Datasets:
rcds
/

ArXiv:
License:
system HF staff commited on
Commit
f11bf17
0 Parent(s):

Update files from the datasets library (from 1.13.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.13.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: Swiss-Judgment-Prediction
3
+ annotations_creators:
4
+ - found
5
+ language_creators:
6
+ - found
7
+ languages:
8
+ - de
9
+ - fr
10
+ - it
11
+ licenses:
12
+ - cc-by-sa-4-0
13
+ multilinguality:
14
+ - multilingual
15
+ size_categories:
16
+ - 10K<n<100K
17
+ source_datasets:
18
+ - original
19
+ task_categories:
20
+ - text-classification
21
+ task_ids:
22
+ - text-classification-other-judgement-prediction
23
+ ---
24
+
25
+ # Dataset Card for "SwissJudgmentPrediction"
26
+
27
+ ## Table of Contents
28
+ - [Dataset Description](#dataset-description)
29
+ - [Dataset Summary](#dataset-summary)
30
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
31
+ - [Languages](#languages)
32
+ - [Dataset Structure](#dataset-structure)
33
+ - [Data Instances](#data-instances)
34
+ - [Data Fields](#data-fields)
35
+ - [Data Splits](#data-splits)
36
+ - [Dataset Creation](#dataset-creation)
37
+ - [Curation Rationale](#curation-rationale)
38
+ - [Source Data](#source-data)
39
+ - [Annotations](#annotations)
40
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
41
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
42
+ - [Social Impact of Dataset](#social-impact-of-dataset)
43
+ - [Discussion of Biases](#discussion-of-biases)
44
+ - [Other Known Limitations](#other-known-limitations)
45
+ - [Additional Information](#additional-information)
46
+ - [Dataset Curators](#dataset-curators)
47
+ - [Licensing Information](#licensing-information)
48
+ - [Citation Information](#citation-information)
49
+ - [Contributions](#contributions)
50
+
51
+ ## Dataset Description
52
+
53
+ - **Homepage:** https://github.com/JoelNiklaus/SwissCourtRulingCorpus
54
+ - **Repository:** https://github.com/JoelNiklaus/SwissCourtRulingCorpus
55
+ - **Paper:** https://arxiv.org/abs/2110.00806
56
+ - **Leaderboard:** N/A
57
+ - **Point of Contact:** [Joel Niklaus](mailto:[email protected])
58
+
59
+ ### Dataset Summary
60
+
61
+ **Documents**
62
+
63
+ Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
64
+
65
+ ### Supported Tasks and Leaderboards
66
+
67
+ SwissJudgmentPrediction can be used for the legal judgment prediction task.
68
+
69
+ The dataset is not yet part of an established benchmark.
70
+
71
+ ### Languages
72
+
73
+ Switzerland has four official languages with 3 languages (German, French and Italian) being represented in more than 1000 Swiss Federal Supreme court decisions. The decisions are written by the judges and clerks in the language of the proceedings.
74
+
75
+ ## Dataset Structure
76
+
77
+ ### Data Instances
78
+
79
+ **Multilingual use of the dataset**
80
+
81
+ When the dataset is used in a multilingual setting selecting the the 'all_languages' flag:
82
+
83
+ ```python
84
+ from datasets import load_dataset
85
+ dataset = load_dataset('swiss_judgment_prediction', 'all_languages')
86
+ ```
87
+
88
+ ```
89
+ {
90
+ "id": 48757,
91
+ "year": 2015,
92
+ "facts": "Sachverhalt: A. X._ war bei der Krankenversicherung C._ taggeldversichert. Infolge einer Arbeitsunf\u00e4higkeit leistete ihm die C._ vom 30. Juni 2011 bis am 28. Juni 2013 Krankentaggelder, wobei die Leistungen bis am 30. September 2012 auf Grundlage einer Arbeitsunf\u00e4higkeit von 100% und danach basierend auf einer Arbeitsunf\u00e4higkeit von 55% erbracht wurden. Die Neueinsch\u00e4tzung der Arbeitsf\u00e4higkeit erfolgte anhand eines Gutachtens der D._ AG vom 27. August 2012, welches im Auftrag der C._ erstellt wurde. X._ machte daraufhin gegen\u00fcber der C._ geltend, er sei entgegen dem Gutachten auch nach dem 30. September 2012 zu 100% arbeitsunf\u00e4hig gewesen. Ferner verlangte er von der D._ AG zwecks externer \u00dcberpr\u00fcfung des Gutachtens die Herausgabe s\u00e4mtlicher diesbez\u00fcglicher Notizen, Auswertungen und Unterlagen. A._ (als Gesch\u00e4ftsf\u00fchrer der D._ AG) und B._ (als f\u00fcr das Gutachten medizinisch Verantwortliche) antworteten ihm, dass sie alle Unterlagen der C._ zugestellt h\u00e4tten und dass allf\u00e4llige Fragen zum Gutachten direkt der C._ zu stellen seien. X._ reichte am 2. Januar 2014 eine Strafanzeige gegen A._ und B._ ein. Er wirft diesen vor, ihn durch die Nichtherausgabe der Dokumente und durch Behinderung des IV-Verfahrens gen\u00f6tigt, Daten besch\u00e4digt bzw. vernichtet und ein falsches \u00e4rztliches Zeugnis ausgestellt zu haben. Zudem h\u00e4tten sie durch die Verz\u00f6gerung des IV-Verfahrens und insbesondere durch das falsche \u00e4rztliche Zeugnis sein Verm\u00f6gen arglistig gesch\u00e4digt. B. Die Staatsanwaltschaft des Kantons Bern, Region Oberland, nahm das Verfahren wegen N\u00f6tigung, Datenbesch\u00e4digung, falschem \u00e4rztlichem Zeugnis und arglistiger Verm\u00f6genssch\u00e4digung mit Verf\u00fcgung vom 10. November 2014 nicht an die Hand. Das Obergericht des Kantons Bern wies die von X._ dagegen erhobene Beschwerde am 27. April 2015 ab, soweit darauf einzutreten war. C. X._ beantragt mit Beschwerde in Strafsachen, der Beschluss vom 27. April 2015 sei aufzuheben und die Angelegenheit zur korrekten Ermittlung des Sachverhalts an die Staatsanwaltschaft zur\u00fcckzuweisen. Er stellt zudem den sinngem\u00e4ssen Antrag, das bundesgerichtliche Verfahren sei w\u00e4hrend der Dauer des konnexen Strafverfahrens gegen eine Teilgutachterin und des ebenfalls konnexen Zivil- oder Strafverfahrens gegen die C._ wegen Einsichtsverweigerung in das mutmasslich gef\u00e4lschte Originalgutachten zu sistieren. X._ ersucht um unentgeltliche Rechtspflege. ",
93
+ "labels": 0, # dismissal
94
+ "language": "de",
95
+ "region": "Espace Mittelland",
96
+ "canton": "be",
97
+ "legal area": "penal law"
98
+ }
99
+ ```
100
+
101
+ **Monolingual use of the dataset**
102
+
103
+ When the dataset is used in a monolingual setting selecting the ISO language code for one of the 3 supported languages. For example:
104
+
105
+ ```python
106
+ from datasets import load_dataset
107
+ dataset = load_dataset('swiss_judgment_prediction', 'de')
108
+ ```
109
+
110
+ ```
111
+ {
112
+ "id": 48757,
113
+ "year": 2015,
114
+ "facts": "Sachverhalt: A. X._ war bei der Krankenversicherung C._ taggeldversichert. Infolge einer Arbeitsunf\u00e4higkeit leistete ihm die C._ vom 30. Juni 2011 bis am 28. Juni 2013 Krankentaggelder, wobei die Leistungen bis am 30. September 2012 auf Grundlage einer Arbeitsunf\u00e4higkeit von 100% und danach basierend auf einer Arbeitsunf\u00e4higkeit von 55% erbracht wurden. Die Neueinsch\u00e4tzung der Arbeitsf\u00e4higkeit erfolgte anhand eines Gutachtens der D._ AG vom 27. August 2012, welches im Auftrag der C._ erstellt wurde. X._ machte daraufhin gegen\u00fcber der C._ geltend, er sei entgegen dem Gutachten auch nach dem 30. September 2012 zu 100% arbeitsunf\u00e4hig gewesen. Ferner verlangte er von der D._ AG zwecks externer \u00dcberpr\u00fcfung des Gutachtens die Herausgabe s\u00e4mtlicher diesbez\u00fcglicher Notizen, Auswertungen und Unterlagen. A._ (als Gesch\u00e4ftsf\u00fchrer der D._ AG) und B._ (als f\u00fcr das Gutachten medizinisch Verantwortliche) antworteten ihm, dass sie alle Unterlagen der C._ zugestellt h\u00e4tten und dass allf\u00e4llige Fragen zum Gutachten direkt der C._ zu stellen seien. X._ reichte am 2. Januar 2014 eine Strafanzeige gegen A._ und B._ ein. Er wirft diesen vor, ihn durch die Nichtherausgabe der Dokumente und durch Behinderung des IV-Verfahrens gen\u00f6tigt, Daten besch\u00e4digt bzw. vernichtet und ein falsches \u00e4rztliches Zeugnis ausgestellt zu haben. Zudem h\u00e4tten sie durch die Verz\u00f6gerung des IV-Verfahrens und insbesondere durch das falsche \u00e4rztliche Zeugnis sein Verm\u00f6gen arglistig gesch\u00e4digt. B. Die Staatsanwaltschaft des Kantons Bern, Region Oberland, nahm das Verfahren wegen N\u00f6tigung, Datenbesch\u00e4digung, falschem \u00e4rztlichem Zeugnis und arglistiger Verm\u00f6genssch\u00e4digung mit Verf\u00fcgung vom 10. November 2014 nicht an die Hand. Das Obergericht des Kantons Bern wies die von X._ dagegen erhobene Beschwerde am 27. April 2015 ab, soweit darauf einzutreten war. C. X._ beantragt mit Beschwerde in Strafsachen, der Beschluss vom 27. April 2015 sei aufzuheben und die Angelegenheit zur korrekten Ermittlung des Sachverhalts an die Staatsanwaltschaft zur\u00fcckzuweisen. Er stellt zudem den sinngem\u00e4ssen Antrag, das bundesgerichtliche Verfahren sei w\u00e4hrend der Dauer des konnexen Strafverfahrens gegen eine Teilgutachterin und des ebenfalls konnexen Zivil- oder Strafverfahrens gegen die C._ wegen Einsichtsverweigerung in das mutmasslich gef\u00e4lschte Originalgutachten zu sistieren. X._ ersucht um unentgeltliche Rechtspflege. ",
115
+ "labels": 0, # dismissal
116
+ "language": "de",
117
+ "region": "Espace Mittelland",
118
+ "canton": "be",
119
+ "legal area": "penal law"
120
+ }
121
+ ```
122
+
123
+ ### Data Fields
124
+
125
+ **Multilingual use of the dataset**
126
+
127
+ The following data fields are provided for documents (`train`, `dev`, `test`):
128
+
129
+ `id`: (**int**) a unique identifier of the for the document \
130
+ `year`: (**int**) the publication year \
131
+ `text`: (**str**) the facts of the case \
132
+ `label`: (**class label**) the judgment outcome: 0 (dismissal) or 1 (approval) \
133
+ `language`: (**str**) one of (de, fr, it) \
134
+ `region`: (**str**) the region of the lower court \
135
+ `canton`: (**str**) the canton of the lower court \
136
+ `legal area`: (**str**) the legal area of the case
137
+
138
+
139
+
140
+ **Monolingual use of the dataset**
141
+
142
+ The following data fields are provided for documents (`train`, `dev`, `test`):
143
+
144
+ `id`: (**int**) a unique identifier of the for the document \
145
+ `year`: (**int**) the publication year \
146
+ `text`: (**str**) the facts of the case \
147
+ `label`: (**class label**) the judgment outcome: 0 (dismissal) or 1 (approval) \
148
+ `language`: (**str**) one of (de, fr, it) \
149
+ `region`: (**str**) the region of the lower court \
150
+ `canton`: (**str**) the canton of the lower court \
151
+ `legal area`: (**str**) the legal area of the case
152
+
153
+
154
+ ### Data Splits
155
+
156
+ | Language | ISO code | Number of Documents (Training/Dev/Test) |
157
+ | ---- | ---- | ---- |
158
+ | German | **de** | 35'452 / 4'705 / 9'725
159
+ | French | **fr** | 21'179 / 3'095 / 6'820
160
+ Italian | **it** | 3'072 / 408 / 812
161
+
162
+ ## Dataset Creation
163
+
164
+ ### Curation Rationale
165
+
166
+ The dataset was curated by Niklaus et al. (2021).
167
+
168
+ ### Source Data
169
+
170
+ #### Initial Data Collection and Normalization
171
+
172
+ The original data are available at the Swiss Federal Supreme Court (https://www.bger.ch) in unprocessed formats (HTML). The documents were downloaded from the Entscheidsuche portal (https://entscheidsuche.ch) in HTML.
173
+
174
+ #### Who are the source language producers?
175
+
176
+ Switzerland has four official languages with 3 languages (German, French and Italian) being represented in more than 1000 Swiss Federal Supreme court decisions. The decisions are written by the judges and clerks in the language of the proceedings.
177
+
178
+ ### Annotations
179
+
180
+ #### Annotation process
181
+
182
+ The decisions have been annotated with the binarized judgment outcome using parsers and regular expressions.
183
+
184
+ #### Who are the annotators?
185
+
186
+ Joel Niklaus and Adrian Jörg annotated the binarized judgment outcomes.
187
+ Metadata is published by the Swiss Federal Supreme Court (https://www.bger.ch).
188
+
189
+ ### Personal and Sensitive Information
190
+
191
+ The dataset contains publicly available court decisions from the Swiss Federal Supreme Court. Personal or sensitive information has been anonymized by the court before publication according to the following guidelines: https://www.bger.ch/home/juridiction/anonymisierungsregeln.html.
192
+
193
+ ## Considerations for Using the Data
194
+
195
+ ### Social Impact of Dataset
196
+
197
+ [More Information Needed]
198
+
199
+ ### Discussion of Biases
200
+
201
+ [More Information Needed]
202
+
203
+ ### Other Known Limitations
204
+
205
+ [More Information Needed]
206
+
207
+ ## Additional Information
208
+
209
+ ### Dataset Curators
210
+
211
+ Niklaus et al. (2021)
212
+
213
+ ### Licensing Information
214
+
215
+ We release the data under CC-BY-4.0 which complies with the court licensing (https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf)
216
+
217
+ © Swiss Federal Supreme Court, 2000-2020
218
+
219
+ The copyright for the editorial content of this website and the consolidated texts, which is owned by the Swiss Federal Supreme Court, is licensed under the Creative Commons Attribution 4.0 International licence. This means that you can re-use the content provided you acknowledge the source and indicate any changes you have made.
220
+
221
+ Source: https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf
222
+
223
+ ### Citation Information
224
+
225
+ *Joel Niklaus, Ilias Chalkidis, and Matthias Stürmer.*
226
+ *Swiss-Judgment-Prediction: A Multilingual Legal Judgment Prediction Benchmark*
227
+ *Proceedings of the 2021 Natural Legal Language Processing Workshop. Punta Cana, Dominican Republic. 2021*
228
+ ```
229
+ @InProceedings{niklaus-etal-2021-swiss,
230
+ author = {Niklaus, Joel
231
+ and Chalkidis, Ilias
232
+ and Stürmer, Matthias},
233
+ title = {Swiss-Judgment-Prediction: A Multilingual Legal Judgment Prediction Benchmark},
234
+ booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},
235
+ year = {2021},
236
+ location = {Punta Cana, Dominican Republic},
237
+ }
238
+ ```
239
+
240
+ ### Contributions
241
+
242
+ Thanks to [@joelniklaus](https://github.com/joelniklaus) for adding this dataset.
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"de": {"description": "Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with\nthe respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. \nWe also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, \nto promote robustness and fairness studies on the critical area of legal NLP. \n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "names_file": null, "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "de", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 104022593, "num_examples": 35458, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 25988122, "num_examples": 9725, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 12098963, "num_examples": 4705, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/5529712/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/5529712/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}, "https://zenodo.org/record/5529712/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}}, "download_size": 332435531, "post_processing_size": null, "dataset_size": 142109678, "size_in_bytes": 474545209}, "fr": {"description": "Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with\nthe respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. \nWe also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, \nto promote robustness and fairness studies on the critical area of legal NLP. \n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "names_file": null, "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "fr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 96659764, "num_examples": 21179, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 33270639, "num_examples": 6820, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 13010259, "num_examples": 3095, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/5529712/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/5529712/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}, "https://zenodo.org/record/5529712/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}}, "download_size": 332435531, "post_processing_size": null, "dataset_size": 142940662, "size_in_bytes": 475376193}, "it": {"description": "Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with\nthe respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. \nWe also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, \nto promote robustness and fairness studies on the critical area of legal NLP. \n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "names_file": null, "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "it", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 10752032, "num_examples": 3072, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 2469097, "num_examples": 812, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 1042715, "num_examples": 408, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/5529712/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/5529712/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}, "https://zenodo.org/record/5529712/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}}, "download_size": 332435531, "post_processing_size": null, "dataset_size": 14263844, "size_in_bytes": 346699375}, "all_languages": {"description": "Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with\nthe respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. \nWe also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, \nto promote robustness and fairness studies on the critical area of legal NLP. \n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "names_file": null, "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "all_languages", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 211434349, "num_examples": 59709, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 61727838, "num_examples": 17357, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 26151897, "num_examples": 8208, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/5529712/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/5529712/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}, "https://zenodo.org/record/5529712/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}}, "download_size": 332435531, "post_processing_size": null, "dataset_size": 299314084, "size_in_bytes": 631749615}}
dummy/all_languages/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:065dcb6ead752b189279d2082b34ad96e8499b57a261c6e77db7b02049edb755
3
+ size 11676
dummy/de/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5fd6b04e5c9804664357d6929f8db046b61ce4e578ffa9dfe5dae8d501a6eb1
3
+ size 5283
dummy/fr/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4081dbe49cc10caf72a9285274c12fa0b4088914c90e4149f5451230e521974
3
+ size 5130
dummy/it/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05769bf13b52f08f34d87f2dc9f7c3ae7ab350e91f1449258db8269d31c2a667
3
+ size 3453
swiss_judgment_prediction.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark"""
16
+
17
+ import json
18
+
19
+ import datasets
20
+
21
+
22
+ logger = datasets.logging.get_logger(__name__)
23
+
24
+ _CITATION = """\
25
+ @InProceedings{niklaus-etal-2021-swiss,
26
+ author = {Niklaus, Joel
27
+ and Chalkidis, Ilias
28
+ and Stürmer, Matthias},
29
+ title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},
30
+ booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},
31
+ year = {2021},
32
+ location = {Punta Cana, Dominican Republic},
33
+ }"""
34
+
35
+ _DESCRIPTION = """
36
+ Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
37
+ """
38
+
39
+ _LANGUAGES = [
40
+ "de",
41
+ "fr",
42
+ "it",
43
+ ]
44
+
45
+ _URL = "https://zenodo.org/record/5529712/files/"
46
+ _URLS = {
47
+ "train": _URL + "train.jsonl",
48
+ "test": _URL + "test.jsonl",
49
+ "val": _URL + "val.jsonl",
50
+ }
51
+
52
+
53
+ class SwissJudgmentPredictionConfig(datasets.BuilderConfig):
54
+ """BuilderConfig for SwissJudgmentPrediction."""
55
+
56
+ def __init__(self, language: str, languages=None, **kwargs):
57
+ """BuilderConfig for SwissJudgmentPrediction.
58
+
59
+ Args:
60
+ language: One of de,fr,it, or all_languages
61
+ **kwargs: keyword arguments forwarded to super.
62
+ """
63
+ super(SwissJudgmentPredictionConfig, self).__init__(**kwargs)
64
+ self.language = language
65
+ if language != "all_languages":
66
+ self.languages = [language]
67
+ else:
68
+ self.languages = languages if languages is not None else _LANGUAGES
69
+
70
+
71
+ class SwissJudgmentPrediction(datasets.GeneratorBasedBuilder):
72
+ """SwissJudgmentPrediction: A Multilingual Legal Judgment PredictionBenchmark"""
73
+
74
+ VERSION = datasets.Version("1.0.0", "")
75
+ BUILDER_CONFIG_CLASS = SwissJudgmentPredictionConfig
76
+ BUILDER_CONFIGS = [
77
+ SwissJudgmentPredictionConfig(
78
+ name=lang,
79
+ language=lang,
80
+ version=datasets.Version("1.0.0", ""),
81
+ description=f"Plain text import of SwissJudgmentPrediction for the {lang} language",
82
+ )
83
+ for lang in _LANGUAGES
84
+ ] + [
85
+ SwissJudgmentPredictionConfig(
86
+ name="all_languages",
87
+ language="all_languages",
88
+ version=datasets.Version("1.0.0", ""),
89
+ description="Plain text import of SwissJudgmentPrediction for all languages",
90
+ )
91
+ ]
92
+
93
+ def _info(self):
94
+ features = datasets.Features(
95
+ {
96
+ "id": datasets.Value("int32"),
97
+ "year": datasets.Value("int32"),
98
+ "text": datasets.Value("string"),
99
+ "label": datasets.ClassLabel(names=["dismissal", "approval"]),
100
+ "language": datasets.Value("string"),
101
+ "region": datasets.Value("string"),
102
+ "canton": datasets.Value("string"),
103
+ "legal area": datasets.Value("string"),
104
+ }
105
+ )
106
+ return datasets.DatasetInfo(
107
+ description=_DESCRIPTION,
108
+ features=features,
109
+ supervised_keys=None,
110
+ homepage="https://github.com/JoelNiklaus/SwissCourtRulingCorpus",
111
+ citation=_CITATION,
112
+ )
113
+
114
+ def _split_generators(self, dl_manager):
115
+ # dl_manager is a datasets.download.DownloadManager that can be used to
116
+ # download and extract URLs
117
+ urls_to_dl = _URLS
118
+ try:
119
+ dl_dir = dl_manager.download_and_extract(urls_to_dl)
120
+ except Exception:
121
+ logger.warning(
122
+ "This dataset is downloaded through Zenodo which is flaky. If this download failed try a few times before reporting an issue"
123
+ )
124
+ raise
125
+ return [
126
+ datasets.SplitGenerator(
127
+ name=datasets.Split.TRAIN,
128
+ # These kwargs will be passed to _generate_examples
129
+ gen_kwargs={"filepath": dl_dir["train"], "split": "train"},
130
+ ),
131
+ datasets.SplitGenerator(
132
+ name=datasets.Split.TEST,
133
+ # These kwargs will be passed to _generate_examples
134
+ gen_kwargs={"filepath": dl_dir["test"], "split": "test"},
135
+ ),
136
+ datasets.SplitGenerator(
137
+ name=datasets.Split.VALIDATION,
138
+ # These kwargs will be passed to _generate_examples
139
+ gen_kwargs={"filepath": dl_dir["val"], "split": "dev"},
140
+ ),
141
+ ]
142
+
143
+ def _generate_examples(self, filepath, split):
144
+ """This function returns the examples in the raw (text) form."""
145
+
146
+ if self.config.language == "all_languages":
147
+ with open(filepath, encoding="utf-8") as f:
148
+ for id_, row in enumerate(f):
149
+ data = json.loads(row)
150
+ yield id_, {
151
+ "id": data["id"],
152
+ "year": data["year"],
153
+ "text": data["text"],
154
+ "label": data["label"],
155
+ "language": data["language"],
156
+ "region": data["region"],
157
+ "canton": data["canton"],
158
+ "legal area": data["legal area"],
159
+ }
160
+ else:
161
+ with open(filepath, encoding="utf-8") as f:
162
+ for id_, row in enumerate(f):
163
+ data = json.loads(row)
164
+ if data["language"] == self.config.language:
165
+ yield id_, {
166
+ "id": data["id"],
167
+ "year": data["year"],
168
+ "text": data["text"],
169
+ "label": data["label"],
170
+ "language": data["language"],
171
+ "region": data["region"],
172
+ "canton": data["canton"],
173
+ "legal area": data["legal area"],
174
+ }