Datasets:
rcds
/

Modalities:
Tabular
Text
Formats:
json
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
Stern5497 commited on
Commit
1a23770
1 Parent(s): 445130c

add doc2doc.py and change folder structure for data files

Browse files
data/test.jsonl.xz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6170a45aa5f4be91b3ed6fc3702500106d56bc83a599cce090a5779cb37cf0d2
3
+ size 82048828
data/train.jsonl.xz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c73b940460ec6596e0e9640926d67d4857565babb3351efbc811f220765f15cb
3
+ size 228902808
data/validation.jsonl.xz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:629277edb40a13e3108aa68a814b92545187e3e6741afc3cfa289c8490d065aa
3
+ size 32592940
doc2doc.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Dataset for the doc2doc information retrieval task."""
15
+
16
+ import json
17
+ import lzma
18
+ import os
19
+
20
+ import datasets
21
+ try:
22
+ import lzma as xz
23
+ except ImportError:
24
+ import pylzma as xz
25
+
26
+
27
+ # TODO: Add BibTeX citation
28
+ # Find for instance the citation on arxiv or on the dataset repo/website
29
+ _CITATION = """\
30
+ @InProceedings{huggingface:dataset,
31
+ title = {A great new dataset},
32
+ author={huggingface, Inc.
33
+ },
34
+ year={2020}
35
+ }
36
+ """
37
+
38
+ # You can copy an official description
39
+ _DESCRIPTION = """\
40
+ This dataset contains Swiss federal court decisions for the legal criticality prediction task
41
+ """
42
+
43
+ _URLS = {
44
+ "full": "https://huggingface.co/datasets/rcds/doc2doc/resolve/main/data",
45
+ }
46
+
47
+
48
+ class doc2doc(datasets.GeneratorBasedBuilder):
49
+ """This dataset contains court decision for doc2doc information retrieval task."""
50
+
51
+
52
+ BUILDER_CONFIGS = [
53
+ datasets.BuilderConfig(name="full", description="This part covers the whole dataset"),
54
+ ]
55
+
56
+ DEFAULT_CONFIG_NAME = "full" # It's not mandatory to have a default configuration. Just use one if it make sense.
57
+
58
+ def _info(self):
59
+ if self.config.name == "full" or self.config.name == "origin": # This is the name of the configuration selected in BUILDER_CONFIGS above
60
+ features = datasets.Features(
61
+ {
62
+ "decision_id": datasets.Value("string"),
63
+ "language": datasets.Value("string"),
64
+ "year": datasets.Value("int32"),
65
+ "chamber": datasets.Value("string"),
66
+ "court": datasets.Value("string"),
67
+ "canton": datasets.Value("string"),
68
+ "region": datasets.Value("string"),
69
+ "origin_chamber": datasets.Value("string"),
70
+ "origin_court": datasets.Value("string"),
71
+ "origin_canton": datasets.Value("string"),
72
+ "law_area": datasets.Value("string"),
73
+ "law_sub_area": datasets.Value("string"),
74
+ "cited_rulings": datasets.Value("string"),
75
+ "laws": datasets.Value("string"),
76
+ "facts": datasets.Value("string"),
77
+ "considerations": datasets.Value("string"),
78
+ "rulings": datasets.Value("string"),
79
+ "origin_facts": datasets.Value("string"),
80
+ "origin_considerations": datasets.Value("string"),
81
+ # These are the features of your dataset like images, labels ...
82
+ }
83
+ )
84
+ return datasets.DatasetInfo(
85
+ # This is the description that will appear on the datasets page.
86
+ description=_DESCRIPTION,
87
+ # This defines the different columns of the dataset and their types
88
+ features=features, # Here we define them above because they are different between the two configurations
89
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
90
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
91
+ # supervised_keys=("sentence", "label"),
92
+ # Homepage of the dataset for documentation
93
+ # homepage=_HOMEPAGE,
94
+ # License for the dataset if available
95
+ # license=_LICENSE,
96
+ # Citation for the dataset
97
+ # citation=_CITATION,
98
+ )
99
+
100
+ def _split_generators(self, dl_manager):
101
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
102
+
103
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
104
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
105
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
106
+ urls = _URLS[self.config.name]
107
+ filepath_train = dl_manager.download(os.path.join(urls, "train.jsonl.xz"))
108
+ filepath_validation = dl_manager.download(os.path.join(urls, "validation.jsonl.xz"))
109
+ filepath_test = dl_manager.download(os.path.join(urls, "test.jsonl.xz"))
110
+
111
+ return [
112
+ datasets.SplitGenerator(
113
+ name=datasets.Split.TRAIN,
114
+ # These kwargs will be passed to _generate_examples
115
+ gen_kwargs={
116
+ "filepath": filepath_train,
117
+ "split": "train",
118
+ },
119
+ ),
120
+ datasets.SplitGenerator(
121
+ name=datasets.Split.VALIDATION,
122
+ # These kwargs will be passed to _generate_examples
123
+ gen_kwargs={
124
+ "filepath": filepath_validation,
125
+ "split": "validation",
126
+ },
127
+ ),
128
+ datasets.SplitGenerator(
129
+ name=datasets.Split.TEST,
130
+ # These kwargs will be passed to _generate_examples
131
+ gen_kwargs={
132
+ "filepath": filepath_test,
133
+ "split": "test"
134
+ },
135
+ )
136
+ ]
137
+
138
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
139
+ def _generate_examples(self, filepath, split):
140
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
141
+ line_counter = 0
142
+ try:
143
+ with xz.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
144
+ for id, line in enumerate(f):
145
+ line_counter += 1
146
+ if line:
147
+ data = json.loads(line)
148
+ if self.config.name == "full" or self.config.name == "origin":
149
+ yield id, {
150
+ "decision_id": data["decision_id"],
151
+ "language": data["language"],
152
+ "year": data["year"],
153
+ "chamber": data["chamber"],
154
+ "court": data["court"],
155
+ "canton": data["canton"],
156
+ "region": data["region"],
157
+ "origin_chamber": data["origin_chamber"],
158
+ "origin_court": data["origin_court"],
159
+ "origin_canton": data["origin_canton"],
160
+ "law_area": data["law_area"],
161
+ "law_sub_area": data["law_sub_area"],
162
+ "cited_rulings": data["cited_rulings"],
163
+ "laws": data["laws"],
164
+ "facts": data["facts"],
165
+ "considerations": data["considerations"],
166
+ "rulings": data["rulings"],
167
+ "origin_facts": data["origin_facts"],
168
+ "origin_considerations": data["origin_considerations"]
169
+ }
170
+ except lzma.LZMAError as e:
171
+ print(split, e)
172
+ if line_counter == 0:
173
+ raise e