Datasets:

ArXiv:
zhujiem commited on
Commit
1186acc
1 Parent(s): 535dbde

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -0
README.md ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Movielens1M_m1
2
+
3
+ + **Dataset description:**
4
+
5
+ The MovieLens-1M dataset contain 1,000,209 anonymous ratings of approximately 3,900 movies made by 6,040 MovieLens users. We follow the LCF work to split and preprocess the data into training, validation, and test sets, respectively.
6
+
7
+ + **Data format:**
8
+
9
+ Each user corresponds to a list of interacted items: [[item1, item2], [item3, item4, item5], ...]
10
+
11
+ + **Source:** https://grouplens.org/datasets/movielens/1m/
12
+ + **Download:** https://huggingface.co/datasets/reczoo/Movielens1M_m1/tree/main
13
+ + **RecZoo Datasets:** https://github.com/reczoo/Datasets
14
+
15
+ + **Used by papers:**
16
+ - Wenhui Yu, Zheng Qin. [Graph Convolutional Network for Recommendation with Low-pass Collaborative Filters](https://arxiv.org/abs/2006.15516). In ICML 2020.
17
+ - Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao, Xiuqiang He. [SimpleX: A Simple and Strong Baseline for Collaborative Filtering](https://arxiv.org/abs/2109.12613). In CIKM 2021.
18
+ - Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. [UltraGCN: Ultra Simplification of Graph Convolutional Networks for Recommendation](https://arxiv.org/abs/2110.15114). In CIKM 2021.
19
+
20
+ + **Check the md5sum for data integrity:**
21
+ ```bash
22
+ $ md5sum *.json
23
+ cdd3ad819512cb87dad2f098c8437df2 test_data.json
24
+ 4229bc5369f943918103daf7fd92e920 train_data.json
25
+ 60be3b377d39806f80a43e37c94449f6 validation_data.json
26
+ ```