|
import json |
|
from itertools import product |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
_DESCRIPTION = """T-Rex dataset.""" |
|
_NAME = "t_rex" |
|
_VERSION = "0.0.7" |
|
_CITATION = """ |
|
@inproceedings{elsahar2018t, |
|
title={T-rex: A large scale alignment of natural language with knowledge base triples}, |
|
author={Elsahar, Hady and Vougiouklis, Pavlos and Remaci, Arslen and Gravier, Christophe and Hare, Jonathon and Laforest, Frederique and Simperl, Elena}, |
|
booktitle={Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)}, |
|
year={2018} |
|
} |
|
""" |
|
|
|
_HOME_PAGE = "https://github.com/asahi417/relbert" |
|
_URL = f'https://huggingface.co/datasets/relbert/{_NAME}/resolve/main/data' |
|
MIN_ENTITY_FREQ = [1, 2, 3, 4] |
|
MAX_PREDICATE_FREQ = [100, 50, 25, 10] |
|
|
|
_TYPES = [f"filter_unified.min_entity_{a}_max_predicate_{b}" for a, b in product(MIN_ENTITY_FREQ, MAX_PREDICATE_FREQ)] |
|
|
|
_NON_SPLITS = ["raw", "filter", "filter_unified"] |
|
_URLS = {i: {str(datasets.Split.TRAIN): [f'{_URL}/t_rex.{i}.jsonl']} if i in _NON_SPLITS else { |
|
str(datasets.Split.TRAIN): [f'{_URL}/t_rex.{i}.train.jsonl'], |
|
str(datasets.Split.VALIDATION): [f'{_URL}/t_rex.{i}.validation.jsonl'], |
|
str(datasets.Split.TEST): [f'{_URL}/t_rex.filter_unified.test.jsonl']} |
|
for i in _TYPES} |
|
|
|
|
|
class TREXConfig(datasets.BuilderConfig): |
|
"""BuilderConfig""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(TREXConfig, self).__init__(**kwargs) |
|
|
|
|
|
class TREX(datasets.GeneratorBasedBuilder): |
|
"""Dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
TREXConfig(name=i, version=datasets.Version(_VERSION), description=_DESCRIPTION) |
|
for i in sorted(_TYPES) |
|
] |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_file = dl_manager.download_and_extract(_URLS[self.config.name]) |
|
if self.config.name in _NON_SPLITS: |
|
return [datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepaths": downloaded_file[str(datasets.Split.TRAIN)]})] |
|
else: |
|
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]}) |
|
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]] |
|
|
|
def _generate_examples(self, filepaths): |
|
_key = 0 |
|
for filepath in filepaths: |
|
logger.info(f"generating examples from = {filepath}") |
|
with open(filepath, encoding="utf-8") as f: |
|
_list = [i for i in f.read().split('\n') if len(i) > 0] |
|
for i in _list: |
|
data = json.loads(i) |
|
yield _key, data |
|
_key += 1 |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"title": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"predicate": datasets.Value("string"), |
|
"object": datasets.Value("string"), |
|
"subject": datasets.Value("string") |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOME_PAGE, |
|
citation=_CITATION, |
|
) |