Datasets:
rcds
/

ArXiv:
License:
joelniklaus commited on
Commit
4aafe38
1 Parent(s): c990c74

Update swiss judgment prediction (#5042)

Browse files

* updated swiss_judgment_prediction dataset with new data

* fixed some problems

* Update datasets/swiss_judgment_prediction/README.md

Co-authored-by: Albert Villanova del Moral <[email protected]>

* simplified code

* ran make style

* simplified code

* updated dummy data and dataset card and simplified code

* added dummy_data and updated dataset_infos.json

* removed unnecessary variable

* added new citation

* Update README.md

Co-authored-by: Albert Villanova del Moral <[email protected]>
Co-authored-by: Quentin Lhoest <[email protected]>

Commit from https://github.com/huggingface/datasets/commit/7ee558fd5eb2520185891fd0b6683de60a3c381e

Files changed (2) hide show
  1. README.md +13 -0
  2. swiss_judgment_prediction.py +10 -1
README.md CHANGED
@@ -245,6 +245,19 @@ Source: https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffent
245
  }
246
  ```
247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248
  ### Contributions
249
 
250
  Thanks to [@joelniklaus](https://github.com/joelniklaus) for adding this dataset.
 
245
  }
246
  ```
247
 
248
+ and the new citation
249
+
250
+ ```
251
+ @misc{niklaus2022empirical,
252
+ title={An Empirical Study on Cross-X Transfer for Legal Judgment Prediction},
253
+ author={Joel Niklaus and Matthias Stürmer and Ilias Chalkidis},
254
+ year={2022},
255
+ eprint={2209.12325},
256
+ archivePrefix={arXiv},
257
+ primaryClass={cs.CL}
258
+ }
259
+ ```
260
+
261
  ### Contributions
262
 
263
  Thanks to [@joelniklaus](https://github.com/joelniklaus) for adding this dataset.
swiss_judgment_prediction.py CHANGED
@@ -30,7 +30,16 @@ _CITATION = """\
30
  booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},
31
  year = {2021},
32
  location = {Punta Cana, Dominican Republic},
33
- }"""
 
 
 
 
 
 
 
 
 
34
 
35
  _DESCRIPTION = """
36
  Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
 
30
  booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},
31
  year = {2021},
32
  location = {Punta Cana, Dominican Republic},
33
+ }
34
+ @misc{niklaus2022empirical,
35
+ title={An Empirical Study on Cross-X Transfer for Legal Judgment Prediction},
36
+ author={Joel Niklaus and Matthias Stürmer and Ilias Chalkidis},
37
+ year={2022},
38
+ eprint={2209.12325},
39
+ archivePrefix={arXiv},
40
+ primaryClass={cs.CL}
41
+ }
42
+ """
43
 
44
  _DESCRIPTION = """
45
  Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.