init
Browse files
README.md
CHANGED
@@ -40,7 +40,8 @@ We apply filtering to keep triples with alpha-numeric subject and object, as wel
|
|
40 |
We reduce the size of the dataset by applying filtering based on the number of predicates and entities in the triples.
|
41 |
We first remove triples that contain either of subject or object with the occurrence in the dataset that is lower than `min entity`.
|
42 |
Then, we reduce the number triples in each predicate to be less than `max predicate`.
|
43 |
-
If the number of triples in a predicate is higher than `max predicate`,
|
|
|
44 |
|
45 |
- number of triples in each configuration
|
46 |
|
|
|
40 |
We reduce the size of the dataset by applying filtering based on the number of predicates and entities in the triples.
|
41 |
We first remove triples that contain either of subject or object with the occurrence in the dataset that is lower than `min entity`.
|
42 |
Then, we reduce the number triples in each predicate to be less than `max predicate`.
|
43 |
+
If the number of triples in a predicate is higher than `max predicate`,
|
44 |
+
we choose top-`max predicate` triples based on the frequency of the subject and the object, or random sampling.
|
45 |
|
46 |
- number of triples in each configuration
|
47 |
|
stats.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
from itertools import product
|
3 |
|
@@ -12,11 +15,15 @@ sns.set_theme(style="whitegrid")
|
|
12 |
|
13 |
# load filtered data
|
14 |
tmp = []
|
|
|
15 |
for s in ['train', 'validation', 'test']:
|
16 |
with open(f"data/t_rex.filter.{s}.jsonl") as f:
|
17 |
-
|
|
|
|
|
18 |
data = Dataset.from_list(tmp)
|
19 |
df_main = data.to_pandas()
|
|
|
20 |
|
21 |
|
22 |
def is_entity(token):
|
@@ -29,8 +36,7 @@ def filtering(row, min_freq: int = 3, target: str = "subject"):
|
|
29 |
return row[target] >= min_freq
|
30 |
|
31 |
|
32 |
-
def main(min_entity_freq, max_pairs_predicate, min_pairs_predicate: int = 1,
|
33 |
-
return_stats: bool = True, random_sampling: bool = True):
|
34 |
|
35 |
df = df_main.copy()
|
36 |
|
@@ -67,17 +73,17 @@ def main(min_entity_freq, max_pairs_predicate, min_pairs_predicate: int = 1,
|
|
67 |
[g if len(g) <= max_pairs_predicate else g.sort_values(by='count_sum', ascending=False).head(max_pairs_predicate) for _, g in
|
68 |
df_filter.groupby("predicate") if len(g) >= min_pairs_predicate])
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
# return distribution
|
77 |
predicate_dist = df_balanced.groupby("predicate")['text'].count().sort_values(ascending=False).to_dict()
|
78 |
entity, count = np.unique(df_balanced['object'].tolist() + df_balanced['subject'].tolist(), return_counts=True)
|
79 |
entity_dist = dict(list(zip(entity.tolist(), count.tolist())))
|
80 |
-
return predicate_dist, entity_dist, len(df_balanced)
|
81 |
|
82 |
|
83 |
if __name__ == '__main__':
|
@@ -89,7 +95,7 @@ if __name__ == '__main__':
|
|
89 |
|
90 |
# run filtering with different configs
|
91 |
for min_e_freq, max_p_freq in candidates:
|
92 |
-
p_dist, e_dist, data_size = main(min_entity_freq=min_e_freq, max_pairs_predicate=max_p_freq)
|
93 |
p_dist_full.append(p_dist)
|
94 |
e_dist_full.append(e_dist)
|
95 |
data_size_full.append(data_size)
|
|
|
1 |
+
"""
|
2 |
+
TODO:
|
3 |
+
"""
|
4 |
import json
|
5 |
from itertools import product
|
6 |
|
|
|
15 |
|
16 |
# load filtered data
|
17 |
tmp = []
|
18 |
+
splits = []
|
19 |
for s in ['train', 'validation', 'test']:
|
20 |
with open(f"data/t_rex.filter.{s}.jsonl") as f:
|
21 |
+
_tmp = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
|
22 |
+
tmp += _tmp
|
23 |
+
splits += [s] * len(_tmp)
|
24 |
data = Dataset.from_list(tmp)
|
25 |
df_main = data.to_pandas()
|
26 |
+
df_main['split'] = splits
|
27 |
|
28 |
|
29 |
def is_entity(token):
|
|
|
36 |
return row[target] >= min_freq
|
37 |
|
38 |
|
39 |
+
def main(min_entity_freq, max_pairs_predicate, min_pairs_predicate: int = 1, random_sampling: bool = True):
|
|
|
40 |
|
41 |
df = df_main.copy()
|
42 |
|
|
|
73 |
[g if len(g) <= max_pairs_predicate else g.sort_values(by='count_sum', ascending=False).head(max_pairs_predicate) for _, g in
|
74 |
df_filter.groupby("predicate") if len(g) >= min_pairs_predicate])
|
75 |
|
76 |
+
|
77 |
+
df_balanced.pop("count_subject")
|
78 |
+
df_balanced.pop("count_object")
|
79 |
+
df_balanced.pop("count_sum")
|
80 |
+
target_data = [i.to_dict() for _, i in df_balanced]
|
81 |
|
82 |
# return distribution
|
83 |
predicate_dist = df_balanced.groupby("predicate")['text'].count().sort_values(ascending=False).to_dict()
|
84 |
entity, count = np.unique(df_balanced['object'].tolist() + df_balanced['subject'].tolist(), return_counts=True)
|
85 |
entity_dist = dict(list(zip(entity.tolist(), count.tolist())))
|
86 |
+
return predicate_dist, entity_dist, len(df_balanced), target_data
|
87 |
|
88 |
|
89 |
if __name__ == '__main__':
|
|
|
95 |
|
96 |
# run filtering with different configs
|
97 |
for min_e_freq, max_p_freq in candidates:
|
98 |
+
p_dist, e_dist, data_size, new_data = main(min_entity_freq=min_e_freq, max_pairs_predicate=max_p_freq)
|
99 |
p_dist_full.append(p_dist)
|
100 |
e_dist_full.append(e_dist)
|
101 |
data_size_full.append(data_size)
|