, -, not, etc.

The execution of an expression is defined by the flow graph segment <expression> shown in figure B.61.

<lit-value>
OR

<var-value>
OR

<func-op-call>
OR

<operator-appl>

segment <expression>

// The four alternatives
// describe the four
// possibilities for
// expressions as
// described in this
// section.

Figure B.61: Flow graph segment <expression>

B.3.7.18.1 Flow graph segment <lit-value>

The flow graph segment <lit-value> in figure B.62 pushes a literal value onto the value stack of an entity.

lit-value
(value)

segment <lit-value>

Entity.VALUE-STACK.push(value);

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.62: Flow graph segment <lit-value>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)175

B.3.7.18.2 Flow graph segment <var-value>

The flow graph segment <var-value> in figure B.63 pushes the value of a variable onto the value stack of an entity.

var-value
(var-name)

segment <var-value>

Entity.VALUE-STACK.push(Entity.var-name);

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.63: Flow graph segment <var-value>

B.3.7.18.3 Flow graph segment <func-op-call>

The flow graph segment <func-op-call> in figure B.64 refers to calls of functions and operations, which return a
value that is pushed onto the value stack of an entity. All these calls are considered to be expressions.

<create-op> OR <done-component-op> OR
<done-all-op> OR <done-any.op> OR
<fuction-call> OR <mtc-op> OR

<read-timer-op> OR <running-timer-op> OR
<running-component-op> OR

<running-all-op> OR <running-any-op> OR
<self-op> OR <system-op> OR

<verdict.get-op> OR <execute-stmt>

segment <func-op-call>

Figure B.64: Flow graph segment <func-op-call>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)176

B.3.7.18.4 Flow graph segment <operator-appl>

The flow-graph representation in figure B.65 directly refers to the assumption that reverse polish notation is used to
evaluate operator expressions. The operands of the operator are calculated and pushed onto the evaluation stack. For the
application of the operator, the operands are popped from the evaluation stack and the operator is applied. The result of
the operator application is finally pushed onto the evaluation stack.

operator-appl
(operator)

segment <operator-appl>

<expression>

+

// For an n-nary operator,
// n operands in form of
// evaluated expressions have
// to be pushed onto the
// value stack

Entity.APPLY-OPERATOR(operator);

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.65: Flow graph segment <operator-appl>

B.3.7.19 Flow graph segment <finalize-component-init>

The flow graph segment <finalize-component-init> is part of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure B.66:

finalise-component-init

segment
<finalise-component-init>

// Control is given back to the 'father' entity.
// Identifier of 'father' entity is deleted.
Entity.VALUE-STACK.top().STATUS := ACTIVE;
Entity.VALUE-STACK.pop();

// A mark is pushed on the value stack, the
// entity goes into a blocking state (waits for
// being started) and control is given back to
// the module evaluation procedure
Entity.VALUE-STACK.push(MARK);
Entity.STATUS := BLOCKED;

// No node is pushed onto the control stack
// a return statement will be a stop
RETURN;

Figure B.66: Flow graph segment <finalize-component-init>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)177

B.3.7.20 Flow graph segment <init-component-scope>

The flow graph segment <init-component-scope> is part of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure B.67:

init-component-scope

segment <init-component-scope>

// A new variable scope and a new
// timer scope are created
Entity.INIT-VAR-SCOPE();
Entity.INIT-TIMER-SCOPE();

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.67: Flow graph segment <init-component-scope>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)178

B.3.7.21 For statement

The syntactical structure of the for-statement is:

for (<assignment>, <boolean_expression>, <assignment>) <statement-block>

The initialization of the index variable and the corresponding manipulation of the index variable are considered to be
assignments to the index variable. The <boolean_expression> describes the termination criterion of the loop
specified by the for-statement and the <statement-block> describes the loop body.

The execution of the for statement is defined by the flow graph segment <for-stmt> shown in figure B.68. The
initial <assignment> describes the initialization of the index variable. The <assignment> in the true branch of
the decision node describes the manipulation of the index variable.

<assignment>

segment <for-stmt>

decision

falsetrue

<statement-block>

<expression>

<assignment>

if (Entity.VALUE-STACK.top()== true) {
Entity.NEXT-CONTROL(true);

}
else {

Entity.NEXT-CONTROL(true);
}
Entity.VALUE-STACK.pop();
RETURN;

Figure B.68: Flow graph segment <for-stmt>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)179

B.3.7.22 Function call

The syntactical structure of a function call is:

<function-name>([<act-par-desc1>, … , <act-par-descn>])

The <function-name> denotes to the name of a function and <act-par-descr1>, … , <act-par-descrn>
describe the description of the actual parameter values of the function call. In case of a value parameter the description
of an actual parameter may be provided in form of an expression that has to be evaluated before the call can be
executed.

It is assumed that for each <act-par-desc1> the corresponding formal parameter identifier <f-par-Id1> is
known, i.e., we can extend the syntactical structure above to:

<function-name>((<f-par-Id1>, <act-par-desc1>), … , (<f-par-Idn>,
<act-par-descn>))

The flow graph segment <function-call> in figure B.69 defines the execution of a function call. The execution is
structured into three steps. In the first step a call record for the function <function-name> is created. In the second step
the values of the actual parameter are calculated and assigned to the corresponding field in the call record. In the third
step, the control of the behaviour that calls the function is transferred.

// For each pair (<f-par-Idi>, <act-parameter-desci>) the
// value of <act-parameter-desci is calculated and
// assigned to the corresponding field <f-par-Idi>
// in the call record. The call record is assumed to be
// the top element in the value stack.

control-trans-to-function
(function-name)

segment
<function call>

// Storage of return address
Entity.NEXT-CONTROL(true);
// Control is transferred to called function
Entity.CONTROL-STACK.push(GET-FLOW-GRAPH(function-name));

RETURN;

construct-call-record
(function-name)

Entity.VALUE-STACK.push(NEW-CALL-RECORD(function-name));
Entity.NEXT-CONTROL(true);
RETURN;

*

<value-par-calculation>

// Retrieves the locations for variables and timers
// used as reference parameters

*

<ref-var-par-calc> OR
<ref-timer-par-calc>>

Figure B.69: Flow graph segment <function-call>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)180

B.3.7.23 Flow graph segment <value-par-calculation>

The flow graph-segment <value-par-calculation> is used to calculate actual parameter values and to assign
them to the corresponding fields in call records for functions and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:

(<f-par-Idi>, <act-parameter-desci>)

has to be handled. <act-parameter-desci> that has to be evaluated and <f-par-Idi> is the identifier of a
formal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <value-par-calculation> is shown in figure B.70.

parameter-assignment
(f-par-Id)

segment
<value-par-calculation>

let {
parVal = Entity.VALUE-STACK.top();

// parVal is a
local variable that

// stores the value
of the expression

Entity.VALUE-STACK.pop();
// Removal of

expression value.
// Afterwards the

call record is
// again top of the

value stack

Entity.VALUE-STACK.top().f-par-Id :=
parVal;

// Value assignment

<expression>

// The expression represents <act-parameter-desci>
// The result of the evaluation of the expression
// is pushed onto the value stack.

Figure B.70: Flow graph segment <value-par-calculation>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)181

B.3.7.24 Flow graph segment <ref-par-var-calc>

The flow graph-segment <ref-par-var-calc> is used to retrieve the locations of variables used as actual
reference parameters and to assign them to the corresponding fields in call records for functions and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:

(<f-par-Idi>, <act-pari>)

has to be handled. <act-pari> is the actual parameter for which the location has to be retrieved and
<f-par-Idi> is the identifier of a formal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <ref-par-var-calc> is shown in figure B.71.

parameter-assignment
(f-par-Id, act-par)

segment
<ref-par-var-calc>

let {
location := Entity.GET-VAR-LOCATION(act-par);

Entity.VALUE-STACK.top().f-par-Id :=
location;

// Value assignment to call
record

} // end of scope for location

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.71: Flow graph segment <ref-par-var-calc>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)182

B.3.7.25 Flow graph segment <ref-par-timer-calc>

The flow graph-segment <ref-par-timer-calc> is used to retrieve the locations of timers used as actual
reference parameters and to assign them to the corresponding fields in call records for functions and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:

(<f-par-Idi>, <act-pari>)

has to be handled. <act-pari> is the actual parameter for which the location has to be retrieved and
<f-par-Idi> is the identifier of a formal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <ref-par-timer-calc> is shown in figure B.72.

parameter-assignment
(f-par-Id, act-par)

segment
<ref-par-timer-calc>

let {
location := Entity.GET-TIMER-LOCATION(act-par);

Entity.VALUE-STACK.top().f-par-Id := location;
// Value assignment to call record

} // end of scope for location

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.72: Flow graph segment <ref-par-timer-calc>

B.3.7.26 Flow graph segment <parameter-handling>

The flow graph-segment <parameter-handling> is used in the beginning of function calls. It initializes a new
scope and creates variables and timers for the handling of parameters. It is assumed that the call record of the called
function is lying on top of the value stack.

The execution of flow graph-segment <parameter-handling> is shown in figure B.73.

parameter-handling

segment
<parameter-handling>

Entity.INIT-VAR-SCOPE(); // new variable scope
Entity.INIT-TIMER-SCOPE(); // new timer scope
Entity.VALUE-STACK.top().INIT-CALL-RECORD();

// parameters are initialized
Entity.VALUE-STACK.pop(); // removal of call record
Entity.VALUE-STACK.push(MARK); // for scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.73: Flow graph segment <parameter-handling>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)183

B.3.7.27 Getcall operation

The syntactical structure of the getcall operation is:

<portId>.getcall (<matchingSpec>) [from <component_expression>] -> [<assignmentPart>]

The optional <component_expression> in the from clause refers to the sender of the call that is handled by the
getcall operation. It may be provided in form of a variable value or the return value of a function, i.e., it is assumed
to be an expression. The optional <assignmentPart> denotes the assignment of received information if the
received call matches to the matching specification <matchingSpec> and to the (optional) from clause.

The flow graph segment <getcall-op> in figure B.74 defines the execution of a getcall operation.

<getcall-with-sender>
OR

<getcall-without-sender>

segment <getcall-op>

// Distinction due to the optional
// from-clause

Figure B.74: Flow graph segment <getcall-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)184

B.3.7.27.1 Flow graph segment <getcall-with-sender>

The flow graph segment <getcall-with-sender> in figure B.75 defines the execution of a getcall operation
where the sender is specified in form of an expression.

segment
<getcall-with-sender>

let {
portRef := GET-PORT(Entity, portId); // Reference to

actual port
sender := Entity.VALUE-STACK.top(); // Reference to sender

entity
Entity.VALUE-STACK.pop(); //

deleting sender reference

if (PortRef.first() == NULL) { // Port queue is
empty, no match

Entity.NEXT-CONTROL(false);
}
else {

if (MATCH-ITEM(portRef.first(), matchingSpec,
sender)) {

// The call in the queue matches
Entity.NEXT-CONTROL(true);

}
else { // The call in the

queue does not match
Entity.NEXT-CONTROL(false);

}
}

RETURN;
} // End of scope of portRef and sender

<expression>
// The Expression shall evaluate
// to a component reference. The
// result is pushed onto the value stack

getcall-with-sender
(portID, matchingSpec)

true

false

<receive-assignment>

*(1)
// optional value
// assignemt

remove-from-port
(portId)

// Removal of received call from port
GET-PORT(Entity, portId).dequeue();

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.75: Flow graph segment <getcall-with-sender>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)185

B.3.7.27.2 Flow graph segment <getcall-without-sender>

The flow graph segment <getcall-with-sender> in figure B.76 defines the execution of a getcall operation
without a from clause.

segment <getcall-without-sender>

let {
portRef := GET-PORT(Entity, portId); // Reference to actual

port

if (PortRef.first() == NULL) { // Port queue is empty,
no match

Entity.NEXT-CONTROL(false);
}
else {

if (MATCH-ITEM(portRef.first(), matchingSpec, NULL)) {
// The call in the queue matches

Entity.NEXT-CONTROL(true);
}
else { // The call in the queue

does not match
Entity.NEXT-CONTROL(false);

}

getcall-without-sender
(portID, matchingSpec)

true

false

<receive-assignment>

*(1)
// optional value
// assignemt

remove-from-port
(portId)

// Removal of received call from port
GET-PORT(Entity, portId).dequeue();

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.76: Flow graph segment <getcall-without-sender>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)186

B.3.7.28 Getreply operation

The syntactical structure of the getreply operation is:

<portId>.getreply (<matchingSpec>) [from <component_expression>] -> [<assignmentPart>]

The optional <component_expression> in the from clause refers to the sender of the reply that is handled by
the getreply operation. It may be provided in form of a variable value or the return value of a function, i.e., it is
assumed to be an expression. The optional <assignmentPart> denotes the assignment of the received information
if the reply matches to the matching specification <matchingSpec> and to the (optional) from clause.

The flow graph segment <getreply-op> in figure B.77 defines the execution of a getreply operation.

<getreply-with-sender>
OR

<getreply-without-sender>

segment <getreply-op>

// Distinction due to the optional
// from-clause

Figure B.77: Flow graph segment <getreply-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)187

B.3.7.28.1 Flow graph segment <getreply-with-sender>

The flow graph segment <getreply-with-sender> in figure B.78 defines the execution of a getreply
operation where the sender is specified in form of an expression.

segment
<getreply-with-sender>

let {
portRef := GET-PORT(Entity, portId); // Reference to actual

port
sender := Entity.VALUE-STACK.top(); // Reference to sender

entity
Entity.VALUE-STACK.pop(); //

deleting sender reference

if (PortRef.first() == NULL) { // Port queue is empty,
no match

Entity.NEXT-CONTROL(false);
}
else {

if (MATCH-ITEM(portRef.first(), matchingSpec,
sender)) {

// The reply in the queue matches
Entity.NEXT-CONTROL(true);

}
else { // The reply in the

queue does not match
Entity.NEXT-CONTROL(false);

}
}

RETURN;
} // End of scope of portRef and sender

<expression>
// The Expression shall evaluate
// to a component reference. The
// result is pushed onto the value stack

getreply-with-sender
(portID, matchingSpec)

true

false

<receive-assignment>

*(1)
// optional value
// assignemt

remove-from-port
(portId)

// Removal of received reply from port
GET-PORT(Entity, portId).dequeue();

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.78: Flow graph segment <getreply-with-sender>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)188

B.3.7.28.2 Flow graph segment <getreply-without-sender>

The flow graph segment <getreply-with-sender> in figure B.79 defines the execution of a getreply
operation without a from clause.

segment <getreply-without-sender>

let {
portRef := GET-PORT(Entity, portId); // Reference to actual

port

if (PortRef.first() == NULL) { // Port queue is empty,
no match

Entity.NEXT-CONTROL(false);
}
else {

if (MATCH-ITEM(portRef.first(), matchingSpec, NULL)) {
// The reply in the queue matches

Entity.NEXT-CONTROL(true);
}
else { // The reply in the queue

does not match
Entity.NEXT-CONTROL(false);

}
}

getreply-without-sender
(portID, matchingSpec)

true

false

<receive-assignment>

*(1)
// optional value
// assignemt

remove-from-port
(portId)

// Removal of received reply from port
GET-PORT(Entity, portId).dequeue();

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.79: Flow graph segment <getreply-without-sender>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)189

B.3.7.29 Goto statement

The syntactical structure of the goto statement is:

goto <labelId>

The flow graph segment <goto-stmt> in figure B.80 defines the execution of the goto statement.

nop

segment <goto-stmt>

// ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL(true);
RETURN;

<labelId>

Figure B.80: Flow graph segment <goto-stmt>

NOTE: The <labelId> parameter of the goto statement indicates the transfer of control to the place at which a
label <labelId> is defined (see also clause B.3.7.31).

B.3.7.30 If-else statement

The syntactical structure of the if-else-statement is:

if (<boolean_expression>) <statement-block1>

[else <statement-block2>]

The else part of the if-else statement is optional.

The flow graph segment <if-else-stmt> in figure B.81 defines the execution of the if-else statement.

<if-with-else-branch>
OR

<if-without-else-branch>

segment <if-else-stmt>

// An if-else state may or
// may not have an else
// branch.

Figure B.81: Flow graph segment <if-else-stmt>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)190

B.3.7.30.1 Flow graph segment <if-with-else-branch>

Figure B.82 describes the execution of an if-else statement that includes an else branch. The
<statement-block> in the true branch of the decision node in figure B.82, corresponds to
<statement-block1> in the syntactical structure above. The other <statement-block> corresponds to
<statement-block2> above.

<expression>

segment <if-with-else-branch>

decision

falsetrue

<statement-block><statement-block>

if (Entity.VALUE-STACK.top()== true) {
Entity.NEXT-CONTROL(true);

}
else {

Entity.NEXT-CONTROL(true);
}
Entity.VALUE-STACK.pop();
RETURN;

Figure B.82: Flow graph segment <if-with-else-branch>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)191

B.3.7.30.2 Flow graph segment <if-without-else-branch>

Figure B.83 describes the execution of an if-else statement that includes no else branch. The
<statement-block> in the true branch of the decision node in figure B.82, corresponds to
<statement-block1> in the syntactical structure above.

<expression>

segment <if-without-else-branch>

decision

falsetrue

<statement-block>

if (Entity.VALUE-STACK.top()== true) {
Entity.NEXT-CONTROL(true);

}
else {

Entity.NEXT-CONTROL(true);
}
Entity.VALUE-STACK.pop();
RETURN;

Figure B.83: Flow graph segment <if-without-else-branch>

B.3.7.31 Label statement

The syntactical structure of the label statement is:

label <labelId>

The flow graph segment <label-stmt> in figure B.84 defines the execution of the label statement.

nop

segment <label-stmt>

// ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL(true);
RETURN;

<labelId>

Figure B.84: Flow graph segment <label-stmt>

NOTE: The <labelId> parameter of the label statement indicates the possibility that a label can be the target for a
jump by means of a goto statement (see also clause B.3.7.29).

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)192

B.3.7.32 Log statement

The syntactical structure of the log statement is:

log (<informal-description>)

The flow graph segment <log-stmt> in figure B.85defines the execution of the log statement.

nop

segment <log-stmt>

// inscription ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.85: Flow graph segment <log-stmt>

NOTE: The <informal description> parameter of the log statement has no meaning for the operational semantics
and is therefore not represented in the flow graph segment.

B.3.7.33 Map operation

The syntactical structure of a the map operation is:

map(<component_expression>.<portId1>,system.<portId2>)

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test component
and test system interface. The components to which the <portId1> belongs is referenced by means of the component
reference <component_expression>. The reference may be stored in variables or is returned by a function. For
simplicity it is considered to be an expression that evaluates to a component reference. Thus, the value stack is used for
storing the component reference.

NOTE: The map operation does not care whether the system.<portId> statement appears as first or as second
parameter. For simplicity it is assumed that it is always the second parameter.

The execution of the map operation is defined by the flow graph segment <map-op> shown in figure B.86.

segment <map-op>

<expression>

map-op
(portId1,portId2)

let {
comp1 = Entity.VALUE-STACK.top();

// Local variable to store the owner
of portId1

Entity.VALUE-STACK.pop();

. ADD-CON(comp1, portId1, SYSTEM, portId2)
} // end of scope of comp1

Entity.NEXT-CONTROL(true);

Figure B.86: Flow graph segment <map-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)193

B.3.7.34 MTC operation

The syntactical structure of the mtc operation is:

mtc

The flow graph segment <mtc-op> in figure B.87 defines the execution of the mtc operation.

mtc-op

segment <mtc-op>

Entity.VALUE-STACK.push(MTC);
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.87: Flow graph segment <mtc-op>

B.3.7.35 Raise operation

The syntactical structure of the raise operation is:

<portId>.raise (<exceptSpec>) [to <component_expression>]

The optional <component_expression> in the to clause refers to the receiver entity. It may be provided in form
of a variable value or the return value of a function.

The flow graph segment <raise-op> in figure B.88 defines the execution of a raise operation.

<reply-with-receiver-op>
OR

<reply-without-receiver-op>

segment <raise-op>

// A reply operation may or may not
// have a receiver description.

Figure B.88: Flow graph segment <raise-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)194

B.3.7.35.1 Flow graph segment <raise-with-receiver-op>

The flow graph segment <raise-with-receiver-op> in figure B.89 defines the execution of a raise operation
where the receiver is specified in form of an expression.

raise-with-receiver-op
(portId, exceptSpec)

segment <raise-with-receiver-op>

let {
receiver := Entity.VALUE-STACK.top();
remotePort := GET-REMOTE-PORT(Entity, portId, receiver);

if (remotePort == NULL) {
DYNAMIC-ERROR; // Remote port cannot be found

}
if (remotePort == SYSTEM) {
// Port is mapped onto a port of the test system. The
// reception of the exception by the SUT is outside
// the scope of the operational semantics
}
else {

remotePort.enqueue(CONSTRUCT-ITEM(Entity, raise,
sendSpec));

}
Entity.VALUE-STACK.pop(); // clean value stack

} // end of scope of receiver and remotePort

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a component reference

Figure B.89: Flow graph segment <raise-with-receiver-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)195

B.3.7.35.2 Flow graph segment <raise-without-receiver-op>

The flow graph segment <raise-without-receiver-op> in figure B.90 defines the execution of a raise
operation without to-clause.

raise-without-receiver-op
(portId, exceptSpec)

segment <raise-without-receiver-op>

let {
remotePort := GET-REMOTE-PORT(Entity, portId, NONE);

if (remotePort == NULL) {
DYNAMIC-ERROR; // Remote port cannot be found

}
if (remotePort == SYSTEM) {
// Port is mapped onto a port of the test system. The
// reception of the exception by the SUT is outside
// the scope of the operational semantics
}
else {

remotePort.enqueue(CONSTRUCT-ITEM(Entity, raise,
sendSpec));

}
Entity.VALUE-STACK.pop(); // clean value stack

} // end of scope of remotePort

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.90: Flow graph segment <raise-without-receiver-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)196

B.3.7.36 Read timer operation

The syntactical structure of the read timer operation is:

<timerId>.read

The flow graph segment <read-timer-op> in figure B.91 defines the execution of the read timer operation.

read-timer-op
(timerId)

segment
<read-timer-op>

// The timer reference <timerId> is copied into
// the node attribute ‘timerId’
Entity.VALUE-STACK.push(

Entity.timerId.ACT-DURATION – Entity.timerId.TIME-
LEFT)
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.91: Flow graph segment <read-timer-op>

B.3.7.37 Receive operation

The syntactical structure of the receive operation is:

<portId>.receive (<matchingSpec>) [from <component_expression>] -> [<assignmentPart>]

The optional <component_expression> in the from clause refers to the sender entity. It may be provided in
form of a variable value or the return value of a function, i.e., it is assumed to be an expression. The optional
<assignmentPart> denotes the assignment of received information if the received message matches to the
matching specification <matchingSpec> and to the (optional) from clause.

The flow graph segment <receive-op> in figure B.92 defines the execution of a receive operation.

<receive-with-sender>
OR

<receive-without-sender>

segment <receive-op>

// Distinction due to the optional
// from-clause

Figure B.92: Flow graph segment <receive-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)197

B.3.7.37.1 Flow graph segment <receive-with-sender>

The flow graph segment <receive-with-sender> in figure B.93 defines the execution of a receive operation
where the sender is specified in form of an expression.

segment
<receive-with-sender>

let {
portRef := GET-PORT(Entity, portId); // Reference to actual

port
sender := Entity.VALUE-STACK.top(); // Reference to sender

entity
Entity.VALUE-STACK.pop(); //

deleting sender reference

if (PortRef.first() == NULL) { // Port queue is empty,
no match

Entity.NEXT-CONTROL(false);
}
else {

if (MATCH-ITEM(portRef.first(), matchingSpec,
sender)) {

// The message in the queue matches
Entity.NEXT-CONTROL(true);

}
else { // The message in the

queue does not match
Entity.NEXT-CONTROL(false);

}
}

RETURN;
} // End of scope of portRef and sender

<expression>
// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

receive-with-sender
(portID, matchingSpec)

true

false

<receive-assignment>

*(1)
// optional value
// assignemt

remove-from-port
(portId)

// Removal of received message from port
GET-PORT(Entity, portId).dequeue();

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.93: Flow graph segment <receive-with-sender>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)198

B.3.7.37.2 Flow graph segment <receive-without-sender>

The flow graph segment <receive-with-sender> in figure B.94 defines the execution of a receive operation
without a from clause.

segment <receive-without-sender>

let {
portRef := GET-PORT(Entity, portId); // Reference to actual

port

if (PortRef.first() == NULL) { // Port queue is empty,
no match

Entity.NEXT-CONTROL(false);
}
else {

if (MATCH-ITEM(portRef.first(), matchingSpec, NULL)) {
// The message in the queue matches

Entity.NEXT-CONTROL(true);
}
else { // The message in the

queue does not match
Entity.NEXT-CONTROL(false);

}

receive-without-sender
(portID, matchingSpec)

true

false

<receive-assignment>

*(1)
// optional value
// assignemt

remove-from-port
(portId)

// Removal of received message from port
GET-PORT(Entity, portId).dequeue();

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.94: Flow graph segment <receive-without-sender>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)199

B.3.7.37.3 Flow graph segment <receive-assignment>

The flow graph segment <receive-assignment> in figure B.95 defines the retrieval of information from
received messages and their assignment to variables.

segment
<receive-assignment>

receive-assignment
(portId, assignmentPart)

let {
portRef := GET-PORT(Entity, portId);

// Reference to actual port

RETRIEVE-INFO(portRef.first(), assignmentPart,
Entity);

} // End of scope of portRef

i

Figure B.95: Flow graph segment <receive-assignment>

B.3.7.38 Reply operation

The syntactical structure of the reply operation is:

<portId>.reply (<replySpec>) [to <component_expression>]

The optional <component_expression> in the to clause refers to the receiver entity. It may be provided in form
of a variable value or the return value of a function.

The flow graph segment <reply-op> in figure B.96 defines the execution of a reply operation.

<reply-with-receiver-op>
OR

<reply-without-receiver-op>

segment <reply-op>

// A reply operation may or may not
// have a receiver description.

Figure B.96: Flow graph segment <reply-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)200

B.3.7.38.1 Flow graph segment <reply-with-receiver-op>

The flow graph segment <reply-with-receiver-op> in figure B.97 defines the execution of a reply operation
where the receiver is specified in form of an expression.

reply-with-receiver-op
(portId, replySpec)

segment <reply-with-receiver-op>

let {
receiver := Entity.VALUE-STACK.top();
remotePort := GET-REMOTE-PORT(Entity, portId, receiver);

if (remotePort == NULL) {
DYNAMIC-ERROR; // Remote port cannot be found

}
if (remotePort == SYSTEM) {

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

}
else { // sending of reply

remotePort.enqueue(CONSTRUCT-ITEM(Entity, reply,
replySpec));

}
} // end of scope of receiver and remotePort

Entity.VALUE-STACK.pop(); // clean value stack

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a component reference

Figure B.97: Flow graph segment <reply-with-receiver-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)201

B.3.7.38.2 Flow graph segment <reply-without-receiver-op>

The flow graph segment <reply-without-receiver-op> in figure B.98 defines the execution of a reply
operation without to-clause.

reply-without-receiver-op
(portId, replySpec)

segment <reply-without-receiver-op>

let {
remotePort := GET-REMOTE-PORT(Entity, portId, NONE);

if (remotePort == NULL) {
DYNAMIC-ERROR; // Remote port cannot be found

}
if (remotePort == SYSTEM) {

// Port is mapped onto a port of the test system
// reception of the reply by the SUT is outside
// the scope of the operational semantics

}
else { // sending of reply

remotePort.enqueue(CONSTRUCT-ITEM(Entity, reply,
replySpec));

}
} // end of scope of remotePort

Entity.VALUE-STACK.pop(); // clean value stack

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.98: Flow graph segment <reply-without-receiver-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)202

B.3.7.39 Return statement

The syntactical structure of the return statement is:

return [<expression>]

The optional <expression> describes a possible return value of a function. The execution of a return statement
means that the control leaves the actual scope unit, i.e., variables and timers only known in this scope have to be deleted
and the value stack has to be updated. A return statement has the effect of a stop operation, if it is the last statement
in a behaviour description.

NOTE: Due to the replacement of shorthand notations Test cases and module control will always end with a
stop operation. Only other test components may terminate with a return statement.

The flow graph segment <return-stmt> in figure B.99 defines the execution of a return statement.

<return-with-value>
OR

<return-without-value>

segment <retun-stmt>

// A return statement may or may
// not return a value

Figure B.99: Flow graph segment <return-stmt>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)203

B.3.7.39.1 Flow graph segment <return-with-value>

The flow graph segment <return-with-value> in figure B.100 defines the execution of a return that returns a
value specified in form of an expression.

return-with-value

segment <return-with-value>

let {
return-value := Entity.VALUE-STACK.top();

Entity.DEL-VAR-SCOPE(); // The actual variable scope is deleted
Entity.DEL-TIMER-SCOPE(); // The actual timer scope is deleted
Entity.VALUE-STACK.clear-until(MARK);
Entity.VALUE-STACK.push(return-value);

} // end of scope of return-value

Entity.CONTROL-STACK.pop(); // return address is lying on the
// control stack

if (Entity.CONTROL-STACK.top() == NULL) { // return is a stop
//Update of test case verdict
if (Entitiy.E-VERDICT == fail or TC-VERDICT == fail) {

TC-VERDICT := fail; }
else {

if (Entity.E-VERDICT == inconc or TC-VERDICT == inconc) {
TC-VERDICT := inconc; }

else {
if (Entity.E-VERDICT == pass or TC-VERDICT == pass) {

TC-VERDICT := pass; }
}

}
DONE := DONE+1; // update of global DONE variable
AllEntities.delete(Entity); // Deletes Entity Ref. from

AllEntities
DEL-ENTITY(Entity); // Deletion of Entity

}

RETURN;

<expression>
// The expression shall evaluates
// to the return value

Figure B.100: Flow graph segment <return-with-value>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)204

B.3.7.39.2 Flow graph segment <return-without-value>

The flow graph segment <return-without-value> in figure B.101 defines the execution of a return statement
that returns no value.

return-with-value

segment <return-without-value>

Entity.DEL-VAR-SCOPE(); // The actual variable scope is deleted
Entity.DEL-TIMER-SCOPE(); // The actual timer scope is deleted
Entity.VALUE-STACK.clear-until(MARK);

Entity.CONTROL-STACK.pop(); // return address is lying on the
// control stack

if (Entity.CONTROL-STACK.top() == NULL) { // return is a stop
//Update of test case verdict
if (Entitiy.E-VERDICT == fail or TC-VERDICT == fail) {

TC-VERDICT := fail; }
else {

if (Entity.E-VERDICT == inconc or TC-VERDICT == inconc) {
TC-VERDICT := inconc; }

else {
if (Entity.E-VERDICT == pass or TC-VERDICT == pass) {

TC-VERDICT := pass; }
}

}
DONE := DONE+1; // update of global DONE variable
AllEntities.delete(Entity); // Deletes Entity Ref. from

AllEntities
DEL-ENTITY(Entity); // Deletion of Entity

}

RETURN;

Figure B.101: Flow graph segment <return-without-value>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)205

B.3.7.40 Running-all-components operation

The running-all-components operation refers to the usage of the keywords all components in the running
component operation (Clause 42). The running-all-components operation can only be called by the mtc. It
allows checking whether all parallel test components of a test case are running. The syntactical structure of the
running-all-components operation is:

all component.running

The execution of the running-all-components operation is defined by the flow graph segment
<running-all-comp-op> in figure B.102.

running-all-comp-op

segment
<running-all-comp-op>

if (Entity != MTC) {
DYNAMIC-ERROR
// Entity is not allowed to call the

operation
}
if (DONE == 0) {

// no ptc has yet terminated
Entity.VALUE-STACK.push(true);

}
else {

Entity.VALUE-STACK.push(false);
}
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.102: Flow graph segment <running-all-comp-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)206

B.3.7.41 Running-any-component operation

The running-any-component operation refers to the usage of the keywords any component in the running
component operation (Clause 42). The running-any-components operation can only be called by the mtc. It
allows checking if at least one parallel test component of a test case is still running. The syntactical structure of the
running-any-components operation is:

any component.running

The execution of the running-any-components operation is defined by the flow graph segment
<running-any-comp-op> in figure B.103.

running-any-comp-op

segment
<running-any-comp-op>

if (Entity != MTC) {
DYNAMIC-ERROR
// Entity is not allowed to call the

operation
}
if (AllEntities.length() > 2) {

// at least on parallel test
// component is alive

Entity.VALUE-STACK.push(true);
}
else {

Entity.VALUE-STACK.push(false);
}
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.103: Flow graph segment <running-any-comp-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)207

B.3.7.42 Running component operation

The syntactical structure of the running component operation is:

<component_expression>.running

The running component operation checks whether a component is running or has stopped. Using a component
reference identifies the component to be checked. The reference may be stored in a variable or be returned by a
function. For simplicity this is considered to be an expression that evaluates to a component reference.

The flow graph segment <running-component-op> in figure B.104 defines the execution of the running component
operation.

running-component-op

segment
<running-component-op>

if (EXISTING(Entity.VALUE-STACK.top()) == true) {
Entity.VALUE-STACK.pop();
Entity.VALUE-STACK.push(true);

}
else {

Entity.VALUE-STACK.pop();
Entity.VALUE-STACK.push(false);

}

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

Figure B.104: Flow graph segment <running-component-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)208

B.3.7.43 Running timer operation

The syntactical structure of the running timer operation is:

<timerId>.running

The flow graph segment <running-timer-op> in figure B.105 defines the execution of the running timer operation.

running-timer-op
(timerId)

segment <running-timer-op>

// The timer reference <timerId> is copied
// into the node attribute ‘timerId’
if (Entity.timerId.STATUS == RUNNING) {

Entity.VALUE-STACK.push(true);
}
else {

Entity.VALUE-STACK.push(false);
}
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.105: Flow graph segment <running-timer-op>

B.3.7.44 Send operation

The syntactical structure of the send operation is:

<portId>.send (<send-spec>) [to <component_expression>]

The optional <component_expression> in the to clause refers to the receiver entity. It may be provided in form
of a variable value or the return value of a function.

The flow graph segment <send-op> in figure B.106 defines the execution of a send operation.

<send-with-receiver-op>
OR

<send-without-receiver-op>

segment <send-op>

// A send operation may or may not
// have a receiver description.

Figure B.106: Flow graph segment <send-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)209

B.3.7.44.1 Flow graph segment <send-with-receiver-op>

The flow graph segment <send-with-receiver-op> in figure B.107 defines the execution of a send operation
where the receiver is specified in form of an expression.

send-with-receiver-op
(portId, sendSpec)

segment <send-with-receiver-op>

let {
receiver := Entity.VALUE-STACK.top();
remotePort := GET-REMOTE-PORT(Entity, portId, receiver);

if (remotePort == NULL) {
DYNAMIC-ERROR; // Remote port cannot be found

}
if (remotePort == SYSTEM) {
// Port is mapped onto a port of the test system
// reception of the message by the SUT is outside
// the scope of the operational semantics
}
else {

remotePort.enqueue(CONSTRUCT-ITEM(Entity, send,
sendSpec));

}
Entity.VALUE-STACK.pop(); // clean value stack

} // end of scope of receiver and remotePort

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a component reference

Figure B.107: Flow graph segment <send-with-receiver-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)210

B.3.7.44.2 Flow graph segment <send-without-receiver-op>

The flow graph segment <send-without-receiver-op> in figure B.108 defines the execution of a send
operation without to-clause.

send-without-receiver-op
(portId, sendSpec)

segment <send-without-receiver-op>

let {
remotePort := GET-REMOTE-PORT(Entity, portId, NONE);

if (remotePort == NULL) {
DYNAMIC-ERROR; // Remote port cannot be found

}
if (remotePort == SYSTEM) {
// Port is mapped onto a port of the test system
// reception of the message by the SUT is outside
// the scope of the operational semantics
}
else {

remotePort.enqueue(CONSTRUCT-ITEM(Entity, send,
sendSpec));

}
Entity.VALUE-STACK.pop(); // clean value stack

} // end of scope of remotePort

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.108: Flow graph segment <send-without-receiver-op>

B.3.7.45 Self operation

The syntactical structure of the self operation is:

self

The flow graph segment <self-op> in figure B.109 defines the execution of the self operation.

self-op

segment <self-op>

Entity.VALUE-STACK.push(Entity);
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.109: Flow graph segment <self-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)211

B.3.7.46 Start component operation

The syntactical structure of the start component operation is:

<component_expression>.start(<function-name>(<act-par-desc1>, … , <act-par-descn>))

The start component operation starts a newly created component. Using a component reference identifies the
component to be started. The reference may be stored in a variable or be returned by a function. For simplicity this is
considered to be an expression that evaluates to a component reference.

The <function-name> denotes to the name of the function that defines the behaviour of the new component and
<act-par-descr1>, …, <act-par-descrn> provide the description of the actual parameter values of
<function-name>. In case of a value parameter the description of an actual parameter may be provided in form of
an expression that has to be evaluated before the call can be executed. The handling of formal and actual parameter is
similar to their handling in function calls (Clause B.3.7.22).

The flow graph segment <start-component-op> in figure B.110 defines the execution of the start component
operation. The start component operation is executed in four steps. In the first step a call record is created. In the second
step the actual parameter values are calculated. In the third step the reference of the component to be started is retrieved,
and, in the fourth step, control and call record are given to the new component.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)212

control-trans-to-component
(function-name)

segment <start-component-op>

let {
toBeStarted = Entity.VALUE-STACK.top();

// toBeStarted is a local variable that stores the
// identifier of the component to be started

Entity.VALUE-STACK.pop();
// Removal of component reference. Afterwards the
// call record is on top of the value stack

toBeStarted.VALUE-STACK.push(Entity.VALUE-STACK.top();
// Call record is transferred to toBeStarted.

Entity.VALUE-STACK.pop();
// Removal of the call record from the value stack

. // of the starting component (= Entity).

toBeStarted.CONTROL-STACK.push(GET-FLOW-GRAPH(function-name));
// Control stack of toBeStarted is set to
// the start node of its behaviour.

toBeStarted.STATUS := ACTIVE;
// Control is given to toBeStarted

} // end of scope for variable toBeStarted

Entity.NEXT-CONTROL(true);
RETURN;

construct-call-record
(function-name)

Entity.VALUE-STACK.push(NEW-CALL-RECORD(function-name));
Entity.NEXT-CONTROL(true);
RETURN;

// The expression shall evaluate to a component reference.
// It refers to the component to be started<expression>

// For each pair (<f-par-Idi>, <act-parameter-desci>) the
// value of <act-parameter-desci is calculated and
// assigned to the corresponding field <f-par-Idi>
// in the call record. The call record is assumed to be
// the top element in the value stack.

*

<value-par-calculation>

// Retrieves the locations for variables and timers
// used as reference parameters

*

<ref-var-par-calc> OR
<ref-timer-par-calc>>

Figure B.110: Flow graph segment <start-component-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)213

B.3.7.47 Start port operation

The syntactical structure of the start port operation is:

<portId>.start

The flow graph segment <start-port-op> in figure B.111 defines the execution of the start port operation.

start-port-op
(portId)

segment <start-port-op>

// The port name <portId> is copied
// into the node attribute ‘portId’

clear(GET-PORT(Entity, portId));
GET-PORT(Entity,portId).STATUS := STARTED;

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.111: Flow graph segment <start-port-op>

B.3.7.48 Start timer operation

The syntactical structure of the start timer operation is:

<timerId>.start [(<float_expression>)]

The optional <float_expression> parameter of the timer start operation denotes the optional duration with which the
timer shall be started. It is an expression that shall evaluate to a value of type float. If provided, the expression shall
be evaluated before the start operation is applied. The result of the evaluation is pushed onto the VALUE-STACK of
Entity.

The flow graph segment <start-timer-op> in figure B.112 defines the execution of the start timer operation.

start-timer-op-default
OR

start-timer-op-duration

segment <start-timer-op>

// A timer may be started with
// a given duration, or with a
// default duration

Figure B.112: Flow graph segment <start-timer-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)214

B.3.7.48.1 Flow graph segment <start-timer-op-default>

The flow graph segment <start-timer-op-default> in figure B.113 defines the execution of the start timer operation
with the default value.

start-timer-op-default
(timerId)

segment <start-timer-op-default>

// The timer reference <timerId> is copied
// into the node attribute‘timerId’

if (Entity.timerId.DEF-DURATION == NONE) {
DYNAMIC-ERROR // Timer has no default duration

}
else {

Entity.TIMER-SET(timerId, STATUS, RUNNING);
Entity.TIMER-SET(timerId, ACT-DURATION, Entity.timerId.DEF-

DURATION);
Entity.TIMER-SET(timerId, TIME-LEFT, Entity.timerId.DEF-DURATION);

}
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.113: Flow graph segment <start-timer-op-default>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)215

B.3.7.48.2 Flow graph segment <start-timer-op-duration>

The flow graph segment <start-timer-op-duration> in figure B.114 defines the execution of the start timer operation
with a provided duration.

start-timer-op-duration
(timerId)

segment <start-timer-op-duration>

// The timer reference <timerId> is copied into the node
// attribute ‘timerId’

Entity.TIMER-SET(timerId, STATUS, RUNNING);
Entity.TIMER-SET(timerId, ACT-DURATION, Entity.VALUE-STACK.top());
Entity.TIMER-SET(timerId, TIME-LEFT, Entity.VALUE-STACK.top());

Entity.VALUE-STACK.pop(); // clean VALUE-STACK

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a float. The result is pushed
// onto VALUE-STACK

Figure B.114: Flow graph segment <start-timer-op-duration>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)216

B.3.7.49 Statement block

The syntactical structure of a statement block is:

{ <statement1>; … ; <statementn> }

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to be initialized. When leaving a scope unit, all variables, timers and stack values of this scope have to be destroyed.

The flow graph segment <statement-block> in figure B.115 defines the execution of a statement block.

// List of all possible statements

exit-scope-unit

segment <statement-

/ / L ist of all pos sib le stat eme nts

se gme nt < sta tem ent- blo ck>

e nter -sc ope -un it

E nti ty.I NIT -VA R-SC OPE ();

E nti ty.I NIT -TI MER- SCO PE();
E nti ty.V ALU E-S TACK .pu sh(MARK);

E nti ty.N EXT -CO NTRO L(t rue);

R ETU RN;

+

L IST HA S TO BE PR OVID ED

Entity.DEL-VAR-SCOPE();
Entity.DEL-TIMER-SCOPE();
Entity.VALUE-STACK.clear-unitl(MARK);

Entity.NEXT-CONTROL(true);
RETURN;

enter-scope-unit

Entity.INIT-VAR-SCOPE();
Entity.INIT-TIMER-SCOPE();
Entity.VALUE-STACK.push(MARK);

Entity.NEXT-CONTROL(true);
RETURN;

+

LIST HAS TO BE PROVIDED

Figure B.115: Flow graph segment <statement-block>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)217

B.3.7.50 Stop operation

The syntactical structure of the stop entity operation is:

stop

The effect of the stop operation depends on the entity that executes the stop operation:

a) If stop is performed by the module control, the test campaign ends, i.e., all test components and the module
control disappear from the module state.

b) If the stop operation is executed by the mtc, all parallel test components and the mtc stop execution. The
global test case verdict is updated and pushed onto the value stack of the module control. Finally, control is
given back to the module control and the mtc terminates.

c) If the stop operation is executed by a test component, the global test case verdict TC-VERDICT and the global
DONE variable are updated. Then the component disappears completely from the module.

The flow graph segment <stop-entity-op> in figure B.116 defines the execution of the stop entity operation.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)218

stop

segment <stop-entity-op>

if (Entity == AllEntities.first()) { // Entity is module control
AllEntities := NULL; AllPorts := NULL; MTC := NULL;
TC-VERDICT := none; DONE := 0; Entity := NULL;

}
else {

if (Entity == MTC) {
while (Entity != NULL) { // Update test case

verdict
if (Entitiy.E-VERDICT == fail or TC-VERDICT == fail)

{
TC-VERDICT := fail; }

else {
if (Entity.E-VERDICT == inconc or TC-VERDICT

== inconc) {
TC-VERDICT := inconc; }

else {
if (Entity.E-VERDICT == pass or TC-

VERDICT == pass) {
TC-VERDICT := pass; }

}
}
Entity := AllEntities.next(Entity);

}
Entity := AllEntities.next(MTC);
while (Entity != NULL) { // Deletion of test

components
AllEntities.delete(Entity); // Delete Reference

from AllEntities
DEL-ENTITY(Entity);

// Deletion of entity
Entity := AllEntities.next(MTC); // Next Entity

to delete
}
AllEntities.first().VALUE-STACK.push(TC-VERDICT);

// TC-VERDICT is the result of
the execute operation

AllEntities.first().STACK. := ACTIVE;
UPDATE-REMOTE-LOCATIONS(MTC, AllEntities.first());
AllEntities.delete(MTC); // Delete mtc reference from

AllEntities
DEL-ENTITY(MTC); // Deletion of

MTC
}
else { // Entitiy is a normal test component

if (Entitiy.E-VERDICT == fail or TC-VERDICT == fail) {
TC-VERDICT := fail; }

else {
if (Entity.E-VERDICT == inconc or TC-VERDICT ==

i {

Figure B.116: Flow graph segment <stop-entity-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)219

B.3.7.51 Stop port operation

The syntactical structure of the stop port operation is:

<portId>.stop

The flow graph segment <stop-port-op> in figure B.117 defines the execution of the stop port operation.

stop-port-op
(portId)

segment <stop-port-op>

// The port name <portId> is copied
// into the node attribute ‘portId’

GET-PORT(Entity,portId).STATUS := STOPPED;

Entity.NEXT-CONTROL(true);
RETURN;

Figure B.117: Flow graph segment <stop-port-op>

B.3.7.52 Stop timer operation

The syntactical structure of the stop timer operation is:

<timerId>.stop

The flow graph segment <stop-timer-op> in figure B.118 defines the execution of the stop timer operation.

stop-timer-op
(timerId)

segment <stop-timer-op>

// The timer reference <timerId> is copied
// into the node attribute ‘timerId’
Entity.TIMER-SET(timerId, STATUS, IDLE);
Entity.TIMER-SET(timerId, ACT-DURATION, 0.0);
Entity.TIMER-SET(timerId, TIME-LEFT, 0.0);
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.118: Flow graph segment <stop-timer-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)220

B.3.7.53 Sut.action operation

The syntactical structure of the sut.action operation is:

sut.action (<informal description>)

The flow graph segment <sut.action-op> in figure B.119 defines the execution of the sut.action operation.

nop

segment <sut.action-op>

// inscription ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.119: Flow graph segment <sut.action-op>

NOTE: The <informal description> parameter of the sut.action operation has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

B.3.7.54 System operation

The syntactical structure of the system operation is:

system

The flow graph segment <system-op> in figure B.120 defines the execution of the system operation.

system-op

segment <system-op>

Entity.VALUE-STACK.push(system);
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.120: Flow graph segment <system-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)221

B.3.7.55 Timeout timer operation

The syntactical structure of the timeout timer operation is:

<timerId>.timeout

The flow graph segment <timeout-timer-op> in figure B.121 defines the execution of the timeout timer operation.

timeout-timer-op
(timerId)

segment <timeout-timer-op>
// The timer reference <timerId> is copied
// into the node attribute ‘timerId’
if (Entity.timerId.STATUS == TIMEOUT) {

Entity.TIMER-SET(timerId, STATUS, IDLE);
Entity.TIMER-SET(timerId, ACT-DURATION, 0.0);
Entity.TIMER-SET(timerId, TIME-LEFT, 0.0);
Entity.NEXT-CONTROL(true);

}
else {

Entity.NEXT-CONTROL(false);
}
RETURN;

truefalse

Figure B.121: Flow graph segment <running-timer-op>

NOTE: A timeout operation is embedded in an alt statement. Depending on whether the timeout evaluates
to true or false, either execution continues with the statement that follows the timeout operation
(true branch), or the next alternative in the alt statement has to be checked (false branch).

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)222

B.3.7.56 Unmap operation

The syntactical structure of a the unmap operation is:

unmap(<component_expression>.<portId1>,system.<portId2>)

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test component
and test system interface. The component to which the <portId1> belongs is referenced by means of the component
reference <component_expression>. The reference may be stored in variables or is returned by a function. For
simplicity it is considered to be an expression that evaluates to a component reference. Thus, the value stack is used for
storing the component reference.

NOTE: The unmap operation does not care whether the system.<portId> statement appears as first or as second
parameter. For simplicity it is assumed that it is always the second parameter.

The execution of the unmap operation is defined by the flow graph segment <map-op> shown in figure B.122.

segment <unmap-op>

<expression>

unmap-op
(portId1,portId2)

let {
comp1 = Entity.VALUE-STACK.top();

// Local variable to store the owner
of portId1

Entity.VALUE-STACK.pop();

. DEL-CON(comp1, portId1, SYSTEM, portId2)
} // end of scope of comp1

Entity.NEXT-CONTROL(true);

Figure B.122: Flow graph segment <unmap-op>

B.3.7.57 Verdict.get operation

The syntactical structure of the verdict.get operation is:

verdict.get

The flow graph segment <verdict.get-op> in figure B.123 defines the execution of the verdict.get operation.

verdict.get-op

segment <verdict.get-op>
// E-VERDICT is pushed onto VALUE-STACK
Entity.VALUE-STACK.push(Entity.E-
VERDICT);
Entity.NEXT-CONTROL(true);
RETURN;

Figure B.123: Flow graph segment <verdict.get-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)223

B.3.7.58 Verdict.set operation

The syntactical structure of the verdict.set operation is:

verdict.set(<verdicttype_expression>)

NOTE: The <verdicttype_expression> parameter of the verdict.set operation is an expression that shall
evaluate to a value of type verdicttype, i.e., none, pass, inconc or fail. The expression is
evaluated before the verdict.set operation is applied.

The flow graph segment <verdict.set-op> in figure B.124 defines the execution of the verdict.set operation.

verdict.set-op

segment <verdict.set-op>

if (Entity.E-VERDICT == fail or
Entity.VALUE-STACK.top() == fail) {

Entity.E-VERDICT := fail;
}
else {

if (Entity.VALUE-STACK.top() == inconc
or

Entity.E-VERDICT == inconc) {
Entity.E-VERDICT := inconc;

}
else {

if (Entity.VALUE-STACK.top() ==
pass or

Entity.E-VERDICT == pass) {
Entity.E-VERDICT := pass;

}
}

}
Entity.VALUE-STACK.pop() // clear VALUE-STACK
Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// The expression shall evaluate to a value
// of type verdicttype.
// The result of the evaluation is pushed
// onto the VALUE-STACK of Entity

Figure B.124: Flow graph segment <verdict.set-op>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)224

B.3.7.59 While statement

The syntactical structure of the while statement is:

while (<boolean-expression>) <statement-block>

The execution of a while statement is defined by the flow graph segment <while-stmt> shown in figure B.125.

segment <while-stmt>

decision

falsetrue

<statement-block>

<expression>

if (Entity.VALUE-STACK.top()== true) {
Entity.NEXT-CONTROL(true);

}
else {

Entity.NEXT-CONTROL(true);
}
Entity.VALUE-STACK.pop();
RETURN;

Figure B.125: Flow graph segment <while-stmt>

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)225

B.3.8 Lists of operational semantic components

B.3.8.1 Functions and states

Name Description Reference
NEXT Retrieves the successor node of a given node in a flow graph. Clause B.3.1.6
GET-FLOW-GRAPH Retrieves the start node of a flow graph Clause B.3.2.6
MTC Reference to mtc in module state Clause B.3.3.1.1
TC-VERDICT Actual test case verdict in module state Clause B.3.3.1.1
DONE Number of terminated test components (part of module state) Clause B.3.3.1.1
append List operation 'append': appends an item as last element to a list Clause B.3.3.1.1
delete List operation 'delete': deletes an item from a list Clause B.3.3.1.1
first List operation 'first': returns the first element of a list Clause B.3.3.1.1

Queue operation 'first': returns the first element of a queue Clause B.3.3.3.2
length List operation 'length': returns the length of a list Clause B.3.3.1.1
STATUS Status (ACTIVE or BLOCKED) of module control or a test component Clause B.3.3.2.1

Status (IDLE, RUNNING or TIMEOUT) of a timer Clause B.3.3.2.4
Status (STARTED or STOPPED) of a port Clause B.3.3.3.2

E-VERDICT Local test verdict of a test component Clause B.3.3.2.1
CONTROL-STACK Stack of flow graph nodes denoting the actual control state of an entity Clause B.3.3.2.1
VALUE-STACK Stack of values for the storage of results of expressions, operands,

operations and functions.
Clause B.3.3.2.1

push Stack operation 'push': pushes an item onto a stack Clause B.3.3.2.1
pop Stack operation 'pop': pops an item from a stack Clause B.3.3.2.1
top Stack operation 'top': returns the top item from a stack Clause B.3.3.2.1
clear Stack operation 'clear': clears a stack Clause B.3.3.2.1

Queue operation 'clear': removes all elements from a queue Clause B.3.3.3.2
clear-until Stack operation 'clear-until': pops items until a specific item is top element

in the stack.
Clause B.3.3.2.1

NEW-ENTITY Creates a new entity state Clause B.3.3.2.1
VAR-SET Setting the value of a variable Clause B.3.3.2.4
TIMER-SET Setting values of a timer Clause B.3.3.2.4
DEF-DURATION Default Duration of a timer Clause B.3.3.2.4
ACT-DURATION Duration with which an active timer has been started Clause B.3.3.2.4
TIME-LEFT Time a running timer has left to run before a it times out Clause B.3.3.2.4
INIT-VAR Creates a new variable binding Clause B.3.3.2.4
INIT-TIMER Creates a new timer binding Clause B.3.3.2.4
GET-VAR-LOC Retrieves location of a variable Clause B.3.3.2.4
GET-TIMER-LOC Retrieves location of a timer Clause B.3.3.2.4
INIT-VAR-LOC Creates a new variable binding with an existing location Clause B.3.3.2.4
INIT-TIMER-LOC Creates a new timer binding with an existing location Clause B.3.3.2.4
INIT-VAR-SCOPE Initializes a new variable scope Clause B.3.3.2.4
INIT-TIMER-SCOPE Initializes a new timer scope Clause B.3.3.2.4
DEL-VAR-SCOPE Deletes a variable scope Clause B.3.3.2.4
DEL-TIMER-SCOPE Deletes a timer scope Clause B.3.3.2.4
NEW-PORT Creates a new port Clause B.3.3.3.2
GET-PORT Retrieves a port reference Clause B.3.3.3.2
GET-REMOTE-PORT Retrieves the reference of a remote port Clause B.3.3.3.2
ADD-CON Adds a connection to a port state Clause B.3.3.3.2
DEL-CON Deletes a connection from a port state Clause B.3.3.3.2
enqueue Queue operation 'enqueue': puts an item as last element into a queue Clause B.3.3.3.2
dequeue Queue operation 'dequeue': deletes the first element from a queue Clause B.3.3.3.2
DEL-ENTITY Deletes an entity from a module state Clause B.3.3.4
EXISTING Checks whether a test component exists or not Clause B.3.3.4
UPDATE-REMOTE-
REFERENCES

Updates timers and variables with the same location in different entities to
the same value.

Clause B.3.3.4

CONSTRUCT-ITEM Constructs an item to be sent Clause B.3.4.3
MATCH-ITEM Checks if a received message, call, reply or exception matches with a

receiving operation
Clause B.3.4.4

RETRIEVE-INFO Retrieves information from a received message, call, reply or exception Clause B.3.4.4
NEW-CALL-RECORD Creates a call record for a function call Clause B.3.5.1
INIT-FLOW-GRAPHS Initializes the flow graph handling Clause B.3.6.1
GET-UNIQUE-ID Returns a new unique identifier when it is called Clause B.3.6.1

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)226

Name Description Reference
CONTINUE-
COMPONENT

The actual component continues its execution Clause B.3.6.1

RETURN Returns the control to the module evaluation procedure defined in clause
B.3.6

Clause B.3.6.1

DYNAMIC-ERROR Describes the occurrence of a dynamic error Clause B.3.6.1

B.3.8.2 Special keywords

Keyword Description Reference
MARK Used as mark for VALUE-STACK Clause B.3.3.2
ACTIVE STATUS of an entity state Clause B.3.3.2
BLOCKED STATUS of an entity state Clause B.3.3.2
NULL Symbolic value for pointer and pointer-like types to indicate that nothing is

addressed
IDLE STATUS of a timer state Clause B.3.3.2.4
RUNNING STATUS of a timer state Clause B.3.3.2.4
TIMEOUT STATUS of a timer state Clause B.3.3.2.4
STARTED STATUS of a port Clause B.3.3.2.4
STOPPED STATUS of a port Clause B.3.3.2.4
NONE Used to describe an undefined value

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)227

B.3.8.3 Flow graph segments

ReferenceIdentifier Related TTCN-3 construct
Figure Clause

<alt-stmt> alt statement Figure B.25 Clause B.3.7.1
<alt-with-else> alt statement Figure B.26 Clause B.3.7.1
<alt-without-else> alt statement Figure B.27 Clause B.3.7.1
<assignment-stmt > assignment statement Figure B.29 Clause B.3.7.2
<b-call-with-
receiver>

call Figure B.35 Clause B.3.7.3.3

<b-call-without-
receiver>

call Figure B.36 Clause B.3.7.3.4

<b-call-with-rec-
dur>

call Figure B.37 Clause B.3.7.3.5

<b-call-without-rec-
dur>

call Figure B.38 Clause B.3.7.3.6

<blocking-call-op> call Figure B.31 Clause B.3.7.3
<call-op> call Figure B.30 Clause B.3.7.3
<catch-op> catch Figure B.39 Clause B.3.7.4
<catch-with-
sender>

used in catch operation Figure B.40 Clause B.3.7.4.1

<catch-without-
sender>

used in catch operation FigureB.41 Clause B.3.7.4.2

<clear-port-op> clear port Figure B.42 Clause B.3.7.5
<constant-
declaration>

Declaration of a constant Figure B.44 Clause B.3.7.7

<connect-op> connect Figure B.43 Clause B.3.7.6
<create-op> create Figure B.45 Clause B.3.7.8
<disconnect-op> disconnect Figure B.53 Clause B.3.7.12
<do-while-stmt> do-while statement Figure B.54 Clause B.3.7.13
<done-all-comp-op> all component.done Figure B.55 Clause B.3.7.14
<done-any-comp-
op>

any component.done Figure B.56 Clause B.3.7.15

<done-component-
op>

done component Figure B.57 Clause B.3.7.16

<execute-stmt> execute Figure B.58 Clause B.3.7.17
<execute-timeout>> execute FigureB.59 Clause B.3.7.17
<execute-without-
timeout>>

execute Figure B.60 Clause B.3.7.17

<expression> Expression Figure B.61 Clause B.3.7.18
<finalize-
component-init>

Used in the behaviour of component type
definitions

Figure B.66 Clause B.3.7.19

<for-stmt>> for statement Figure B.68 Clause B.3.7.21
<function-call> Call of user defined functions Figure B.69 Clause B.3.7.22
<func-op-call> Used in <expression> Figure B.64 Clause B.3.7.18.3
<getcall-op> getcall Figure B.74 Clause B.3.7.27
<getcall-with-
sender>

used in getcall operation Figure B.75 Clause B.3.7.27.1

<getcall-without-
sender>

used in getcall operation Figure B.76 Clause B.3.7.27.2

<getreply-op> getreply Figure B.76 Clause B.3.7.28
<getreply-with-
sender>

used in getreply operation Figure B.78 Clause B.3.7.28.1

<getreply-without-
sender>

used in getreply operation Figure B.79 Clause B.3.7.28.2

<goto-stmt> goto Figure B.80 Clause B.3.7.29
<if-else-stmt> if-else Figure B.80 Clause B.3.7.30
<if-with-else-
branch>

if-else Figure B.82 Clause B.3.7.30.1

<if-without-else-
branch>

if-else Figure B.83 Clause B.3.7.30.2

<init-component-
scope>

Used in the behaviour of component type
definitions

Figure B.67 Clause B.3.7.20

<label-stmt> label Figure B.84 Clause B.3.7.31
<lit-value> Used in <expression> Figure B.62 Clause B.3.7.18.1

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)228

ReferenceIdentifier Related TTCN-3 construct
Figure Clause

<log-stmt> log FigureB.85 Clause B.3.7.32
<map-op> map operation Figure B.86 Clause B.3.7.33
<mtc-op> mtc Figure B.87 Clause B.3.7.34
<nb-call-with-
receiver>

call Figure B.33 Clause B.3.7.3.1

<nb-call-without-
receiver>

call Figure B.34 Clause B.3.7.3.2

<non-blocking-call-
op>

call Figure B.32 Clause B.3.7.3

<operator-appl> used in <expression> Figure B.65 Clause B.3.7.18.4
<parameter-
handling>

creation of entities, function calls Figure B.73 Clause B.3.7.26

<port-declaration> Declaration of a port Figure B.46 Clause B.3.7.9
<raise-op> raise Figure B.88 Clause B.3.7.35
<raise-with-
receiver-op>

raise Figure B.89 Clause B.3.7.35.1

<raise-without-
receiver-op>

raise Figure B.90 Clause B.3.7.35.2

<read-timer-op> read timer Figure B.91 Clause B.3.7.36
<receive-
assignment>

used in receive operation Figure B.95 Clause B.3.7.37.3

<receive-op> receive Figure B.92 Clause B.3.7.37
<receive-with-
sender>

used in receive operation Figure B.93 Clause B.3.7.37.1

<receive-without-
sender>

used in receive operation Figure B.94 Clause B.3.7.37.2

<receiving-branch> alt statement Figure B.28 Clause B.3.7.1.1
<reply-op> reply Figure B.96 Clause B.3.7.38
<reply-with-
receiver-op>

reply FigureB.97 Clause B.3.7.38.1

<reply-without-
receiver-op>

reply Figure B.98 Clause B.3.7.38.2

<ref-par-var-calc> creation of entities, function calls Figure B.71 Clause B.3.7.24
<ref-par-timer-calc> creation of entities, function calls Figure B.72 Clause B.3.7.25
<return-stmt> return Figure B.99 Clause B.3.7.39
<return-with-value> return Figure B.100 Clause B.3.7.39.1
<return-without-
value>

return Figure B.101 Clause B.3.7.39.2

<running-all comp-
op>

all component.running Figure B.102 Clause B.3.7.40

<running-any comp-
op>

any component.running Figure B.103 Clause B.3.7.41

<running-
component-op>

running component Figure B.104 Clause B.3.7.42

<running-timer-op> running timer Figure B.105 Clause B.3.7.43
<self-op> self Figure B.109 Clause B.3.7.45
<send-op> send Figure B.106 Clause B.3.7.44
<send-with-
receiver-op>

send Figure B.107 Clause B.3.7.44.1

<send-without-
receiver-op>

send Figure B.108 Clause B.3.7.44.2

<start-component-
op>

start component Figure B.110 Clause B.3.7.46

<start-port-op> start port Figure B.111 Clause B.3.7.47
<start-timer-op> start timer Figure B.112 Clause B.3.7.48
<start-timer-op-
default>

start timer Figure B.113 Clause B.3.7.48.1

<start-timer-op-
duration>

start timer Figure B.114 Clause B.3.7.48.2

<stop-entity-op> stop execution of module control, mtc or a
test component

Figure B.116 Clause B.3.7.50

<stop-port-op> stop port Figure B.117 Clause B.3.7.51
<statement-block> Statement block Figure B.115 Clause B.3.7.49
<stop-timer-op> stop timer Figure B.118 Clause B.3.7.52

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)229

ReferenceIdentifier Related TTCN-3 construct
Figure Clause

<sut.action-op> sut.action-op Figure B.119 Clause B.3.7.53
<system-op> system Figure B.120 Clause B.3.7.54
<timeout-timer-op> timeout timer Figure B.121 Clause B.3.7.55
<timer-declaration> Declaration of a timer Figure B.47 Clause B.3.7.10
<timer-decl-default> Declaration of a timer with a default duration Figure B.48 Clause B.3.7.10.1
<timer-decl-no-def> Declaration of a timer without default duration Figure B.49 Clause B.3.7.10.2
<unmap-op> unmap operation FigureB.122 Clause B.3.7.56
<value-par-
calculation>

creation of entities, function calls Figure B.70 Clause B.3.7.23

<variable-
declaration>

Declaration of a variable Figure B.50 Clause B.3.7.11

<variable-
declaration-init>

Declaration of a variable with an initial values FigureB.51 Clause B.3.7.11.1

<variable-
declaration-undef>

Declaration of a variable without an initial
value

FigureB.52 Clause B.3.7.11.2

<var-value> Used in <expression> Figure B.63 Clause B.3.7.18.2
<verdit.get-op> verdict.get Figure B.123 Clause B.3.57
<verdit.set-op> verdict.set Figure B.124 Clause B.3.7.58
<while-stmt> while statement Figure B.125 Clause B.3.7.59

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)230

Annex C (normative):
Matching incoming values

C.1 Template matching mechanisms
This annex specifies the matching mechanisms that may be used in TTCN-3 templates (and only in templates).

C.1.1 Matching specific values
Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms or wildcards. Unless otherwise specified, a template field matches the
corresponding incoming field value if, and only if, the incoming field value has exactly the same value as the value to
which the expression in the template evaluates. For example:

// Given the message type definition
type record MyMessageType
{

integer field1,
charstring field2,
boolean field3 optional,
integer[4] field4

}

// A message template using specific values could be
template MyMessageType MyTemplate:=
{

field1 := 3+2, // specific value of integer type
field2 := "My string", // specific value of charstring type
field3 := true, // specific value of boolean type
field4 := {1,2,3} // specific value of integer array

}

C.1.2 Matching mechanisms instead of values

C.1.2.1 Value list

Value lists specify lists of acceptable incoming values. It can be used on values of all types. A template field that uses a
value list matches the corresponding incoming field if, and only if, the incoming field value matches any one of the
values in the value list. Each value in the value list shall be of the type declared for the template field in which this
mechanism is used. For example:

template Mymessage MyTemplate:=
{

field1 := (2,4,6), // list of integer values
field2 := ("String1", "String2"), // list of charstring values
:
:

}

C.1.2.2 Complemented value list

The keyword complement denotes a list of values that will not be accepted as incoming values (i.e., it is the
complement of a value list). It can be used on all values of all types.

Each value in the list shall be of the type declared for the template field in which the complement is used. A template
field that uses complement matches the corresponding incoming field if and only if the incoming field does not match
any of the values listed in the value list. The value list may be a single value, of course.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)231

EXAMPLE:

template Mymessage MyTemplate:=
{

complement (1,3,5), // list of unacceptable integer values
:
field3 not(true) // will match false
:

}

C.1.2.3 Omitting values

The keyword omit denotes that an optional template field shall be absent. It can be used on values of all types,
provided that the template field is optional. For example:

template Mymessage:MyTemplate:=
{ :

:
field3 := omit, // omit this field
:

}

C.1.2.4 Any value

The matching symbol "?" (AnyValue) is used to indicate that any valid incoming value is acceptable. It can be used on
values of all types. A template field that uses the any value mechanism matches the corresponding incoming field if,
and only if, the incoming field evaluates to a single element of the specified type. For example:

template Mymessage:MyTemplate:=
{

field1 := ?, // will match any integer
field2 := ?, // will match any non-empty charstring value
field3 := ?, // will match true or false
field4 := ? // will match any sequence of integers

}

C.1.2.5 Any value or none

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid incoming value, including omission of
that value, is acceptable. It can be used on values of all types, provided that the template field is declared as optional.

A template field that uses this symbol matches the corresponding incoming field if, and only if, either the incoming
field evaluates to any element of the specified type, or if the incoming field is absent. For example:

template Mymessage:MyTemplate:=
{ :

field3 := *, // will match true or false or omitted field
:

}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)232

C.1.2.6 Value range

Ranges indicate a bounded range of acceptable values. It shall be used only on values of integer types (and integer
sub-types). A boundary value shall be either:

a) infinity or -infinity;

b) an expression that evaluates to a specific integer value.

The lower boundary shall be put on the left side of the range, the upper boundary at the right side. The lower boundary
shall be less than the upper boundary. A template field that uses a range matches the corresponding incoming field if,
and only if, the incoming field value is equal to one of the values in the range. For example:

template Mymessage:MyTemplate:=
{

field1 := (1 .. 6), // range of integer type
:
:
:

}
// other entries for field1 might be (-infinity to 8) or (12 to infinity)

C.1.3 Matching mechanisms inside values

C.1.3.1 Any element

The matching symbol "?" (AnyElement) is used to indicate that it replaces single elements of a string (except character
strings), a record of, a set of or an array. It shall be used only within values of string types, record of types,
set of types and arrays. For example:

template Mymessage MyTemplate:=
{ :

field2 := "abcxyz",
field3 := '10???'B, // where each "?" may either be 0 or 1
field4 := {1, ?, 3} // where ? may be any integer value

}

NOTE: The "?" in field4 can be interpreted as AnyValue as an integer value, or AnyElement inside a record
of, set of or array. Since both interpretations lead to the same match no problem arises.

C.1.3.1.1 Using single character wildcards

If it is required to express the "?" wildcard in character strings it shall be done using character patterns (see clause
C.1.5).. For example "abcdxyz", "abccxyz" "abcxxyz" etc. will all match pattern "abc?xyz". However, "abcxyz",
abcdefxyz", etc. will not.

C.1.3.2 Any number of elements or no element

The matching symbol "*" (AnyElementsOrNone) is used to indicate that it replaces none or any number of consecutive
elements of a string (except character strings), a record of, a set of or an array. It shall be used only within
values of string types or arrays. The "*" symbol matches the longest sequence of elements possible, according to the
pattern as specified by the symbols surrounding the "*". For example:

template Mymessage MyTemplate:=
{ :

field2 := "abcxyz",
field3 := '10*11'B, // where "*" may be any sequence of bits (possibly empty)
field4 := {*, 2, 3} // where the first element may be any integer value or omitted

}

var charstring MyStrings[4];
MyPCO.receive(MyStrings:{"abyz", *, "abc" });

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)233

If a "*" appears at the highest level inside a string, a record of, set of or array, it shall be interpreted as
AnyElementsOrNone.

NOTE: This rule prevents the otherwise possible interpretation of "*" as AnyValueOrNone that replaces an
element inside a string, record of, set of or array.

C.1.3.2.1 Using multiple character wildcards

If it is required to expressed the "*" wildcard in character strings it shall be done using character patterns (see clause
C.1.5).For example: "abcxyz", "abcdefxyz" "abcabcxyz" etc. will all match pattern "abc*xyz"

C.1.4 Matching attributes of values

C.1.4.1 Length restrictions

The length restriction attribute is used to restrict the length of string values and the number of elements in a set of or
record of structure. It shall be used only as an attribute of the following mechanisms: Complement, AnyValue,
AnyValueOrNone, AnyElement and AnyElementsOrNone. It can also be used in conjunction with the ifpresent
attribute. The syntax for length can be found in clause 6.2.3 and 6.3.3.

The units of length are to be interpreted according to table 4 in the main body of the present document in the case of
string values. For set of and record of types the unit of length is the replicated type. The boundaries shall be
denoted by expressions which resolve to specific non-negative integer values. Alternatively, the keyword
infinity can be used as a value for the upper boundary in order to indicate that there is no upper limit of length.

The length specifications for the template shall not conflict with the length for restrictions (if any) of the corresponding
type. A template field that uses Length as an attribute of a symbol matches the corresponding incoming field if, and
only if, the incoming field matches both the symbol and its associated attribute. The length attribute matches if the
length of the incoming field is greater than or equal to the specified lower bound and less than or equal to the upper
bound. In the case of a single length value the length attribute matches only if the length of the received field is exactly
the specified value.

In the case of an omitted field, the length attribute is always considered as matching (i.e., with omit it is redundant).
With AnyValueOrNone and ifpresent it places a restriction on the incoming value, if any. For example:

template Mymessage MyTemplate:=
{

field1 := complement (4,5) length (1 .. 6), // is the same as (1,2,3,6)
field2 := "ab*ab" length(13) // max length of the AnyElementsOrNone string is 9 characters
:

}

C.1.4.2 The IfPresent indicator

The ifpresent indicates that a match may be made if an optional field is present (i.e., not omitted). This attribute
may be used with all the matching mechanisms, provided the type is declared as optional.

A template field that uses ifpresent matches the corresponding incoming field if, and only if, the incoming field
matches according to the associated matching mechanism, or if the incoming field is absent. For example:

template Mymessage:MyTemplate:=
{ :

field2 := "abcd" ifpresent, // matches "abcd" if not omitted
:
:

}

NOTE: AnyValueOrNone has exactly the same meaning as ? ifpresent

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)234

C.1.5 Matching Character Pattern
Character patterns can be used in templates to define the format of a required character string to be received. Character
patterns can be used to match charstring and universal charstring values. In addition to literal characters,
character patterns allow the use of meta characters? and * to mean any character and any number of any character
respectively. For example:

template charstring MyTemplate:= pattern "ab??xyz*";

This template would match any character string that consists of the characters ‘ab’, followed by any two characters,
followed by the characters ‘xyz’, followed by any number of any characters.

If it is required to interpret any metacharacter literally it should be preceded with the metachacter ‘\’. For example:

template charstring MyTemplate:= pattern "ab?\?xyz*";

This template would match any character string which consists of the characters ‘ab’, followed by any characters,
followed by the characters ‘?xyz’, followed by any number of any characters.

In addition to direct string values it is also possible within the pattern statement to use references to existing templates,
constants or variables. The reference shall resolve to one of the character string types and more than one. For example:

const charstring MyString:= "ab?";

template charstring MyTemplate:= pattern MyString;

This template would match any character string that consists of the characters ‘ab’, followed by any characters. In effect
any character string following the pattern keyword either explicitly or by reference will be interpreted following the
rules defined in this clause.

The pattern statement also allows the use of the concatenate operator and in the case of universal charstring the use of
the Quadruple production to specify a single character. For example:

const charstring MyString:= "ab?";

template universal charstring MyTemplate:= pattern MyString & "de" & (1, 1, 13, 7);

This template would match any character string which consists of the characters ‘ab’, followed by any characters,
followed by the characters ‘de’, followed by the character in ISO/IEC 10646 with group=1, plane=1, row=65 and
cell=7.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)235

Annex D (normative):
Pre-defined TTCN-3 functions

D.1 Pre-defined TTCN-3 functions
This annex defines the TTCN-3 predefined functions.

D.1.1 Integer to character
int2char(integer value) return char

This function converts an integer value in the range of 0 … 127 (8-bit encoding) into a character value of
ISO/IEC 646 [5]. The integer value describes the 8-bit encoding of the character.

The function returns –1 if the value of the argument is a negative or greater than 127.

D.1.2 Character to integer
char2int(char value) return integer

This function converts a char value of ISO/IEC 646 [5] into an integer value in the range of 0 … 127. The integer
value describes the 8-bit encoding of the character.

D.1.3 Integer to universal character
int2unichar(integer value) return universal char

This function converts an integer value in the range of 0 … 268435455 (32-bit encoding) into a character value of
ISO/IEC 10646 [6]. The integer value describes the 32-bit encoding of the character.

The function returns –1 if the value of the argument is a negative or greater than 268435455.

D.1.4 Univeral character to integer
unichar2int(univeral char value) return integer

This function converts a univeral char value of ISO/IEC 10646 [6] into an integer value in the range of 0 …
268435455. The integer value describes the 32-bit encoding of the character.

D.1.5 Bitstring to integer
bit2int(bitstring value) return integer

This function converts a single bitstring value to a single integer value.

For the purposes of this conversion, a bitstring shall be interpreted as a positive base 2 integer value. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)236

D.1.6 Hexstring to integer
hex2int(hexstring value) return integer

This function converts a single hexstring value to a single integer value.

For the purposes of this conversion, a hexstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 .. F represent the decimal values 0 .. 15 respectively.

D.1.7 Octetstring to integer
oct2int(octetstring value) return integer

This function converts a single octetstring value to a single integer value.

For the purposes of this conversion, a hexstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits 0 .. F represent the decimal values 0 .. 15 respectively.

D.1.8 Charstring to integer
str2int(charstring value) return integer

This function converts a charstring representing an integer value to the equivalent integer. If the string does
not represent a valid integer value the function returns the value zero (0).

EXAMPLES:

str2int("66") will return the integer value 66

str2int("-66") will return the integer value -66

str2int("abc") will return the integer value 0

str2int("0") will return the integer value 0

D.1.9 Integer to bitstring
int2bit(integer value, length) return bitstring

This function converts a single integer value to a single bitstring value. The resulting string is length bits
long.

For the purposes of this conversion, a bitstring shall be interpreted as a positive base 2 integer value. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively. If the conversion yields a value with fewer bits than specified in the length parameter, then the
bitstring shall be padded on the left with zeros. A test case error shall occur if the value is negative or if the
resulting bitstring contains more bits than specified in the length parameter.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)237

D.1.10 Integer to hexstring
int2hex(integer value, length) return hexstring

This function converts a single integer value to a single hexstring value. The resulting string is length
hexadecimal digits long.

For the purposes of this conversion, a hexstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 ... F represent the decimal values 0 ... 15 respectively. If the conversion yields a value with fewer hexadecimal
digits than specified in the length parameter, then the hexstring shall be padded on the left with zeros. A test case
error shall occur if the value is negative or if the resulting hexstring contains more hexadecimal digits than
specified in the length parameter.

D.1.11 Integer to octetstring
int2oct(integer value, length) return octetstring

This function converts a single integer value to a single octetstring value. The resulting string is length
octets long.

For the purposes of this conversion, an octetstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits 0 ... F represent the decimal values 0 ... 15 respectively. If the conversion yields a value with fewer
hexadecimal digits than specified in the length parameter, then the hexstring shall be padded on the left with
zeros. A test case error shall occur if the value is negative or if the resulting hexstring contains more hexadecimal
digits than specified in the length parameter.

D.1.12 Integer to charstring
int2str(integer value) return charstring

This function converts the integer value into its string equivalent (the base of the return string is always decimal).

EXAMPLES:

int2str(66) will return the charstring value "66"

int2str(-66) will return the charstring value "-66"

int2str(0) will return the integer value "0"

D.1.13 Length of string type
lengthof(any_string_type value) return integer

This function returns the length of a value that is of type bitstring, hexstring, octetstring, or any character
string. The units of length for each string type are defined in table 4 in the main body of the present document.

EXAMPLE:

lengthof('010'B) // returns 3

lengthof('F3'H) // returns 2

lengthof('F2'O) // returns 1

lengthof ("Length_of _Example") // returns 17

D.1.14 Number of elements in a structured type
sizeof(structured_type value) return integer

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)238

This function returns the actual number of elements of a record, record of, set, set of, template or array.

// Given
type record MyPDU

{ boolean field1,
integer field2

}

// then
sizeof(MyPDU)
// returns 2

D.1.15 The IsPresent function
ispresent(any_type value) return boolean

This function returns the value true if and only if the value of the referenced field is present in the actual instance of
the referenced data object. The argument to ispresent shall be a reference to a field within a data object that is
defined as being optional.

// Given
type record MyRecord

{ boolean field1 optional,
integer field2

}
// and given that MyPDU is a template of MyRecord type
// and received_PDU is also of MyRecord type
// then
MyPort.receive(MyPDU) -> value received_PDU
ispresent(received_PDU.field1)
// returns true if field1 in the actual instance of MyPDU is present

D.1.16 The IsChosen function
ischosen(any_type value) return boolean

This function returns the value true if and only if the data object reference specifies the variant of the union type
that is actually selected for a given data object.

EXAMPLE:

// Given
type union MyUnion

{ PDU_type1 p1,
PDU_type2 p2,
PDU_type p3

}

// and given that MyPDU is a template of MyUnion type
// and received_PDU is also of MyUnion type
// then
MyPort.receive(MyPDU) -> value received_PDU
ischosen(received_PDU.p2)
// returns true if the actual instance of MyPDU carries a PDU of the type PDU_type2

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)239

Annex E (normative):
Using other data types with TTCN-3

E.1 Using ASN.1 with TTCN-3
This annex defines the optional use of ASN.1 with TTCN-3.

TTCN-3 provides a clean interface for using ASN.1 version 1997 (as defined in the X.680 series [7], [8], [9], [10]) in
TTCN-3 modules. When imported into a TTCN-3 module the language identifier for ASN.1 version 1997 shall be
"ASN.1:1997".

When ASN.1 is used with TTCN-3 the keywords listed in table E.1 shall not be used as identifiers in a TTCN-3
module. ASN.1 keywords shall follow the requirements of X.680 [7].

Table E.1: List of ASN.1 keywords

ABSENT
ABSTRACT-SYNTAX
ALL
APPLICATION
AUTOMATIC
BEGIN
BIT
BMPSTRING
BOOLEAN
BY
CHARACTER
CHOICE
CLASS
COMPONENT
COMPONENTS
CONSTRAINED
DEFAULT
DEFINITIONS

EMBEDDED
END
ENUMERATED
EXCEPT
EXPLICIT
EXPORTS
EXTERNAL
FALSE
FROM
GeneralizedTime
GeneralString
IA5String
IDENTIFIER
IMPLICIT
IMPORTS
INCLUDES
INSTANCE
INTEGER

INTERSECTION
Iso10646string
MAX
MIN
MINUS-INFINITY
NULL
NumericString
OBJECT
ObjectDescriptor
OCTET
OF
OPTIONAL
PDV
PLUS-INFINITY
PRESENT
PrintableString
PRIVATE
REAL

SEQUENCE
SET
SIZE
STRING
SYNTAX
T61String
TAGS
TeletexString
TRUE
TYPE-IDENTIFIER
UNION
UNIQUE
UNIVERSAL
UniversalString
UTCTime
VideotexString
VisibleString
WITH

E.1.1 ASN.1 and TTCN-3 type equivalents
The ASN.1 types listed in table E.2 are considered to be equivalent to their TTCN-3 counterparts.

Table E.2: List of ASN.1 and TTCN-3 equivalents

ASN.1 type Maps to TTCN-3 equivalent
BOOLEAN boolean

INTEGER integer

REAL float

OBJECT IDENTIFIER objid

BIT STRING bitstring

OCTET STRING octetstring

SEQUENCE record

SEQUENCE OF record of

SET set

SET OF set of

ENUMERATED enumerated

CHOICE union

All TTCN-3 operators, functions, matching mechanisms, value notation etc. that can be used with a TTCN-3 type given
in table E.E.2 may also be used with the corresponding ASN.1 type.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)240

E.1.2 ASN.1 data types and values
ASN.1 types and values may be used in TTCN-3 modules. ASN.1 definitions are made using a separate ASN.1 module.

EXAMPLE:

MyASN1module DEFINITIONS ::=
BEGIN

Z::= INTEGER -- Simple type definition

BMessage::= SET -- ASN.1 type definition
{

name Name,
title VisibleString,
date Date

}

johnValues Bmessage ::= -- ASN.1 value definition
{

name "John Doe",
title "Mr",
date "April 12th"

}
END

The ASN.1 module shall be written according to the syntax of the ITU-T Recommendation X.680 series [7], [8], [9] and
[10]. Once declared, ASN.1 types and values may be used within TTCN-3 modules in exactly the same way that
ordinary TTCN-3 types and values from other TTCN-3 modules are used (i.e. the required definitions shall be
imported).

EXAMPLE:

module MyTTCNModule
{

import all from MyASN1module language "ASN.1:1997";

const Bmessage MyTTCNConst:= johnValues;
}

NOTE: ASN.1 definitions other than types and values (i.e. information object classes or information object sets)
are not directly accessible from the TTCN-3 notation. Such definitions shall be resolved to a type or value
within the ASN.1 module before they can be referenced from within the TTCN-3 module.

E.1.2.1 Scope of ASN.1 identifiers

Imported ASN.1 identifiers follow the same scope rules as imported TTCN-3 types and values (see clause 5.4).

E.1.3 Parameterization in ASN.1
It is permitted to reference parameterized ASN.1 type and value definitions from with the TTCN-3 module. However,
all ASN.1 parameterized definitions used in a TTCN-3 module shall be provided with actual parameters (open types or
values are not permitted) and the actual parameters provided shall be resolvable at compile-time.

The TTCN-3 core language does not support parameterization of uniquely ASN.1 specific objects. ASN.1 specific
parameterization which involves objects which cannot be defined directly in the TTCN-3 core language shall therefore
be resolved in the ASN.1 part before use within the TTCN-3. The ASN.1 specific objects are:

a) Value sets;

b) Information Object classes;

c) Information Objects;

d) Information Object Sets.

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)241

For example the following is not legal because it defines a TTCN-3 type which takes an ASN.1 object set as an actual
parameter.

MyASN1module DEFINITIONS ::=
BEGIN

-- ASN.1 Module definition

-- Information object class definition
MESSAGE ::= CLASS { &msgTypeValue INTEGER UNIQUE,

&MsgFields}

-- Information object definition
setupMessage MESSAGE ::= { &msgTypeValue 1,

&MsgFields OCTET STRING}

setupAckMessage MESSAGE ::= { &msgTypeValue 2,
&MsgFields BOOLEAN}

-- Information object set definition
MyProtocol MESSAGE ::= { setupMessage | setupAckMessage}

-- ASN.1 type constrained by object set
MyMessage{ MESSAGE : MsgSet} ::= SEQUENCE
{

code MESSAGE.&msgTypeValue({ MsgSet}),
Type MESSAGE.&MsgFields({ MsgSet})

}
END

module MyTTCNModule
{

// TTCN-3 module definition
import all from MyASN1module language "ASN.1:1997";

// Illegal TTCN-3 type with object set as parameter
type record Q(MESSAGE MyMsgSet) ::= { Z field1,

MyMessage(MyMsgSet) field2}
}

To make this a legal definition the extra ASN.1 type My Message1 has to be defined as shown below. This resolves the
information object set parameterization and can therefore be directly used in the TTCN-3 module.

MyASN1module DEFINITIONS ::=
BEGIN

-- ASN.1 Module definition

…

MyProtocol MESSAGE ::= { setupMessage | setupAckMessage}

-- Extra ASN.1 type to remove object set parametrization
MyMessage1 ::= MyMessage{ MyProtocol}

END

module MyTTCNModule
{

// TTCN-3 module definition
import all from MyASN1module language "ASN.1:1997";

// Legal TTCN-3 type with no object set as parameter
type record Q := { Z field1,

MyMessage1 field2}
}

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)242

E.1.4 Defining message types with ASN.1
In ASN.1 messages are defined using SEQUENCE (or possibly SET).

EXAMPLE:

MyASN1module DEFINITIONS ::=
BEGIN

-- ASN.1 Module definition

MyMessageType ::= SEQUENCE
{

field1 Field1Type,
field2 Field2Type OPTIONAL, -- This field may be omitted
:
fieldN FieldNType

}
END

Messages defined using ASN.1 may also, of course, be sub-structured using SEQUENCE, SET etc.

E.1.5 Defining ASN.1 message templates
If messages are defined in ASN.1 using, for example: SEQUENCE (or possibly SET) then actual messages, for both
send and receive events, can be specified using the ASN.1 value syntax.

EXAMPLE:

MyASN1module DEFINITIONS ::=
BEGIN

-- ASN.1 Module definition

-- The message definition
MyMessageType::= SEQUENCE
{ field1 [1] IA5STRING, // Like TTCN-3 character string

field2 [2] INTEGER OPTIONAL, // like TTCN-3 integer
field3 [4] Field3Type, // Like TTCN-3 record
field4 [5] Field4Type // Like TTCN-3 array

}

Field3Type::= SEQUENCE {field31 BIT STRING, field32 INTEGER, field33 OCTET STRING},
Field4Type::= SEQUENCE OF BOOLEAN

-- may have the following value
myValue MyMessageType::=
{

field1 "A string",
field2 123,
field3 {field31 '11011'B, field32 456789, field33 'FF'O},
field4 {true, false}

}
END

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)243

E.1.5.1 ASN.1 receive messages using the TTCN-3 template syntax

Matching mechanisms are not supported in the standard ASN.1 syntax. Thus, if it is wished to use matching
mechanisms with an ASN.1 receive message then the TTCN-3 syntax for receive templates shall be used instead. Note
that this syntax includes component references in order to be able to reference the individual components in ASN.1
SEQUENCE, SET etc.

EXAMPLE:

import type myMessageType from MyASN1module language "ASN.1:1997";

// a message template using matching mechanisms within TTCN-3 might be
template myMessageType MyValue:=
{

field1 := "A"<?>"tr"<*>"g",
field2 := *,
field3.field31 := '110??'B,
field3.field32 := ?,
field3.field33 := 'F?'O,
field4.[0] := true,
field4.[1] := false

}

// the following syntax is equally valid
template myMessageType MyValue:=
{

field1 := "A"<?>"tr"<*>"g", // string with wildcards
field2 := *, // any integer or none at all
field3 := {'110??'B, ?, 'F?'O},
field4 := {?, false}

}

E.1.5.2 Ordering of template fields

When TTCN-3 templates are used for ASN.1 types the significance of the order of the fields in the template will depend
on the type of ASN.1 construct used to define the message type. For example: if SEQUENCE or SEQUENCE OF is used
then the message fields shall be sent or matched in the order specified in the template. If SET or SET OF is used then
the message fields may be sent or matched in any order.

E.1.6 Encoding information
TTCN-3 allows references to encoding rules and variations within encoding rules to be associated with various TTCN-3
language elements. It is also possible to define invalid encodings. This encoding information is specified using the
with statement according to the following syntax:

EXAMPLE:

module MyModule
{ :

import type myMessageType from MyASN1module language "ASN.1:1997" with {encode:=
"PER:1997"}

// All instances of MyMessageType should be encoded using PER:1997

} with {encode "BER:1997"} // Default encoding for the entire module (test suite) is BER:1997

E.1.6.1 ASN.1 encoding attributes

The following strings are the predefined (standardized) encoding attributes for ASN.1:

a) "BER:1997" means encoded according to ITU-T Recommendation X.690 (BER) [11];

b) "CER:1997" means encoded according to ITU-T Recommendation X.690 (CER) [11];

c) "DER:1997" means encoded according to ITU-T Recommendation X.690 (DER) [11].

d) "PER-BASIC-UNALIGNED:1997" means encoded according to (Unaligned PER)
ITU-T Recommendation X.691 [12];

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)244

e) "PER-BASICALIGNED:1997" means encoded according to ITU-T Recommendation X.691 (Aligned PER)
[12];

f) "PER-CANONICAL-UNALIGNED:1997" means encoded according to (Canonical Unaligned PER)
ITU-T Recommendation X.691 [12];

g) "PER-CANONICAL-ALIGNED:1997" means encoded according to ITU-T Recommendation X.691 (Canonical
Aligned PER) [12].

ETSI

ETSI ES 201 873-1 V1.1.2 (2001-06)245

History

Document history

V1.1.1 March 2001 Publication

V1.1.2 June 2001 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.1.1 Definitions from ISO/IEC-9646-1
	3.1.2 Definitions from ISO/IEC-9646-3

	3.2 Abbreviations

	4 Introduction
	4.1 The core language and presentation formats

	5 Basic language elements
	5.1 Definitions, instances and declarations
	5.2 Ordering of language elements
	5.2.1 Forward references

	5.3 Parameterization
	5.3.1 Parameter passing by reference and by value
	5.3.1.1 Parameters passed by reference
	5.3.1.2 Parameters passed by value

	5.3.2 Formal and actual parameter lists
	5.3.3 Empty formal parameter list
	5.3.4 Nested parameter lists

	5.4 Scope rules
	5.4.1 Scope and overloading of identifiers
	5.4.2 Scope of formal parameters

	5.5 Identifiers and keywords

	6 Types and values
	6.1 Basic types and values
	6.1.1 Basic string types and values
	6.1.2 Accessing individual string elements

	6.2 User-defined sub-types and values
	6.2.1 Lists of values
	6.2.2 Ranges
	6.2.2.1 Infinite ranges
	6.2.2.2 Mixing lists and ranges

	6.2.3 String length restrictions

	6.3 Structured types and values
	6.3.1 Record type and values
	6.3.1.1 Referencing nested record fields
	6.3.1.2 Optional elements in a record

	6.3.2 Set type and values
	6.3.2.1 Optional elements in a set

	6.3.3 Records and sets of single types
	6.3.4 Enumerated type and values
	6.3.5 Unions

	6.4 Arrays
	6.5 Recursive types
	6.6 Type parameterization
	6.7 Type compatibility
	6.7.1 Type conversion

	7 Modules
	7.1 Naming of modules
	7.2 Parameterization of modules
	7.2.1 Default values for module parameters

	7.3 Module definitions part
	7.3.1 Groups of definitions

	7.4 Module control part
	7.5 Importing from modules
	7.5.1 Rules on using Import
	7.5.2 Importing single definitions
	7.5.3 Importing all definitions of a module
	7.5.4 Importing groups
	7.5.5 Importing definitions of the same kind
	7.5.6 Recursive import of complex definitions
	7.5.7 Handling name clashes on import
	7.5.8 Handling multiple references to the same definition
	7.5.9 Import and module parameters
	7.5.10 Import definitions from non-TTCN modules

	8 Test configurations
	8.1 Port communication model
	8.2 Abstract test system interface
	8.3 Defining communication port types
	8.3.1 Mixed ports

	8.4 Defining component types
	8.4.1 Declaring local variables and timers in a component
	8.4.2 Defining components with arrays of ports

	8.5 Addressing entities inside the SUT
	8.6 Component references
	8.7 Defining the test system interface

	9 Declaring constants
	10 Declaring variables
	11 Declaring timers
	11.1 Timers as parameters

	12 Declaring messages
	12.1 Optional message fields

	13 Declaring procedure signatures
	13.1 Omitting actual parameters
	13.2 Specifying exceptions

	14 Declaring templates
	14.1 Declaring message templates
	14.1.1 Templates for sending messages
	14.1.2 Templates for receiving messages

	14.2 Declaring signature templates
	14.2.1 Templates for calling procedures
	14.2.2 Templates for accepting procedure calls

	14.3 Template matching mechanisms
	14.4 Parameterization of templates
	14.4.1 Parameterization with matching attributes

	14.5 Passing templates as parameters
	14.6 Modified templates
	14.6.1 Parameterization of modified templates
	14.6.2 In-line modified templates

	14.7 Changing template fields
	14.8 Match Operation
	14.9 Value of Operation

	15 Operators
	15.1 Arithmetic operators
	15.2 String operators
	15.3 Relational operators
	15.4 Logical operators
	15.5 Bitwise operators
	15.6 Shift operators
	15.7 Rotate operators

	16 Functions
	16.1 Parameterization of Functions
	16.2 Invoking functions
	16.3 Predefined functions

	17 Test cases
	18 Program statements and operations
	19 Basic program statements
	19.1 Expressions
	19.1.1 Boolean expressions

	19.2 Assignments
	19.3 The Log statement
	19.4 The Label statement
	19.5 The Goto statement
	19.6 The If-else statement
	19.7 The For statement
	19.8 The While statement
	19.9 The Do-while statement
	19.10 The Stop execution statement

	20 Behavioural program statements
	20.1 Sequential behaviour
	20.2 Alternative behaviour
	20.2.1 Execution of alternative behaviour
	20.2.2 Selecting/deselecting an alternative
	20.2.3 Else branch in alternatives
	20.2.4 Declaring named alternatives
	20.2.5 Expanding alternatives with named alternatives
	20.2.6 Parameterization of named alternatives
	20.2.7 The Label statement in behaviour
	20.2.8 The Goto statement in behaviour
	20.2.8.1 Restricting the use of Goto

	20.3 Interleaved behaviour
	20.4 Default behaviour
	20.4.1 The Activate and Deactivate operations

	20.5 The Return statement

	21 Configuration operations
	21.1 The Create operation
	21.2 The Connect and Map operations
	21.2.1 Consistent connections

	21.3 The Disconnect and Unmap operations
	21.4 The MTC, System and Self operations
	21.5 The Start test component operation
	21.6 The Stop test component operation
	21.7 The Running operation
	21.8 The Done operation
	21.9 Using component arrays
	21.10 Use of Any and All with components

	22 Communication operations
	22.1 Sending operations
	22.1.1 General format of the sending operations
	22.1.1.1 Response and exception handling

	22.1.2 The Send operation
	22.2.1 The Call operation
	22.2.1.1 Handling responses to a Call
	22.2.1.2 Handling exceptions to a Call
	22.2.1.3 Handling timeout exceptions to the Call

	22.2.2 The Reply operation
	22.2.3 The Raise operation

	22.3 Receiving operations
	22.3.1 General format of the receiving operations
	22.3.1.1 Making assignments on receiving operations

	22.3.2 The Receive operation
	22.3.2.1 Receive any message
	22.3.2.2 Receive on any port

	22.3.3 The Trigger operation
	22.3.3.1 Trigger on any message
	22.3.3.2 Trigger on any port

	22.3.4 The Getcall operation
	22.3.4.1 Accepting any call
	22.3.4.2 Getcall on any port

	22.3.5 The Getreply operation
	22.3.5.1 Get any reply from any call
	22.3.5.2 Get a reply on any port

	22.3.6 The Catch operation
	22.3.6.1 The Timeout exception
	22.3.6.2 Catch any exception
	22.3.6.3 Catch on any port

	22.3.7 The Check operation
	22.3.7.1 The Check any operation

	22.4 Controlling communication ports
	22.4.1 The Clear port operation
	22.4.2 The Start port operation
	22.4.3 The Stop port operation

	22.5 Use of any and all with ports

	23 Timer operations
	23.1 The Start timer operation
	23.2 The Stop timer operation
	23.3 The Read timer operation
	23.4 The Running timer operation
	23.5 The Timeout event
	23.6 Use of any and all with timers

	24 Test verdict operations
	24.1 Test case verdict
	24.2 Verdict values and overwriting rules
	24.2.1 Error verdict

	25 SUT operations
	26 Module control part
	26.1 Execution of test cases
	26.2 Termination of test cases
	26.3 Controlling execution of test cases
	26.4 Test case selection
	26.5 Use of timers in control

	27 Specifying attributes
	27.1 Display attributes
	27.2 Encoding attributes
	27.2.1 Invalid encodings

	27.3 Extension attributes
	27.4 Scope of attributes
	27.5 Overwriting rules for attributes
	27.6 Changing attributes of imported language elements

	Annex A (normative): BNF and static semantics
	A.1 TTCN-3 BNF
	A.1.1 Conventions for the syntax description
	A.1.2 Statement terminator symbols
	A.1.3 Identifiers
	A.1.4 Comments
	A.1.5 TTCN-3 terminals
	A.1.6 TTCN-3 syntax BNF productions
	A.1.6.1 TTCN Module
	A.1.6.2 Module Definitions Part
	A.1.6.2.1 Typedef Definitions
	A.1.6.2.2 Constant Definitions
	A.1.6.2.3 Template Definitions
	A.1.6.2.4 Function Definitions
	A.1.6.2.5 Signature Definitions
	A.1.6.2.6 Testcase Definitions
	A.1.6.2.7 NamedAlt Definitions
	A.1.6.2.8 Import Definitions
	A.1.6.2.9 Group Definitions
	A.1.6.2.10 External Function Definitions
	A.1.6.2.11 External Constant Definitions

	A.1.6.3 Control Part
	A.1.6.3.1 Variable Instantiation
	A.1.6.3.2 Timer Instantiation
	A.1.6.3.3 Component Operations
	A.1.6.3.4 Port Operations
	A.1.6.3.5 Timer Operations

	A.1.6.4 Type
	A.1.6.4.1 Array Types

	A.1.6.5 Value
	A.1.6.6 Parameterisation
	A.1.6.7 With Statement
	A.1.6.8 Behaviour Statements
	A.1.6.9 Basic Statements
	A.1.6.10 Miscellaneous productions

	Annex B (normative): Operational semantics
	B.1 Structure of this annex
	B.2 Replacement of shorthand notations and macro calls
	B.2.1 Order of replacement steps
	B.2.2 Adding stop and return operations in behaviour descriptions
	B.2.3 Replacement of global constants and module parameters
	B.2.4 Embedding single receiving operations into alt statements
	B.2.5 Macro expansion
	B.2.5.1 Expansion of named alternatives in alternative statements
	B.2.5.2 Explicit call of a named alternative

	B.2.6 Replacement of the interleave construct
	B.2.7 Expansion of defaults
	B.2.8 Replacement of trigger operations
	B.2.9 Replacement of the keywords 'any' and 'all'
	B.2.9.1 Replacement of 'all' in timer and port operations
	B.2.9.2 Replacement of 'any' in timer and receiving operations
	B.2.9.3 The keywords 'any' and 'all' in 'done' and 'running'

	B.3 Flow graph semantics of TTCN-3
	B.3.1 Flow graphs
	B.3.1.1 Flow graph frame
	B.3.1.2 Flow graph nodes
	B.3.1.2.1 Start nodes
	B.3.1.2.2 End nodes
	B.3.1.2.3 Basic nodes
	B.3.1.2.4 Reference nodes
	B.3.1.2.4.1 OR combination of reference nodes
	B.3.1.2.4.2 Multiple occurrences of reference nodes

	B.3.1.3 Flow lines
	B.3.1.4 Flow graph segments
	B.3.1.5 Comments
	B.3.1.6 Handling of flow graph descriptions

	B.3.2 Flow Graph Representation of TTCN-3 behaviour
	B.3.2.1 The flow graph construction procedure
	B.3.2.2 Flow graph representation of module control
	B.3.2.3 Flow graph representation of test cases
	B.3.2.4 Flow graph representation of functions
	B.3.2.5 Flow graph representation of component type definitions
	B.3.2.6 Retrieval of start nodes of flow graphs

	B.3.3 State definitions for TTCN-3 modules
	B.3.3.1 Module state
	B.3.3.1.1 Accessing the module state

	B.3.3.2 Entity states
	B.3.3.2.1 Accessing entity states
	B.3.3.2.2 Data state and variable binding
	B.3.3.2.3 Timer state and timer binding
	B.3.3.2.4 Accessing timer and data states

	B.3.3.3 Port states
	B.3.3.3.1 Handling of connections between ports
	B.3.3.3.2 Handling of ports states

	B.3.3.4 General functions for the handling of module states

	B.3.4 Messages, procedure calls, replies and exceptions
	B.3.4.1 Messages
	B.3.4.2 Procedure calls and replies
	B.3.4.3 Exceptions
	B.3.4.4 Construction of messages, procedure calls, replies and exceptions
	B.3.4.5 Matching of messages, procedure calls, replies and exceptions
	B.3.4.6 Retrieval of information from received items

	B.3.5 Call records for functions and test cases
	B.3.5.1 Handling of call records

	B.3.6 The evaluation procedure for a TTCN-3 module
	B.3.6.1 Evaluation phases
	B.3.6.1.1 Phase I: Initialization
	B.3.6.1.2 Phase II: Update
	B.3.6.1.3 Phase III: Selection
	B.3.6.1.4 Phase IV: Execution

	B.3.6.2 Global functions

	B.3.7 Flow graph segment definitions for TTCN-3 constructs
	B.3.7.1 Alt statement
	B.3.7.1.1 Flow graph segment <receiving-branch>

	B.3.7.2 Assignment statement
	B.3.7.3 Call operation
	B.3.7.3.1 Flow graph segment <nb-call-with-receiver>
	B.3.7.3.2 Flow graph segment <nb-call-without-receiver>
	B.3.7.3.3 Flow graph segment <b-call-with-receiver>
	B.3.7.3.4 Flow graph segment <b-call-without-receiver>
	B.3.7.3.5 Flow graph segment <b-call-with-rec-dur>
	B.3.7.3.6 Flow graph segment <b-call-without-rec-dur>

	B.3.7.4 Catch operation
	B.3.7.4.1 Flow graph segment <catch-with-sender>
	B.3.7.4.2 Flow graph segment <catch-without-sender>

	B.3.7.5 Clear port operation
	B.3.7.6 Connect operation
	B.3.7.7 Declaration of a constant
	B.3.7.8 Create operation
	B.3.7.9 Declaration of a port
	B.3.7.10 Declaration of a timer
	B.3.7.10.1 Flow graph segment <timer-decl-default>
	B.3.7.10.2 Flow graph segment <timer-decl-no-def>

	B.3.7.11 Declaration of a variable
	B.3.7.11.1 Flow graph segment <var-declaration-init>
	B.3.7.11.2 Flow graph segment <var-declaration-undef>

	B.3.7.12 Disconnect operation
	B.3.7.13 Do-while statement
	B.3.7.14 Done-all-components operation
	B.3.7.15 Done-any-component operation
	B.3.7.16 Done component operation
	B.3.7.17 Execute statement
	B.3.7.17.1 Flow graph segment <execute-timeout>
	B.3.7.17.2 Flow graph segment <execute-without-timeout>

	B.3.7.18 Expression
	B.3.7.18.1 Flow graph segment <lit-value>
	B.3.7.18.2 Flow graph segment <var-value>
	B.3.7.18.3 Flow graph segment <func-op-call>
	B.3.7.18.4 Flow graph segment <operator-appl>

	B.3.7.19 Flow graph segment <finalize-component-init>
	B.3.7.20 Flow graph segment <init-component-scope>
	B.3.7.21 For statement
	B.3.7.22 Function call
	B.3.7.23 Flow graph segment <value-par-calculation>
	B.3.7.24 Flow graph segment <ref-par-var-calc>
	B.3.7.25 Flow graph segment <ref-par-timer-calc>
	B.3.7.26 Flow graph segment <parameter-handling>
	B.3.7.27 Getcall operation
	B.3.7.27.1 Flow graph segment <getcall-with-sender>
	B.3.7.27.2 Flow graph segment <getcall-without-sender>

	B.3.7.28 Getreply operation
	B.3.7.28.1 Flow graph segment <getreply-with-sender>
	B.3.7.28.2 Flow graph segment <getreply-without-sender>

	B.3.7.29 Goto statement
	B.3.7.30 If-else statement
	B.3.7.30.1 Flow graph segment <if-with-else-branch>
	B.3.7.30.2 Flow graph segment <if-without-else-branch>

	B.3.7.31 Label statement
	B.3.7.32 Log statement
	B.3.7.33 Map operation
	B.3.7.34 MTC operation
	B.3.7.35 Raise operation
	B.3.7.35.1 Flow graph segment <raise-with-receiver-op>
	B.3.7.35.2 Flow graph segment <raise-without-receiver-op>

	B.3.7.36 Read timer operation
	B.3.7.37 Receive operation
	B.3.7.37.1 Flow graph segment <receive-with-sender>
	B.3.7.37.2 Flow graph segment <receive-without-sender>
	B.3.7.37.3 Flow graph segment <receive-assignment>

	B.3.7.38 Reply operation
	B.3.7.38.1 Flow graph segment <reply-with-receiver-op>
	B.3.7.38.2 Flow graph segment <reply-without-receiver-op>

	B.3.7.39 Return statement
	B.3.7.39.1 Flow graph segment <return-with-value>
	B.3.7.39.2 Flow graph segment <return-without-value>

	B.3.7.40 Running-all-components operation
	B.3.7.41 Running-any-component operation
	B.3.7.42 Running component operation
	B.3.7.43 Running timer operation
	B.3.7.44 Send operation
	B.3.7.44.1 Flow graph segment <send-with-receiver-op>
	B.3.7.44.2 Flow graph segment <send-without-receiver-op>

	B.3.7.45 Self operation
	B.3.7.46 Start component operation
	B.3.7.47 Start port operation
	B.3.7.48 Start timer operation
	B.3.7.48.1 Flow graph segment <start-timer-op-default>
	B.3.7.48.2 Flow graph segment <start-timer-op-duration>

	B.3.7.49 Statement block
	B.3.7.50 Stop operation
	B.3.7.51 Stop port operation
	B.3.7.52 Stop timer operation
	B.3.7.53 Sut.action operation
	B.3.7.54 System operation
	B.3.7.55 Timeout timer operation
	B.3.7.56 Unmap operation
	B.3.7.57 Verdict.get operation
	B.3.7.58 Verdict.set operation
	B.3.7.59 While statement

	B.3.8 Lists of operational semantic components
	B.3.8.1 Functions and states
	B.3.8.2 Special keywords
	B.3.8.3 Flow graph segments

	Annex C (normative): Matching incoming values
	C.1 Template matching mechanisms
	C.1.1 Matching specific values
	C.1.2 Matching mechanisms instead of values
	C.1.2.1 Value list
	C.1.2.2 Complemented value list
	C.1.2.3 Omitting values
	C.1.2.4 Any value
	C.1.2.5 Any value or none
	C.1.2.6 Value range

	C.1.3 Matching mechanisms inside values
	C.1.3.1 Any element
	C.1.3.1.1 Using single character wildcards

	C.1.3.2 Any number of elements or no element
	C.1.3.2.1 Using multiple character wildcards

	C.1.4 Matching attributes of values
	C.1.4.1 Length restrictions
	C.1.4.2 The IfPresent indicator

	C.1.5 Matching Character Pattern

	Annex D (normative): Pre-defined TTCN-3 functions
	D.1 Pre-defined TTCN-3 functions
	D.1.1 Integer to character
	D.1.2 Character to integer
	D.1.3 Integer to universal character
	D.1.4 Univeral character to integer
	D.1.5 Bitstring to integer
	D.1.6 Hexstring to integer
	D.1.7 Octetstring to integer
	D.1.8 Charstring to integer
	D.1.9 Integer to bitstring
	D.1.10 Integer to hexstring
	D.1.11 Integer to octetstring
	D.1.12 Integer to charstring
	D.1.13 Length of string type
	D.1.14 Number of elements in a structured type
	D.1.15 The IsPresent function
	D.1.16 The IsChosen function

	Annex E (normative): Using other data types with TTCN-3
	E.1 Using ASN.1 with TTCN-3
	E.1.1 ASN.1 and TTCN-3 type equivalents
	E.1.2 ASN.1 data types and values
	E.1.2.1 Scope of ASN.1 identifiers

	E.1.3 Parameterization in ASN.1
	E.1.4 Defining message types with ASN.1
	E.1.5 Defining ASN.1 message templates
	E.1.5.1 ASN.1 receive messages using the TTCN-3 template syntax
	E.1.5.2 Ordering of template fields

	E.1.6 Encoding information
	E.1.6.1 ASN.1 encoding attributes

	History

