Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
asahi417 commited on
Commit
7fe48b5
1 Parent(s): 23f9c06
.gitattributes CHANGED
@@ -60,3 +60,4 @@ data/t_rex.raw.test.jsonl filter=lfs diff=lfs merge=lfs -text
60
  data/t_rex.filter.validation.jsonl filter=lfs diff=lfs merge=lfs -text
61
  data/t_rex.filter.test.jsonl filter=lfs diff=lfs merge=lfs -text
62
  data/t_rex.filter.train.jsonl filter=lfs diff=lfs merge=lfs -text
 
 
60
  data/t_rex.filter.validation.jsonl filter=lfs diff=lfs merge=lfs -text
61
  data/t_rex.filter.test.jsonl filter=lfs diff=lfs merge=lfs -text
62
  data/t_rex.filter.train.jsonl filter=lfs diff=lfs merge=lfs -text
63
+ data/t_rex.filter.jsonl filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -22,19 +22,11 @@ We split the raw T-REX dataset into train/validation/test split by the ratio of
22
 
23
  We apply filtering to keep triples with alpha-numeric subject and object, as well as triples with at least either of subject or object is a named-entity.
24
 
25
- - Number of unique entities in subject and object.
26
-
27
- | Dataset | `train` | `validation` | `test` | `all` |
28
- |-------:|-------:|------------:|-------:|-------:|
29
- | raw | 659,163 | 141,248 | 141,249 | 941,660 |
30
- | filter | 463,521 | 99,550 | 99,408 | 662,479 |
31
-
32
- - Number of unique predicate.
33
-
34
- | Dataset | `train` | `validation` | `test` | `all` |
35
- |-------:|-------:|------------:|-------:|-----:|
36
- | raw | 894 | 717 | 700 | 2,311 |
37
- | filter | 780 | 614 | 616 | 2,010 |
38
 
39
  ### Filtering to Purify the Dataset
40
  We reduce the size of the dataset by applying filtering based on the number of predicates and entities in the triples.
 
22
 
23
  We apply filtering to keep triples with alpha-numeric subject and object, as well as triples with at least either of subject or object is a named-entity.
24
 
25
+ | Dataset | Raw | Filter |
26
+ |--------:|----:|-------:|
27
+ | Triples | 941,663 | 662,482 |
28
+ | Predicate| 931 | 818 |
29
+ | Entity | 270,801 | 197,302 |
 
 
 
 
 
 
 
 
30
 
31
  ### Filtering to Purify the Dataset
32
  We reduce the size of the dataset by applying filtering based on the number of predicates and entities in the triples.
check_predicate.py ADDED
File without changes
data/{t_rex.filter.test.jsonl → t_rex.filter.jsonl} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f0cb4f880cdd24589aad630ba79e042a4dcce3d6471f490cd472886366a68d50
3
- size 90649913
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b80224241efafb2b053bc630288a3adfbaf69422454b57c620c6f810da20aee
3
+ size 603995857
data/t_rex.filter.validation.jsonl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b690964fd198d372882d889cc6169184be5373335315fc31e5e34975fb4d4c89
3
- size 90752371
 
 
 
 
data/{t_rex.filter.train.jsonl → t_rex.raw.jsonl} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:800dc2faef4a84c10be28a8560c5970a797e1ab852238367d0cec96f8db86021
3
- size 422593571
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f50215186e30015c38d374bdd737d989497852aacfb9ae3aeb467ec47537ad6a
3
+ size 841348762
data/t_rex.raw.test.jsonl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7255c9f4d2d5155e76075dcd5cee901e16903425e041ce76f7fc389265e89518
3
- size 125893572
 
 
 
 
data/t_rex.raw.train.jsonl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c664392be27e68c9a8172f80d76aa17eedac052b45623274afd8c2b060f2284
3
- size 589023853
 
 
 
 
data/t_rex.raw.validation.jsonl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:44f9999f051074e8684cccc9c492718be8f3b36b55963eeede4d76323fa6c496
3
- size 126431335
 
 
 
 
filtering.py → filtering_denoise.py RENAMED
@@ -38,11 +38,10 @@ def filtering(entry):
38
  return True
39
 
40
 
41
- for s in ['train', 'validation', 'test']:
42
- with open(f"data/t_rex.raw.{s}.jsonl") as f:
43
- data = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
44
- print(f"[{s}] (before): {len(data)}")
45
- data = [i for i in data if filtering(i)]
46
- print(f"[{s}] (after) : {len(data)}")
47
- with open(f"data/t_rex.filter.{s}.jsonl", 'w') as f:
48
- f.write('\n'.join([json.dumps(i) for i in data]))
 
38
  return True
39
 
40
 
41
+ with open(f"data/t_rex.raw.jsonl") as f:
42
+ data = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
43
+ print(f"[before]: {len(data)}")
44
+ data = [i for i in data if filtering(i)]
45
+ print(f"[after] : {len(data)}")
46
+ with open(f"data/t_rex.filter.jsonl", 'w') as f:
47
+ f.write('\n'.join([json.dumps(i) for i in data]))
 
stats.py → filtering_purify.py RENAMED
@@ -15,13 +15,10 @@ from datasets import Dataset
15
  sns.set_theme(style="whitegrid")
16
 
17
  # load filtered data
18
- tmp = []
19
- splits = []
20
- for s in ['train', 'validation', 'test']:
21
- with open(f"data/t_rex.filter.{s}.jsonl") as f:
22
- _tmp = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
23
- tmp += _tmp
24
- splits += [s] * len(_tmp)
25
  data = Dataset.from_list(tmp)
26
  df_main = data.to_pandas()
27
  df_main['split'] = splits
@@ -92,7 +89,7 @@ if __name__ == '__main__':
92
  e_dist_full = []
93
  data_size_full = []
94
  config = []
95
- candidates = list(product([1, 2, 3, 4], [100, 50, 25, 10]))
96
 
97
  # run filtering with different configs
98
  for min_e_freq, max_p_freq in candidates:
@@ -102,9 +99,11 @@ if __name__ == '__main__':
102
  data_size_full.append(data_size)
103
  config.append([min_e_freq, max_p_freq])
104
  # save data
 
105
  for s in ['train', 'validation', 'test']:
106
- new_data_s = [i for i in new_data if i['split'] == s]
107
- for i in new_data_s:
 
108
  i.pop('split')
109
  with open(f"data/t_rex.clean.min_entity_{min_e_freq}_max_predicate_{max_p_freq}.{s}.jsonl", 'w') as f:
110
  f.write('\n'.join([json.dumps(i) for i in new_data_s]))
 
15
  sns.set_theme(style="whitegrid")
16
 
17
  # load filtered data
18
+ with open(f"data/t_rex.filter.jsonl") as f:
19
+ _tmp = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
20
+ tmp += _tmp
21
+ splits += [s] * len(_tmp)
 
 
 
22
  data = Dataset.from_list(tmp)
23
  df_main = data.to_pandas()
24
  df_main['split'] = splits
 
89
  e_dist_full = []
90
  data_size_full = []
91
  config = []
92
+ candidates = list(product([4, 8, 12, 16], [100, 50, 25, 10]))
93
 
94
  # run filtering with different configs
95
  for min_e_freq, max_p_freq in candidates:
 
99
  data_size_full.append(data_size)
100
  config.append([min_e_freq, max_p_freq])
101
  # save data
102
+ out = {}
103
  for s in ['train', 'validation', 'test']:
104
+ out[s] = [i for i in new_data if i['split'] == s]
105
+ for s, v in out.items():
106
+ for i in v:
107
  i.pop('split')
108
  with open(f"data/t_rex.clean.min_entity_{min_e_freq}_max_predicate_{max_p_freq}.{s}.jsonl", 'w') as f:
109
  f.write('\n'.join([json.dumps(i) for i in new_data_s]))
process.py CHANGED
@@ -7,7 +7,7 @@ import json
7
  import os
8
  from glob import glob
9
  from tqdm import tqdm
10
- from random import shuffle, seed
11
 
12
  os.makedirs('data', exist_ok=True)
13
  f_writer = open('data/t_rex.raw.jsonl', 'w')
@@ -25,13 +25,9 @@ for i in tqdm(glob("*.json")):
25
  f_writer.write(json.dumps(out) + "\n")
26
  f_writer.close()
27
 
28
- seed(0)
29
  with open('data/t_rex.raw.jsonl') as f:
30
  data = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
31
- shuffle(data)
32
- train = data[:int(len(data) * 0.7)]
33
- val = data[int(len(data) * 0.7):int(len(data) * 0.85)]
34
- test = data[int(len(data) * 0.85):]
35
- for i, j in zip([train, val, test], ['train', 'validation', 'test']):
36
- with open(f'data/t_rex.raw.{j}.jsonl', 'w') as f:
37
- f.write('\n'.join([json.dumps(l) for l in i]))
 
7
  import os
8
  from glob import glob
9
  from tqdm import tqdm
10
+ # from random import shuffle, seed
11
 
12
  os.makedirs('data', exist_ok=True)
13
  f_writer = open('data/t_rex.raw.jsonl', 'w')
 
25
  f_writer.write(json.dumps(out) + "\n")
26
  f_writer.close()
27
 
28
+
29
  with open('data/t_rex.raw.jsonl') as f:
30
  data = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
31
+ s = {i['subject'] for i in data}
32
+ o = {i['object'] for i in data}
33
+ s.update(o)
 
 
 
 
t_rex.py CHANGED
@@ -5,7 +5,7 @@ import datasets
5
  logger = datasets.logging.get_logger(__name__)
6
  _DESCRIPTION = """T-Rex dataset."""
7
  _NAME = "t_rex"
8
- _VERSION = "0.0.2"
9
  _CITATION = """
10
  @inproceedings{elsahar2018t,
11
  title={T-rex: A large scale alignment of natural language with knowledge base triples},
@@ -18,11 +18,11 @@ _CITATION = """
18
  _HOME_PAGE = "https://github.com/asahi417/relbert"
19
  _URL = f'https://huggingface.co/datasets/relbert/{_NAME}/resolve/main/data'
20
  _TYPES = ["raw", "filter"]
21
- _URLS = {i: {
22
  str(datasets.Split.TRAIN): [f'{_URL}/t_rex.{i}.train.jsonl'],
23
  str(datasets.Split.VALIDATION): [f'{_URL}/t_rex.{i}.validation.jsonl'],
24
- str(datasets.Split.TEST): [f'{_URL}/t_rex.{i}.test.jsonl']
25
- } for i in _TYPES}
26
 
27
 
28
  class TREXConfig(datasets.BuilderConfig):
@@ -46,8 +46,13 @@ class TREX(datasets.GeneratorBasedBuilder):
46
 
47
  def _split_generators(self, dl_manager):
48
  downloaded_file = dl_manager.download_and_extract(_URLS[self.config.name])
49
- return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
50
- for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
 
 
 
 
 
51
 
52
  def _generate_examples(self, filepaths):
53
  _key = 0
 
5
  logger = datasets.logging.get_logger(__name__)
6
  _DESCRIPTION = """T-Rex dataset."""
7
  _NAME = "t_rex"
8
+ _VERSION = "0.0.3"
9
  _CITATION = """
10
  @inproceedings{elsahar2018t,
11
  title={T-rex: A large scale alignment of natural language with knowledge base triples},
 
18
  _HOME_PAGE = "https://github.com/asahi417/relbert"
19
  _URL = f'https://huggingface.co/datasets/relbert/{_NAME}/resolve/main/data'
20
  _TYPES = ["raw", "filter"]
21
+ _URLS = {i: {str(datasets.Split.TRAIN): [f'{_URL}/t_rex.{i}.jsonl']} if i in ['raw', 'filter'] else {
22
  str(datasets.Split.TRAIN): [f'{_URL}/t_rex.{i}.train.jsonl'],
23
  str(datasets.Split.VALIDATION): [f'{_URL}/t_rex.{i}.validation.jsonl'],
24
+ str(datasets.Split.TEST): [f'{_URL}/t_rex.{i}.test.jsonl']}
25
+ for i in _TYPES}
26
 
27
 
28
  class TREXConfig(datasets.BuilderConfig):
 
46
 
47
  def _split_generators(self, dl_manager):
48
  downloaded_file = dl_manager.download_and_extract(_URLS[self.config.name])
49
+ if self.config.name in ['raw', 'filter']:
50
+ return [datasets.SplitGenerator(
51
+ name=datasets.Split.TRAIN,
52
+ gen_kwargs={"filepaths": downloaded_file[str(datasets.Split.TRAIN)]})]
53
+ else:
54
+ return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
55
+ for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
56
 
57
  def _generate_examples(self, filepaths):
58
  _key = 0