asahi417's picture
init
f3ddf7c
raw
history blame
4.63 kB
import json
import os
import tarfile
import zipfile
import gzip
import requests
import gdown
from glob import glob
def wget(url, cache_dir: str = './cache', gdrive_filename: str = None):
""" wget and uncompress data_iterator """
path = _wget(url, cache_dir, gdrive_filename=gdrive_filename)
if path.endswith('.tar.gz') or path.endswith('.tgz') or path.endswith('.tar'):
if path.endswith('.tar'):
tar = tarfile.open(path)
else:
tar = tarfile.open(path, "r:gz")
tar.extractall(cache_dir)
tar.close()
os.remove(path)
elif path.endswith('.zip'):
with zipfile.ZipFile(path, 'r') as zip_ref:
zip_ref.extractall(cache_dir)
os.remove(path)
elif path.endswith('.gz'):
with gzip.open(path, 'rb') as f:
with open(path.replace('.gz', ''), 'wb') as f_write:
f_write.write(f.read())
os.remove(path)
def _wget(url: str, cache_dir, gdrive_filename: str = None):
""" get data from web """
os.makedirs(cache_dir, exist_ok=True)
if url.startswith('https://drive.google.com'):
assert gdrive_filename is not None, 'please provide fileaname for gdrive download'
return gdown.download(url, f'{cache_dir}/{gdrive_filename}', quiet=False)
filename = os.path.basename(url)
with open(f'{cache_dir}/{filename}', "wb") as f:
r = requests.get(url)
f.write(r.content)
return f'{cache_dir}/{filename}'
def get_data(n_sample: int = 10, v_rate: float = 0.2, n_sample_max: int = 10):
assert n_sample <= n_sample_max
cache_dir = 'cache'
os.makedirs(cache_dir, exist_ok=True)
path_answer = f'{cache_dir}/Phase2Answers'
path_scale = f'{cache_dir}/Phase2AnswersScaled'
url = 'https://drive.google.com/u/0/uc?id=0BzcZKTSeYL8VYWtHVmxUR3FyUmc&export=download'
filename = 'SemEval-2012-Platinum-Ratings.tar.gz'
if not (os.path.exists(path_scale) and os.path.exists(path_answer)):
wget(url, gdrive_filename=filename, cache_dir=cache_dir)
files_answer = [os.path.basename(i) for i in glob(f'{path_answer}/*.txt')]
files_scale = [os.path.basename(i) for i in glob(f'{path_scale}/*.txt')]
assert files_answer == files_scale, f'files are not matched: {files_scale} vs {files_answer}'
all_positive_v = {}
all_negative_v = {}
all_positive_t = {}
all_negative_t = {}
for i in files_scale:
relation_id = i.split('-')[-1].replace('.txt', '')
with open(f'{path_answer}/{i}', 'r') as f:
lines_answer = [l.replace('"', '').split('\t') for l in f.read().split('\n') if not l.startswith('#') and len(l)]
relation_type = list(set(list(zip(*lines_answer))[-1]))
assert len(relation_type) == 1, relation_type
with open(f'{path_scale}/{i}', 'r') as f:
lines_scale = [[float(l[:5]), l[6:].replace('"', '')] for l in f.read().split('\n')
if not l.startswith('#') and len(l)]
lines_scale = sorted(lines_scale, key=lambda x: x[0])
_negative = [tuple(i.split(':')) for i in list(zip(*list(filter(lambda x: x[0] < 0, lines_scale[:n_sample_max]))))[1]]
_positive = [tuple(i.split(':')) for i in list(zip(*list(filter(lambda x: x[0] > 0, lines_scale[-n_sample_max:]))))[1]]
v_negative = _negative[::int(len(_negative) * (1 - v_rate))]
v_positive = _positive[::int(len(_positive) * (1 - v_rate))]
t_negative = [i for i in _negative if i not in v_negative]
t_positive = [i for i in _positive if i not in v_positive]
all_negative_v[relation_id] = v_negative
all_positive_v[relation_id] = v_positive
all_negative_t[relation_id] = t_negative[:n_sample]
all_positive_t[relation_id] = t_positive[-n_sample:]
return (all_positive_t, all_negative_t), (all_positive_v, all_negative_v)
if __name__ == '__main__':
(all_positive_t, all_negative_t), (all_positive_v, all_negative_v) = get_data(n_sample=10, v_rate=0.2, n_sample_max=10)
os.makedirs('data', exist_ok=True)
keys = all_positive_t.keys()
with open("data/train.jsonl", "w") as f:
for k in sorted(keys):
f.write(json.dumps({"relation_type": k, "positives": all_positive_t[k], "negatives": all_negative_t[k]}))
f.write("\n")
keys = all_positive_v.keys()
with open("data/valid.jsonl", "w") as f:
for k in sorted(keys):
f.write(json.dumps({"relation_type": k, "positives": all_positive_v[k], "negatives": all_negative_v[k]}))
f.write("\n")